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Abstract— Malware, or malicious software, poses a 

significant threat to systems and networks. Malware attacks are 

becoming extremely sophisticated, and the ability to detect and 

prevent them is becoming more challenging. Detecting and 

preventing malware is crucial for several reasons, including the 

security of personal information, data loss and tampering, 

system disruptions, financial losses, and reputation damage. 

This paper presents a machine learning approach for Android 

malware detection. In this work, several machine learning 

algorithms were utilized, namely k-Nearest neighbor (KNN), 

Decision Trees (DT), Naive Bayes (NB), Support Vector 

Machine (SVM) and other ensemble classifiers including 

Extreme Gradient Boosting (XGBoost), Light Gradient 

Boosting Machine (LGBM) and CatBoost. It was found that 

SVM using radial basis function (RBF) kernel achieved the 

highest performance with an accuracy of 99.5%. This work 

proved the feasibility of using machine learning in detecting 

malware and improving the security of mobile devices. The 

results of this work can be used to build more robust systems to 

protect devices and networks from malicious attacks. 

Keywords— Android, malware detection, goodware, machine 

learning, cybersecurity. 

I. INTRODUCTION

Malware (Malicious software) is a form of software that is 
designed to cause harm to a computer or electronic device. 
Malware can be spread through digital communications like 
email attachments or other forms of communication, including 
social engineering and infected websites [1]. In addition, 
malware can be downloaded by accident onto a computer and 
is mainly used for malicious purposes like gaining access to 
people’s data and networks, preventing computers from 
working correctly, and causing crashes [2]. Malware can take 
many forms, including viruses, worms, Trojans, ransomware, 
and spyware, each with different methods of attacking and 
spreading [1]. The main goal of malware is to steal sensitive 
information, hijack systems for malicious purposes, or cause 
a breach of data and systems [2]. Additionally, detecting such 
software is highly predominant because it can cause harm to 
devices, compromises personal and sensitive information, and 
lead to financial losses or identity theft. Therefore, by 
detecting malware, individuals can protect their privacy, 

security and data integrity, and ensure their devices operate 
smoothly and efficiently. 

To combat malware, it is essential to distinguish it from 
goodware. Goodware is software designed to benefit users, is 
safe for use, and does not cause harm or exploit computer 
systems. Emerging machine learning techniques were proved 
to be useful in significant cybersecurity applications such 
malicious website detection, intrusion detection [3] and botnet 
attack detection [4].  

The objective of this work is to propose a machine learning 
framework for the purpose of Android malware detection. A 
dataset with several permission-based and API-based features 
is used to train the model and test its feasibility in 
distinguishing malware from goodware. 

II. LITERATURE REVIEW

Various studies proposed different approaches to Android 
malware detection using machine learning algorithms. Li et al. 
[5] introduced SIGPID, a malware detection system based on
permission usage analysis, to address the growing number of
Android malware. The study utilized machine learning
models, including Support Vector Machine (SVM), and
focused on 22 critical permissions, achieving over 90%
accuracy, recall, F-measure, and detection rate. Suleiman et al.
[6] similarly explored malware detection using a parallel
classification approach leveraging algorithms such as
Decision Tree (DT), Simple Logistic, Naive Bayes (NB),
PART and RIpple-DOwn Rule learner (RIDOR). Their results
showed that the PART algorithm performed best, with a
detection rate of 95.8%. Another related study by Hanqing et
al. [7] proposed a classification method based on abstracted
API calls, using Random Fores (RF). Their method achieved
high detection accuracies of 96% and 98% on the Drebin and
AMD datasets, respectively.

