
Android Malware Detection Using Machine

Learning

Shaikha Al Ali

Department of Computer Science and

Engineering

American University of Sharjah

Sharjah, UAE

g00084315@aus.edu

Ali Suleiman

Department of Computer Science and

Engineering

American University of Sharjah

Sharjah, UAE

b00083443@aus.edu

Ghina Hallal

Department of Computer Science and

Engineering

American University of Sharjah

Sharjah, UAE

g00086253@aus.edu

Sultan Alseiari

Department of Computer

Science and Engineering

American University of

Sharjah

Sharjah, UAE

b00085157@aus.edu

Yiguang Ma

Department of Computer

Science and Engineering

American University of

Sharjah

Sharjah, UAE

b00083281@aus.edu

Salam Dhou

Department of Computer

Science and Engineering

American University of

Sharjah

Sharjah, UAE

sdhou@aus.edu

Fadi Aloul

Department of Computer

Science and Engineering

American University of

Sharjah

Sharjah, UAE

faloul@aus.edu

Abstract— Malware, or malicious software, poses a

significant threat to systems and networks. Malware attacks are

becoming extremely sophisticated, and the ability to detect and

prevent them is becoming more challenging. Detecting and

preventing malware is crucial for several reasons, including the

security of personal information, data loss and tampering,

system disruptions, financial losses, and reputation damage.

This paper presents a machine learning approach for Android

malware detection. In this work, several machine learning

algorithms were utilized, namely k-Nearest neighbor (KNN),

Decision Trees (DT), Naive Bayes (NB), Support Vector

Machine (SVM) and other ensemble classifiers including

Extreme Gradient Boosting (XGBoost), Light Gradient

Boosting Machine (LGBM) and CatBoost. It was found that

SVM using radial basis function (RBF) kernel achieved the

highest performance with an accuracy of 99.5%. This work

proved the feasibility of using machine learning in detecting

malware and improving the security of mobile devices. The

results of this work can be used to build more robust systems to

protect devices and networks from malicious attacks.

Keywords— Android, malware detection, goodware, machine

learning, cybersecurity.

I. INTRODUCTION

Malware (Malicious software) is a form of software that is
designed to cause harm to a computer or electronic device.
Malware can be spread through digital communications like
email attachments or other forms of communication, including
social engineering and infected websites [1]. In addition,
malware can be downloaded by accident onto a computer and
is mainly used for malicious purposes like gaining access to
people’s data and networks, preventing computers from
working correctly, and causing crashes [2]. Malware can take
many forms, including viruses, worms, Trojans, ransomware,
and spyware, each with different methods of attacking and
spreading [1]. The main goal of malware is to steal sensitive
information, hijack systems for malicious purposes, or cause
a breach of data and systems [2]. Additionally, detecting such
software is highly predominant because it can cause harm to
devices, compromises personal and sensitive information, and
lead to financial losses or identity theft. Therefore, by
detecting malware, individuals can protect their privacy,

security and data integrity, and ensure their devices operate
smoothly and efficiently.

To combat malware, it is essential to distinguish it from
goodware. Goodware is software designed to benefit users, is
safe for use, and does not cause harm or exploit computer
systems. Emerging machine learning techniques were proved
to be useful in significant cybersecurity applications such
malicious website detection, intrusion detection [3] and botnet
attack detection [4].

The objective of this work is to propose a machine learning
framework for the purpose of Android malware detection. A
dataset with several permission-based and API-based features
is used to train the model and test its feasibility in
distinguishing malware from goodware.

II. LITERATURE REVIEW

Various studies proposed different approaches to Android
malware detection using machine learning algorithms. Li et al.
[5] introduced SIGPID, a malware detection system based on
permission usage analysis, to address the growing number of
Android malware. The study utilized machine learning
models, including Support Vector Machine (SVM), and
focused on 22 critical permissions, achieving over 90%
accuracy, recall, F-measure, and detection rate. Suleiman et al.
[6] similarly explored malware detection using a parallel
classification approach leveraging algorithms such as
Decision Tree (DT), Simple Logistic, Naive Bayes (NB),
PART and RIpple-DOwn Rule learner (RIDOR). Their results
showed that the PART algorithm performed best, with a
detection rate of 95.8%. Another related study by Hanqing et
al. [7] proposed a classification method based on abstracted
API calls, using Random Fores (RF). Their method achieved
high detection accuracies of 96% and 98% on the Drebin and
AMD datasets, respectively.

