
06AE-258

The Synthesis of Dependable Communication Networks for
Automotive Systems

Nagarajan Kandasamy
Drexel University, Philadelphia, USA

Fadi Aloul
American University of Sharjah, Sharjah, UAE

Copyright © 2005 SAE International

ABSTRACT

Embedded automotive applications such as drive-by-wire
in cars require dependable interaction between various
sensors, processors, and actuators. This paper
addresses the design of low-cost communication
networks guaranteeing to meet both the performance
and fault-tolerance requirements of such distributed
applications. We develop a fault-tolerant allocation and
scheduling method which maps messages on to a low-
cost multiple-bus system to ensure predictable inter-
processor communication. The proposed method targets
time-division multiple access (TDMA) communication
protocols. Finally, we present a case study using some
advanced automotive control applications to show that
our approach uses the available network bandwidth
efficiently to guarantee message deadlines.

INTRODUCTION

Embedded computers are being increasingly used in
automobiles to replace safety-critical mechanical and
hydraulic systems. Drive-by-wire is one example where
traditional hydraulic steering and braking are replaced by
a networked microprocessor-controlled electro-
mechanical system [1]. Sensors measure the steering-
wheel angle and brake-pedal position, and processors
calculate the desired road-wheel and braking parameters
which are then applied via electro-mechanical actuators
at the wheels. Other computerized vehicle-control
applications including adaptive cruise control, collision
avoidance, and autonomous driving are also being
developed [2]. These applications will be realized as real-
time distributed systems requiring dependable and timely
interaction between sensors, processors, and actuators.
This paper addresses the design of low-cost
communication networks to meet both the performance
and fault-tolerance requirements of such applications.

The approach described in this paper synthesizes a fault-
tolerant (FT) network topology from application
requirements. While synthesis methods such as [3]
assume an underlying CAN communication protocol and

arbitrate bus access using message (processor)
priorities, we target TDMA communication protocols
where processors are allotted transmission slots
according to a static, periodic, and global communication
schedule [4]. Examples include TTP [5] and FlexRay [6]
that have recently emerged as possible networking
standards for in-vehicle networks.

We restrict the network topology space to multiple-bus
systems such as the one in Fig. 1 where each processor
Pi connects to a subset of the communication buses. A
co-processor handles message communication
independently without interfering with task execution on
Pi. A multiple-bus topology allows fault-tolerant message
allocation. Also, since communication protocols for the
embedded systems of interest are typically implemented
over low-cost physical media, individual buses have
limited bandwidth. Therefore, multiple buses may be
needed to accommodate the message load.

Given a set of distributed applications modeled as task
graphs {Gi}, the proposed approach generates a
communication network satisfying both the performance
and fault-tolerance requirements of each Gi. Messages
are allocated and scheduled on the minimum number of
buses {Bj} where each Bj has a specified bandwidth. The
major features of our approach are as follows:

• It assumes a multi-rate system where each graph Gi
may have a different execution period period(Gi).

• It targets a TDMA communication protocol.

Fig. 1: A multi-bus system where each processor

connects to a subset of the communication buses

• It supports dependable message communication by
establishing redundant transmission paths between
processors, thereby tolerating a bounded number of
permanent bus failures.

• It uses network bandwidth efficiently by reusing
transmission slots allotted to a processor between
the multiple messages sent by it.

Finally, using representative distributed automotive
control applications, we show that the proposed method
guarantees predictable message transmission while
reducing bandwidth utilization.

The rest of this paper is organized as follows. Section 2
presents an overview of the proposed approach, while
Section 3 discusses some preliminaries including task
scheduling. The message allocation method is
developed in Section 4, and Section 5 presents the case
study. We conclude the paper in Section 6.

DESIGN FLOW

As the primary objective, we construct a network
topology meeting the fault-tolerance and performance
goals of the embedded applications. The secondary
objective is to minimize hardware cost in terms of
communication buses. An heuristic method is developed
where a feasible network topology satisfying
performance goals is first obtained. Its cost is then
reduced via a series of steps which minimize the number
of buses by appropriately grouping (clustering)
messages while preserving the feasibility of the original
solution.