Several other studies used RF as part of their malware 
detection systems. Hanqing et al. [7] used RF alongside 
abstracted API calls, achieving high detection results. Wei-
Ling et al. [8] also used RF, focusing on dynamic behavior 
such as network activity. Using the Robotium program to 
collect network and app activity, RF was the best-performing 
algorithm, achieving an accuracy of 97%, a true positive rate 
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(TPR) of 97.1%, and a false positive rate (FPR) of 0.036. 
Similarly, Fauzi et al. [9] implemented RF, k-nearest neighbor 
(KNN), and DT for malware detection using grayscale images 
generated from Android APK files. RF achieved the highest 
accuracy of 84.14%. Lastly, Koli [10] proposed RanDroid, a 
system based on both static and dynamic features of Android 
apps, with RF achieving a classification accuracy of 97.7%. 

Other studies focused on different features and classifiers. 
Hyo-Sik et al. [11] used a linear SVM technique for Android 
malware detection in IoT services, achieving a precision of 
95.7% with a dataset containing 90% normal and 10% 
malicious applications. Ravi et al. [12] used permissions as 
features for detection, experimenting with multiple classifiers, 
including NB, DT-based method (J48), and RF. Their study, 
which used Google Play Store app data from 2015 and 2016, 
found that the multi-class classifier to be the most effective, 
with an average accuracy of 99.81%. N. Peiravian and X. Zhu 
[13] also focused on permissions and API calls as features. 
Using a dataset of 2,510 APK files with 1,260 malicious apps 
and 1,250 benign ones, they found that the Bagging classifier 
outperformed others, achieving 96.39% accuracy, 94.9% 
precision, and 94.1% recall. Like several works discussed 
above, the proposed solution utilizes machine learning 
algorithms to detect Android malware. Table I below 
summarizes the previous work that was discussed above. 

TABLE I.  SUMMARY OF PREVIOUS WORK 

Reference Classifier  Performance 

J. Li et al. [5]  SVM Accuracy = 91.36% 
Detection rate (for known 

malware) = 93.62% 

Detection rate (for unknown 
malware) = 91.4% 

Suleiman et al. [6] PART TPR = 95.8% 
TNR = 97.7% 

FPR = 3.3% 

FNR=4.2% 
Accuracy = 96.3% 

AUC = 97.0% 

Hanqing et al. [7] RF Accuracy (on Drebin dataset) 

= 96% 
Accuracy (on AMD dataset) = 

98% 

Wei-Ling et al. [8] RF Accuracy = 97% 

TPR = 97.1% 

FPR = 0.036% 

Fauzi et al. [9] RF Accuracy = 84.14%  

Koli [10] RanDroid Accuracy = 97.7% 

Hyo-Sik et al. [11] SVM (linear) Precision = 95.7% 

Ravi et al. [12] Multi-class 

classifier 

Accuracy = 99.81% 

N. Peiravian and 

X. Zhu [13] 

Bagging  Accuracy = 96.39% 

Precision = 94.9% 
Recall = 94.1% 

III. METHODOLOGY 

A. Dataset Description 

The TUANDROMD dataset used in this work [14] 
comprises around 4470 samples classified into two classes. 
The first class is malware which can be defined as a software 
that harms a device or gains unauthorized access. There are 
around 2535 samples of malware. The second class is 
goodware, which does not yield to harming devices. However, 
it does ask for numerous permissions. There are around 1935 
samples of goodware. As can be noticed, the dataset is not 
perfectly balanced as the ratio of malware vs. goodware is 
around 56:44. Data balancing techniques were used to balance 
the dataset as can be seen in Section III. B.  

The samples of the dataset have around 240 binary 
features. Most of them are permission-based features. The rest 
of the features are API-based features. Examples of 
permissions-based features include access to the Wi-Fi state, 
all downloads, cache filesystem, and billing. The API-based 
features mainly involve Java API and Android API. 

B. Data Pre-processing  

It is essential to preprocess the dataset before feeding it to 
the machine learning pipeline. Numerous preprocessing 
techniques have been used such as data cleaning and feature 
selection. Data cleaning is a data preprocessing technique that 
removes errors, inconsistencies, or inaccuracies in the dataset. 
To ensure that the samples have as minimum error as possible, 
records with empty feature values were removed. Moreover, 
class weights were applied to handle the class imbalance in the 
dataset. Using this approach, the minority class was given a 
higher weight than the majority class. Finally, dimensionality 
reduction using principal components analysis (PCA) was 
applied to ensure that the most relevant features are used to 
improve the model’s performance. 