Several other studies used RF as part of their malware
detection systems. Hanqing et al. [7] used RF alongside
abstracted API calls, achieving high detection results. Wei-
Ling et al. [8] also used RF, focusing on dynamic behavior
such as network activity. Using the Robotium program to
collect network and app activity, RF was the best-performing
algorithm, achieving an accuracy of 97%, a true positive rate

IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bandung, Indonesia, 2024

(TPR) of 97.1%, and a false positive rate (FPR) of 0.036.
Similarly, Fauzi et al. [9] implemented RF, k-nearest neighbor
(KNN), and DT for malware detection using grayscale images
generated from Android APK files. RF achieved the highest
accuracy of 84.14%. Lastly, Koli [10] proposed RanDroid, a
system based on both static and dynamic features of Android
apps, with RF achieving a classification accuracy of 97.7%.

Other studies focused on different features and classifiers.
Hyo-Sik et al. [11] used a linear SVM technique for Android
malware detection in IoT services, achieving a precision of
95.7% with a dataset containing 90% normal and 10%
malicious applications. Ravi et al. [12] used permissions as
features for detection, experimenting with multiple classifiers,
including NB, DT-based method (J48), and RF. Their study,
which used Google Play Store app data from 2015 and 2016,
found that the multi-class classifier to be the most effective,
with an average accuracy of 99.81%. N. Peiravian and X. Zhu
[13] also focused on permissions and API calls as features.
Using a dataset of 2,510 APK files with 1,260 malicious apps
and 1,250 benign ones, they found that the Bagging classifier
outperformed others, achieving 96.39% accuracy, 94.9%
precision, and 94.1% recall. Like several works discussed
above, the proposed solution utilizes machine learning
algorithms to detect Android malware. Table I below
summarizes the previous work that was discussed above.

TABLE I. SUMMARY OF PREVIOUS WORK

Reference Classifier Performance

J. Li et al. [5] SVM Accuracy = 91.36%
Detection rate (for known

malware) = 93.62%

Detection rate (for unknown
malware) = 91.4%

Suleiman et al. [6] PART TPR = 95.8%
TNR = 97.7%

FPR = 3.3%

FNR=4.2%
Accuracy = 96.3%

AUC = 97.0%

Hanqing et al. [7] RF Accuracy (on Drebin dataset)

= 96%
Accuracy (on AMD dataset) =

98%

Wei-Ling et al. [8] RF Accuracy = 97%

TPR = 97.1%

FPR = 0.036%

Fauzi et al. [9] RF Accuracy = 84.14%

Koli [10] RanDroid Accuracy = 97.7%

Hyo-Sik et al. [11] SVM (linear) Precision = 95.7%

Ravi et al. [12] Multi-class

classifier

Accuracy = 99.81%

N. Peiravian and

X. Zhu [13]

Bagging Accuracy = 96.39%

Precision = 94.9%
Recall = 94.1%

III. METHODOLOGY

A. Dataset Description

The TUANDROMD dataset used in this work [14]
comprises around 4470 samples classified into two classes.
The first class is malware which can be defined as a software
that harms a device or gains unauthorized access. There are
around 2535 samples of malware. The second class is
goodware, which does not yield to harming devices. However,
it does ask for numerous permissions. There are around 1935
samples of goodware. As can be noticed, the dataset is not
perfectly balanced as the ratio of malware vs. goodware is
around 56:44. Data balancing techniques were used to balance
the dataset as can be seen in Section III. B.

The samples of the dataset have around 240 binary
features. Most of them are permission-based features. The rest
of the features are API-based features. Examples of
permissions-based features include access to the Wi-Fi state,
all downloads, cache filesystem, and billing. The API-based
features mainly involve Java API and Android API.