The main steps of the proposed design approach are as
follows. For a given allocation of task to processors {Pi},
the corresponding inter-processor messages are
mapped to a low-cost network topology comprising
identical buses {Bj}. Redundant routes are provided for
messages with specific fault-tolerance requirements; for
a k-fault-tolerant (k-FT) message mi, k replicas or copies
are allocated to separate buses. The network is
synthesized assuming a generic TDMA protocol, and can
be modified to accommodate specific cases such as
TTP and FlexRay.

We assume that each task graph Gi must meet its
deadline by the end of its period period(Gi). First, the
graph deadline is distributed over its tasks to generate a
scheduling range [ri, di] for each task Ti where ri and di
denote its release time and deadline, respectively. The
initial network topology is obtained by simply allocating
each inter-processor message mi to a separate bus.
Without bus contention, mi’s transmission delay is given
by the message size and bus bandwidth, and the overall
solution is feasible if all tasks complete before their
respective deadlines. The next section discusses these
preliminary steps in greater detail.

The number of communication buses in the initial
solution is then minimized via an iterative message
clustering procedure which groups multiple messages on

bus Bj. A message mi is grouped with an existing cluster
Cj if the resulting allocation satisfies the following
requirements: (1) No two replicas of a k-FT message are
allocated to Cj. (2) All messages belonging to Cj continue
to meet their deadlines. (3) The duration (length) of the
communication schedule corresponding to Cj does not
exceed a designer-specified threshold. Note that if a
dedicated co-processor handles communication as in
Fig. 1, the message transmission schedule must be
compact enough to fit within the available memory.

The proposed clustering approach also uses bus
bandwidth efficiently by sharing or re-using transmission
slots between multiple messages sent by a processor
whenever possible. Each message cluster is allocated to
a separate bus in the final topology.

PRELIMINARIES

This section shows how to obtain the initial solution
where tasks are assigned deadlines and scheduled on
processors, and messages allocated to separate
communication buses.

Deadline Assignment: Initially, only the entry and exit
tasks having no predecessors and successors,
respectively, have their release times and deadlines
fixed. To schedule an intermediate task Ti in the task
graph, however, its scheduling range [ri, di] must first be
obtained. This is termed the deadline assignment
problem where the deadline Di of the task graph Gi must
be distributed over each intermediate task such that all
tasks are feasibly scheduled on their respective
processors. Deadline distribution is NP-complete and
various heuristics have been proposed to solve it. We
use the approach of [7] which maximizes the slack
added to each task in graph Gi while still satisfying its
deadline Di.

We now describe the deadline distribution algorithm.
Entry and exit tasks in the graph are first assigned
release times and deadlines. A path pathi through Gi

comprises one or more tasks {Ti}; the slack available for

distribution to these tasks is ∑−= iii cDslack where

Di is the deadline of pathi and ci the execution time of a
task Ti along this path. The distribution heuristic in [7]
maximizes the minimum slack added to each Ti along
pathi by dividing slacki equally among tasks. During each

iteration through Gi, pathi minimizing nslacki , where n

denotes the number of tasks along pathi, is chosen and
the corresponding slack added to each task along that
path. The deadlines (release times) of the predecessors
(successors) of tasks belonging to pathi are updated.
Tasks along pathi are then removed from the original
graph, and the above process is repeated until all tasks
are assigned release times and deadlines.

We use the graph in Fig. 2(a) to illustrate the above
procedure. First, the release time of entry task T1 and the

deadline of exit task T5 are set to r1 = 0 µs and d5 = 2000

µs, respectively. Next, we select the path T1T2T4T5
shown in Fig. 2(b); the total execution time of tasks along

this path is 800 µs, and as per the heuristic, a slack of

3004)8002000(=− µs is distributed to each task.

Once their release times and deadlines are fixed, these
tasks are removed from the graph. Fig. 2(c) shows the

remaining path comprising task T3 which has its release
time and deadline fixed by T1 and T4, respectively. Fig.
2(d) shows the resulting scheduling range for each task.

Task Scheduling: Once the scheduling ranges of tasks
in the graph are fixed, each Ti may now be considered
independent with release time ri and deadline di, and
scheduled as such. To tackle multi-rate systems, we use
fixed-priority scheduling where tasks are first assigned
priorities according to their periods [8], and at any time
instant, the processor executes the highest-priority ready
task. Again, the schedule is feasible if all tasks finish
before their deadlines. Feasibility analysis of schedules
using simple closed-form processor-utilization-based

tests has been extensively studied under fixed-priority
scheduling. However, in addition to feasibility, we also
require task Ti’s response time wi, given by the time
interval between Ti’s release and finish times; the
response time is used in the next stage of our algorithm
to determine the message delays to be satisfied by the
network.