C. Machine Learning Models 

Several machine learning algorithms were trained in this 

work. A description of each one of these algorithms is 

provided as follows. 

1) k-Nearest Neighbors (KNN): KNN is a non-

parametric machine learning model that determines distances 

between new input points and their nearest neighbors in the 

training dataset, where k represents the number of nearest 

neighbors to consider. As KNN can easily be incorporated 

into distance calculations. It is best suited to numerical data, 

especially continuous data. KNN is not recommended for 

high-dimensional and sparse datasets [15]. Even though 

KNN is simple, it can perform well on small to medium-sized 

datasets with low dimensionality. On the other hand, larger 

datasets may require more computational resources [16]. 

2) Decision Tree (DT): Using recursive splitting of 

data based on the values of the features, a DT constructs a 

tree-like model, selecting the feature that provides the most 

information [17]. Once the data has been split, the algorithm 

continues to split it until a stopping criterion has been 

reached, such as a maximum tree depth or a minimum 

information gain threshold [18]. After constructing the tree, 

it can predict new instances by traversing the tree from the 

root to the leaf nodes. As a result of their interpretability, 

ability to handle categorical and numerical data, and ease of 

use, DTs are viral models [19]. It should be noted, however, 



that they are highly susceptible to overfitting if the tree is 

overly complex.  

3) Naive Bayes (NB): Bayes theorem is used to 

compute the probability of each class given input features in 

the NB model [20]. In practice, it is not always true that each 

feature is independent of all other features, which makes the 

algorithm regarded as "naive." Despite its simplicity, NB is 

an effective algorithm and capable of handling classification 

and regression problems [21]. The model can handle 

categorical and numerical data using techniques such as 

binning or discretization. In addition, it is effective in dealing 

with large, multidimensional datasets [22]. It should be noted 

that NB is a probabilistic algorithm that works well with 

categorical data. However, it can also process numerical data 

with the appropriate preprocessing. 

4) Support Vector Machine (SVM): SVMs are 

supervised machine learning models that operate by 

identifying a hyperplane that maximizes the separation of 

classes in input data [23]. A hyperplane can be constructed 

by maximizing the margin between the two nearest points 

from different classes, known as support vectors. In addition 

to being versatile, SVM can be used for both binary 

classification and regression tasks, and by utilizing kernel 

functions, it can also handle non-linearly separable data [24]. 

In the case of our binary dataset, which is mostly malware or 

goodware, SVM is an excellent approach, especially with its 

two types, linear and nonlinear kernels. The linear kernel is 

utilized for linearly separable data, while for non-linearly 

separable data, the nonlinear kernel is utilized. Due to its 

reduced sensitivity to overfitting, SVM is particularly 

suitable for datasets containing many features. Generally, 

SVM is a robust algorithm that works well with numerical 

and continuous data [25]. However, it can also be applied to 

categorical data if appropriate preprocessing techniques are 

applied. 

5) Extreme Gradient Boosting (XGBoost): XGBoost 

consists of iteratively building an ensemble of decision trees 

while minimizing the loss function [26]. As a result of 

gradient boosting, the model increases the accuracy of weak 

learners by adding new trees sequentially to the model that 

can fit the residual errors of the previous trees. In addition, 

XGBoost facilitates parallel computation, resulting in a 

significant speedup during the training process [27]. As a 

result of the model's outstanding performance in Kaggle 

competitions, it has been widely used for both classification 

and regression tasks. It is most effective when dealing with 

numerical data, specifically continuous data. XGBoost can 

also handle categorical data with the appropriate 

preprocessing [28]. As a result, it is a preferred option for 

high-dimensional datasets due to its speed and accuracy. 

6) Light Gradient Boosting Machine (LGBM): LGBM 

consists of an ensemble of decision trees built iteratively 

using gradient boosting [29]. As a result, it minimizes the loss 

function, utilizes gradient-based techniques, and handles 

imbalanced data [30]. Due to its ability to split datasets by a 

leaf-wise rather than level-wise modes and use histogram-

based algorithms to compute split points, LGBM is faster and 

more accurate than other gradient boosting algorithms, such 

as XGBoost. While LGBM can handle categorical and 

numerical data, it performs optimally with numerical data, 

specifically continuous data [31]. In addition, it is capable of 

handling high-dimensional data with a large number of 

features.  
CatBoost: In CatBoost, gradient-boosting techniques are 

utilized to build an ensemble of decision trees based on 
supervised machine learning [32]. The platform is designed to 
handle categorical data efficiently and effectively without 
requiring any prior encoding or preprocessing. CatBoost 
utilizes techniques such as gradient-based optimization, 
learning-to-rank, and ordered boosting to handle categorical 
features [33]. Additionally, it is capable of handling numerical 
features as well as missing values. In both classification and 
regression tasks, CatBoost is widely used due to its high 
performance, accuracy and speed. It is noteworthy that 
CatBoost is an efficient and robust algorithm that is 
particularly suited to datasets that contain categorical features 
[34]. Therefore, CatBoost is a popular choice for data 
scientists and machine learning practitioners because of its 
speed, accuracy, and ability to handle categorical data 
effectively. 

IV. EXPERIMENTAL RESULTS 

In this section, the results of the machine learning 
algorithms are presented. For testing the machine learning 
models, 5-fold cross validation was considered. The results 
presented in this section represent the average performance of 
the model using testing data across several folds.  

For the KNN model, it achieved its highest accuracy when 
k was set to 1, with an accuracy of 99.2%. As we increase the 
number of neighbors, the overall accuracy tends to decrease 
slightly. For example, setting k as 50 resulted in an accuracy 
of 96.1%, which still indicates a good accuracy overall. The 
precision, recall, and f1-score of classifying malware were 
99%, 97% and 98%, respectively. Whereas for classifying 
goodware, the precision, recall, and f1-score were 99%, 100% 
and 100%, respectively. Fig. 1 and Fig. 2 show the learning 
curve for KNN models at K=1 and K=50, respectively. 

 

 

Fig. 1. Learning curve for KNN model at K = 1 

 



 

Fig. 2. Learning curve for KNN model at K = 50 

As for the DT, the maximum depth was hypertuned. 
Initially at depth 1, the accuracy has reached  91.5%. As the 
maximum depth increases, the accuracy tends to increase as 
well, reaching maximum accuracy of 99.3% at depth 11. The 
precision, recall, and f1-score of classifying malware were 
99%, 98% and 98%, respectively. In comparison, they were 
99%, 100% and 100% when classifying goodware. Fig. 3 and 
Fig. 4 show the learning curve for DT models at maximum 
depth =1 and maximum depth = 11, respectively. 

 

Fig. 3. Learning curve for Decision Tree model at max depth = 1 

 

Fig. 4. Learning curve for Decision Tree model at max depth = 11 

For the SVM with a linear kernel, the model achieved an 
accuracy of 98.1%. The precision, recall, and f1-score for 
classifying malware were 94%, 96% and 95%, respectively. 
At the same time, they were 99%, 98% and 99%, respectively 
for classifying goodware. For the SVM with a nonlinear 
kernel, Radial Basis Function (RBF), the model achieved the 
highest accuracy of 99.5% when C = 2 and gamma = 0.3. 
Changing values of both gamma and C does not lead to 
significant changes as it converged to 99% accuracy for most 
of the cases. The precision, recall and f1-score of classifying 
malware were 99%, 99% and 99%, respectively, whereas for 
classifying goodware, the precision, recall and f1-score were 
100%, 100% and 100%, respectively. Fig. 5 and Fig. 6 show 
the learning curve for SVM models with linear and non-linear 
(RBF) kernels, respectively. 