For multi-rate task graphs, the schedules on individual
processors are simulated for duration equal to the least
common multiple (LCM) of the graph periods. Since this
duration evaluates all possible interactions between
tasks belonging to the different graph iterations, the
worst-case response time for each task Ti is obtained.
Fig. 3(a) shows a simple multi-rate system comprising

two task graphs with periods 2000 µs and 3000 µs; Figs.
3(b) and 3(c) show the task allocation and scheduling
ranges, respectively. Fig. 3(d) shows the corresponding

schedule for 6000 µs−the LCM of the graph periods.
Task response times within this time interval are shown
in Fig. 3(e). Multiple iterations of a task are evaluated to
obtain its worst-case response time. For example, in Fig.
3(e), the first iteration of tasks T1, T2, and T4 (in bold) has
the maximum response time among the iterations within

Fig. 2: (a) Example task graph; (b) and (c) paths selected for deadline distribution, and (d) the resulting scheduling
ranges for each task

Fig. 3: (a) An example multi-rate system, (b) task-to-processor allocation, (c) task scheduling ranges, (d) task
schedule for the duration of the least common multiple of the task periods, and (e) the response times of different
task iterations over the simulated time interval

the given time duration. The task scheduling on

processors is successful if, for each task Ti, iii rdw −≤ .

However, for the overall solution to be feasible, all
messages must also meet their deadlines.

Initial Network Topology: A k-FT message mi sent by

task Ti has deadline iiii wrdmdelay −−=)(where wi

denotes Ti’s worst-case response time. Initially, the
network topology allocates a separate communication
bus for each message copy. Therefore, in this topology,
mi experiences no network contention and its

transmission delay is
speed)(ji Bmsize where size(mi)

and
speed

jB denote the message size in bits and bus

bandwidth in kb/s, respectively. The solution is feasible if,
for each mi, delay(mi) is greater than the corresponding
transmission delay.

MESSAGE CLUSTERING

We now develop a clustering approach to reduce the
cost of the initial network topology where multiple
messages are grouped on a single bus while preserving
the feasibility of the original solution. The fault-tolerance
requirement of each k-FT message is also satisfied
during this procedure.

First, we briefly review message transmission in a typical
TDMA communication protocol such as FlexRay.
Messages are transmitted according to a static, periodic,
and global communication schedule called a round,
comprising identical-sized slots. Each processor Pj is
allotted one or more sending slots during a round where
both slot size and the number of slots per round are fixed
by the system designer. Though successive rounds are
constructed identically, the messages sent by processors

may vary during a given round.

We now state the fault-tolerant message clustering
problem as follows. Given a communication deadline
delay(mi) for each k-FT message mi sent by processor
Pj, construct TDMA rounds on the minimum number of
communication buses such that during any time interval
corresponding to delay(mi), Pj is allotted a sufficient
number of transmission slots to transmit mi. Allocation of
messages to multiple buses is related to bin-packing
where messages are packed into a bin (round) of finite
size while minimizing the number of bins. The general
bin-packing problem is NP-complete and heuristics are
typically used to obtain a solution [9].

We treat each mi as a periodic message with period
period(mi) equal to its deadline delay(mi) and generate
message clusters {Cj}, such that the corresponding
TDMA round round(Cj) satisfies the following constraints:
(1) No two replicas of a k-FT message mi are allocated
to Cj. (2) The duration of round(Cj) does not exceed a
designer-specified threshold. (3) The slots within
round(Cj) guarantee mi’s deadline, i.e., the time interval
between successive sending slots for mi equals its
period.

Each message cluster Cj is allocated to a separate
communication bus in the final network topology. Our
method also makes efficient use of bus bandwidth by
minimizing the number of transmission slots needed to
satisfy message deadlines within a TDMA round by
reusing slots between messages sent by a processor
whenever possible.

We assume an upper bound on TDMA-round duration
provided by the designer in terms of the maximum

number of transmission slots nmax and slot duration ∆slot.
Typically, the choice of nmax depends on the memory
limitations of the communication co-processor such as
the number of transmit and receive buffers. Each
transmission slot within a round has duration

speed

slot)}({min ji
i

Bmsize=∆ µs. The message period

delay(mi), originally expressed in µs, is now discretized

as slot)(∆imdelay and expressed in terms of

transmission-slot intervals. To simplify the notation, we
will use delay(mi) to denote this discrete quantity from
here on.

To guarantee message mi’s deadline, the corresponding
slot allocation must satisfy both its periodicity
requirement and a distance constraint between
successive mi transmissions as the following example
illustrates. Fig. 4(a) shows an allocation scenario for
message m1 having delay(m1) = 2 slots within a TDMA
round of duration four slots where m1 requires one slot
for transmission. Though m1’s periodicity requirement
may be satisfied by simply allocating sufficient slots

within each of its periods, it results in missed deadlines.
The interval between successive m1 transmissions may
be as close to one and as far as three slots away. As Fig.

Fig. 4: (a) Message allocation resulting in a missed
deadline; (b) a clustering of multiple messages

resulting in missed deadlines, and (c) a clustering
guaranteeing deadlines, obtained after modifying
message periods appropriately

4(a) shows, in the worst case, m1 may be allocated a
transmission slot just before the end of its current period
and one immediately at the start of its next period.
Clearly, this results in a deadline violation. Similar
problems may also occur when multiple messages are
clustered.

Figure 4(b) shows TDMA rounds corresponding to
messages m1 and m2 with periods period(m1) = 2 and
period(m2) = 5 slots, respectively. Transmission slots are
allocated in first-fit (FF) fashion where messages are
ordered in terms of increasing period and the first
available slots allocated to each mi within the round. The
slot allocation scheme in Fig. 4(b) results in a deadline
violation where the minimum and maximum distances
between successive slots for m2 are four and six slots,
respectively. Therefore, to guarantee message mi’s
deadline, the corresponding allocation must satisfy a
maximum distance between successive mi transmission
slots equal to period(mi). Note that in the above example,
message deadlines may be satisfied by modifying their
periods appropriately. Fig. 4(c) shows the slot allocation
for both messages after m2’s period is modified to four
slots. It is easily checked that the distance constraint of
two and four slots for successive transmissions of m1
and m2, respectively, is satisfied.

The above discussion suggests that the original
message periods may need modification prior to
allocating slots within the TDMA round. We adopt a
strategy where the message periods within a cluster are
constrained to be harmonic multiples of some base

period pbase, i.e., base2)(pmperiod
k

i ⋅= , a concept

used when scheduling tasks in real-time systems
requiring a specific temporal separation between
successive task executions [10]. We constrain each mi’s
period to be the maximum integer

max)(nmperiod i ≤ satisfying:

base

1

base 2)(2 pmdelayp
k

i

k ⋅<≤⋅ +

If)}({minmin i
i

mperiodp = denotes the smallest period

among the messages, then minbasemin 2 ppp ≤< . Fig. 5

shows the synthesis algorithm to construct the network

topology. For each pbase value between [2minp , pmin],

message periods are modified appropriately, and
clustered to generate the corresponding topology.
Finally, the best solution, in terms of the number of
clusters, is chosen.

The CLUSTER procedure shown in Fig. 6 takes a set of
messages smsg as input, their periods modified and
sorted in terms of increasing period(mi), and returns the
set of message clusters sclust as output. During each
clustering step, we choose a k-FT message mi having
the minimum period within smsg and allocate it to k
separate clusters. For each mi, we obtain all feasible
message-to-cluster allocations by grouping mi with each

Cj in sclust and generating round(Cj ∪ mi). If needed, new
clusters are created within sclust to accommodate all
copies of mi. If more than k feasible allocations are
obtained, then the k best solutions are chosen based on
efficient bandwidth use.

The ALLOC procedure generates a feasible round(Cj ∪
mi). It accepts an existing message cluster Cj and a
message mi and generates a feasible TDMA round (if

possible) for the new allocation Cj ∪ mi. As discussed
above, message mi’s period period(mi) is first
transformed to relate harmonically to those in Cj and the
messages are sorted in increasing period order. The

duration of the new round round(Cj ∪ mi) is

)}({maxmax i
C

mperiodp
j

= . To allocate transmission

slots for the new message mi, ALLOC divides round(Cj)
into k disjoint time intervals {Ik} where

)(max imperiodpk = and Ik has duration period(mi).