 

Fig. 5. Learning curve for SVM model with linear kernel 

 

Fig. 6. Learning curve for SVM model with non-linear kernel (RBF)  

When using NB on the features after preprocessing (total 
of 199 features), the resulting accuracy was 24%. The 
performance is considered low compared to the rest of the 
machine learning models used. To handle this, dimensionality 
reduction using PCA was applied. PCA transformed the 
dataset into a new space consisting of 100 principal 
component. The NB model was trained on these 100 
component as input features and the testing result increased to 
92%. Even with PCA being used, NB showed the lowest 
performance results among the rest of the models. The 
precision, recall, and f1-score of classifying malware were 



82%, 79% and 81%, respectively whereas for classifying 
goodware, the precision, recall, and f1-score were 95%, 96% 
and 95%, respectively. Fig. 7 shows the learning curve for NB 
model used considering the resulting 100 principal 
components as the input features. 

 

Fig. 7. Learning curve for Naïve Bayes 

Moreover, it was found that all ensemble classifiers 
performed well in this work. For example, XGBoost achieved 
an accuracy of 99.3%. The precision, recall, and f1-score of 
classifying malware were 99%, 98%, and 98%, respectively. 
They were 99%, 100%, and 100%, respectively, when 
classifying goodware. The LGBM model achieved an 
accuracy of 99.2%. The precision, recall, and f1-score of 
classifying malware were 99%, 97%, and 98%, respectively. 
They were 99%, 100%, and 100%, respectively, when 
classifying goodware. Additionally, the CatBoost model 
achieved an accuracy of 99.3%. The precisions, recall, and f1-
score for classifying malware were 99%, 98%, and 98%, 
respectively. In comparison, they were 99%, 100%, and 100% 
for classifying goodware. 

Table II provides a summary of the results for classifying 
malware and goodware using the different machine learning 
algorithms used in this work. As can be seen from the table, 
SVM with the RBF kernel had the best overall performance 
with an average accuracy of 99.5%. 

TABLE II.  SUMMARY OF THE CLASSIFICATION RESULTS 

Model Class  Precision Recall F1-score 
Overall 

Accuracy 

KNN 

Malware 99% 97% 98% 

99.2% 

Goodware 99% 100% 100% 

DT 

Malware 99% 98% 98% 

99.3% 

Goodware 99% 100% 100% 

SVM 
(linear) 

Malware 94% 96% 95% 

98.1% 

Goodware 99% 98% 99% 

SVM 
(RBF) 

Malware 99% 99% 99% 

99.5% 

Goodware 100% 100% 100% 

NB 

Malware 82% 79% 81% 

92.6% 

Goodware 95% 96% 95% 

XGBoost 

Malware 99% 98% 98% 

99.3% 

Goodware 99% 100% 100% 

LGBM 

Malware 99% 97% 98% 

99.2% 

Goodware 99% 100% 100% 

CatBoost 

Malware 99% 98% 98% 

99.3% 

Goodware 99% 100% 100% 

 

V. CONCLUSION 

In this work, a machine learning based malware detection 
method was proposed. Several machine learning algorithms 
were used for this task, including DT, SVM with linear and 
non-linear kernels, KNN, NB, and other ensemble methods. 
These machine learning models were trained and evaluated 
based on the TUANDROMD dataset. Experimental results 
demonstrated that SVM with RBF kernel had the best overall 
performance among all other classifiers with an average 
accuracy of 99.5%. 

This paper showed that machine learning is an effective 
approach for detecting Android malware and improving the 
security of mobile devices. The results of this work can be 
used to build robust systems that can protect devices and 
networks from malicious attacks. As a future work, 
researchers can explore using machine learning for multiclass 
classification problems where the models can classify samples 
into different categories within goodware and malware 
classes. Multiclass classification can provide a higher level of 
protection in mobile devices as sophisticated protection 
measures can be designed for each of the different types of 
attacks. 
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