Transmission slots are then allotted within each interval

Fig. 6: The clustering algorithm generating the
reduced-cost network topology

Fig. 5: Algorithm to synthesize the network topology

using the FF packing strategy. The distance constraint
between transmission slots for mi is guaranteed since
the allotted slots occur in the same positions within each
interval Ik.

Transmission-Slot Reuse: Recall that during clustering,
each message mi is treated as periodic with period
period(mi). However, if the task Ti transmitting mi does
not execute at that rate, then the bus bandwidth is over-
utilized. We can improve bandwidth utilization by reusing
transmission slots among the multiple messages sent by
processor Pj.

The worst-case arrival rate arrival(mi) for each message
mi in a multi-rate system is obtained during schedulability
analysis by simulating the corresponding task schedule.
It is important to note that arrival(mi), expressed in terms
of slot intervals, depends on the execution rate of the
sender task Ti. Let {mi} be the set of messages sent by a
processor within a message cluster Cj. Now, assume
message mnew, also transmitted by the same processor,
to be allotted slots within round(Cj). If each message mi
is allotted ni transmission slots within the time interval
period(mnew) in round(Cj), then the number of slots
available for reuse by mnew is

i

m im

i n
marrival

mperiod
nn

ii

⋅

−= ∑∑

)(

)(new
reuse

where arrival(mi) denotes the worst-case arrival rate of
message mi. Therefore, mnew is allotted

reuse

slot

speed

new)(
n

B

msize

j

−

∆⋅
 transmission slots within

period(mnew).

Given a set of clusters and a new message to be
allocated to one, CLUSTER explores all possible cluster-
message allocation scenarios. Slot reuse is used as the
deciding factor in selecting the best allocation since the
cluster allocation resulting in maximum reuse minimizes
the bandwidth utilization. Finally, when TDMA slots are
shared between messages sent by a processor, the
communication co-processor must correctly schedule
their transmission, i.e., given a slot, decide which
message to transmit in it. Though this paper does not
address message-scheduling logic within the co-
processor, an earliest-deadline first approach seems
appropriate.

Fig. 8: (a) The physical architecture including task-
to-processor allocation and (b) the message
attributes required for network topology

construction

Fig. 7: (a) Adaptive cruise control, (b) traction control,
and (c) electric power steering applications, and the

corresponding flow-graph representations

CASE STUDY

We now illustrate the proposed synthesis method using
some advanced automotive control applications as
examples. These include adaptive cruise control (ACC),
electric power steering (EPS), and traction control (TC),
and are detailed in Figs. 7(a)-(c). The ACC application
automatically maintains a safe following distance
between two cars, while EPS uses an electric motor to
provide necessary steering assistance to the driver. The
TC application actively stabilizes the vehicle to maintain
its intended path even under slippery road conditions.
These applications demand timely interaction between
distributed sensors, processors, and actuators, i.e., have
specific end-to-end deadlines, and therefore require a
dependable communication network. Fig. 8(a) shows the
physical architecture of the system where sensors and
actuators are directly connected to the network and the
designer-specified task-to-processor allocation, while
Fig. 8(b) summarizes the various message attributes
affecting network topology generation. We assume 1-FT
messages throughout. Columns two and three list the
sending and receiving tasks for each message and the
message size size(mi) in bits, respectively, while columns
four and five list the communication delay delay(mi) for

messages in µs, and transmission-slot intervals. These
delay values are obtained by first assigning deadlines to
tasks and then performing a schedulability analysis on
their respective processors.

As summarized in Fig. 9(a), we assume a version of the
FlexRay communication protocol having a bandwidth of
250 kb/s and a minimum transmission-slot width of 50

µs. Since m2 and m16 have the minimum period of five
slots among all messages, pbase may assume values of
three, four, or five slots. Figs. 9(a)-(c) show the
communication schedules generated without slot reuse
after modifying the message periods to relate
harmonically to each of the above pbase values. Those
corresponding to pbase values of four and five slots
compare best in terms of topology cost.

We now show how to reduce bandwidth utilization by
sharing transmission slots between messages. As
candidates for slot reuse, consider messages m3 and
m10 sent by tasks T3 and T12, respectively, where both
tasks are allocated to processor P2. In Fig. 10(a), where
message periods are modified using pbase = 3, m3 and
m10 cannot share slots since both have a periodicity of
six slots. In Fig. 10(b), however, when their periods are
modified as period(m3) = 4 and period(m10) = 8 using
pbase = 4 slots, reuse is possible. Note that the EPS

application comprising T3 transmitting m3 has a 1500 µs
period-corresponding to the inter-interval time between
successive m3 transmissions. Therefore, in Fig. 10(b),
m3 requires only one of four allocated slots on bus B1

(Task T3, however, may request m3’s transmission
anytime during the round), and m10 with a period of eight
slots can reuse the one free slot available during any

Fig. 9: (a) Example TDMA round specifications and (b) communication schedules generated without slot
reuse where message periods are modified to relate harmonically to (b) pbase = 3, (c) pbase = 4, and (d)
pbase = 5 slots, respectively

period(m10). A similar argument holds for messages m4
and m9 sent by processor P1. Fig. 10(c) shows the
schedule corresponding to pbase = 5 slots. Again, slots
are reused between messages {m3, m10} and {m4, m9}.

Finally, though the topologies shown in Figs. 10(b) and
(c) have the same cost (three buses each), Fig. 10(b)
has a somewhat lower slot utilization of 89.5% compared
to 90% for Fig. 10(c). Since the empty slots in Fig. 10(b)
may be used to transmit additional (non-critical)
messages when compared to Fig. 10(c), we select the
topology in Fig. 10(b) as the final solution.

CONCLUSION

This paper has addressed the synthesis of low-cost
TDMA communication networks for distributed
embedded systems. We have developed a fault-tolerant
clustering method which allocates and schedules k-FT
messages on the minimum number of buses to provide
dependable transmission. The proposed method was
illustrated using a case study involving some advanced
automotive control applications and it was shown that
sharing transmission slots among multiple messages
reduces bandwidth consumption while preserving
predictable communication. Therefore, the method has
the potential to reduce topology cost when applied to
larger embedded systems.

ACKNOWLEDGMENTS

This research was supported in part by a contract from
The Delphi Corporation. Portions of this work appeared
in SAFECOMP 2003, and the Journal of Reliability Eng.,
and System Safety, 2005.

REFERENCES

1. E. A. Bretz EA, “By-wire cars turn the corner,” IEEE

Spectrum, vol. 38, no. 4, pp. 68-73, 2001.

2. G. Leen and D. Heffernan, “Expanding automotive

electronic systems,” IEEE Computer, vol. 35, no. 1,

pp. 88-93, 2002.

3. T. Y. Yen and W. Wolf, “Communication synthesis

for distributed embedded systems,” Proc. Int’l Conf.

Computer-Aided Design, pp. 288-294, 1995.

4. H. Kopetz, Real-time systems: Design principles for

distributed embedded applications, Kluwer Academic

Publishers, Boston, 1997.

5. H. Kopetz, “ TTP: A time-triggered protocol for fault-

tolerant real-time systems,” Proc. IEEE Fault-

Tolerant Computing Symp., pp. 524-533, 1993.

6. J. Berwanger et al., “FlexRay: The communication

system for advanced automotive control systems,”

Proc. SAE World Congress, Paper: 2001-01-0676,

2001.

7. M. D. Natale and J. A. Stankovic, “Dynamic end-to-

end guarantees in distributed real-time systems,”

Proc. Real-Time Systems Symp., pp. 216-227, 1994.

8. X. Hu, J. G. D’Ambrosio, B. T. Murray, and D. L.

Tang, “Co-design of architectures for automotive

powertrain modules,” IEEE Micro, vol. 14, no. 4, pp.

17-25, 1994.

9. D. S. Johnson, “Fast algorithms for bin packing,” J.

Computer & System Sciences, vol. 3, no. 3, pp. 272-

314, 1974.

10. K. J. Lin and A. Herkert, “Jitter control in time

triggered systems,” Proc. Hawaii Conf. System

Sciences, pp. 451-455, 1996.

Fig. 10: (a) Communication schedules generated while reusing transmission slots for different values of
pbase; (a) pbase = 3, (b) pbase = 4, and (c) pbase = 5 slots