B. Data Pre-processing

It is essential to preprocess the dataset before feeding it to
the machine learning pipeline. Numerous preprocessing
techniques have been used such as data cleaning and feature
selection. Data cleaning is a data preprocessing technique that
removes errors, inconsistencies, or inaccuracies in the dataset.
To ensure that the samples have as minimum error as possible,
records with empty feature values were removed. Moreover,
class weights were applied to handle the class imbalance in the
dataset. Using this approach, the minority class was given a
higher weight than the majority class. Finally, dimensionality
reduction using principal components analysis (PCA) was
applied to ensure that the most relevant features are used to
improve the model’s performance.

C. Machine Learning Models

Several machine learning algorithms were trained in this

work. A description of each one of these algorithms is

provided as follows.

1) k-Nearest Neighbors (KNN): KNN is a non-

parametric machine learning model that determines distances

between new input points and their nearest neighbors in the

training dataset, where k represents the number of nearest

neighbors to consider. As KNN can easily be incorporated

into distance calculations. It is best suited to numerical data,

especially continuous data. KNN is not recommended for

high-dimensional and sparse datasets [15]. Even though

KNN is simple, it can perform well on small to medium-sized

datasets with low dimensionality. On the other hand, larger

datasets may require more computational resources [16].

2) Decision Tree (DT): Using recursive splitting of

data based on the values of the features, a DT constructs a

tree-like model, selecting the feature that provides the most

information [17]. Once the data has been split, the algorithm

continues to split it until a stopping criterion has been

reached, such as a maximum tree depth or a minimum

information gain threshold [18]. After constructing the tree,

it can predict new instances by traversing the tree from the

root to the leaf nodes. As a result of their interpretability,

ability to handle categorical and numerical data, and ease of

use, DTs are viral models [19]. It should be noted, however,

that they are highly susceptible to overfitting if the tree is

overly complex.

3) Naive Bayes (NB): Bayes theorem is used to

compute the probability of each class given input features in

the NB model [20]. In practice, it is not always true that each

feature is independent of all other features, which makes the

algorithm regarded as "naive." Despite its simplicity, NB is

an effective algorithm and capable of handling classification

and regression problems [21]. The model can handle

categorical and numerical data using techniques such as

binning or discretization. In addition, it is effective in dealing

with large, multidimensional datasets [22]. It should be noted

that NB is a probabilistic algorithm that works well with

categorical data. However, it can also process numerical data

with the appropriate preprocessing.

4) Support Vector Machine (SVM): SVMs are

supervised machine learning models that operate by

identifying a hyperplane that maximizes the separation of

classes in input data [23]. A hyperplane can be constructed

by maximizing the margin between the two nearest points

from different classes, known as support vectors. In addition

to being versatile, SVM can be used for both binary

classification and regression tasks, and by utilizing kernel

functions, it can also handle non-linearly separable data [24].

In the case of our binary dataset, which is mostly malware or

goodware, SVM is an excellent approach, especially with its

two types, linear and nonlinear kernels. The linear kernel is

utilized for linearly separable data, while for non-linearly

separable data, the nonlinear kernel is utilized. Due to its

reduced sensitivity to overfitting, SVM is particularly

suitable for datasets containing many features. Generally,

SVM is a robust algorithm that works well with numerical

and continuous data [25]. However, it can also be applied to

categorical data if appropriate preprocessing techniques are

applied.

5) Extreme Gradient Boosting (XGBoost): XGBoost

consists of iteratively building an ensemble of decision trees

while minimizing the loss function [26]. As a result of

gradient boosting, the model increases the accuracy of weak

learners by adding new trees sequentially to the model that

can fit the residual errors of the previous trees. In addition,

XGBoost facilitates parallel computation, resulting in a

significant speedup during the training process [27]. As a

result of the model's outstanding performance in Kaggle

competitions, it has been widely used for both classification

and regression tasks. It is most effective when dealing with

numerical data, specifically continuous data. XGBoost can

also handle categorical data with the appropriate

preprocessing [28]. As a result, it is a preferred option for

high-dimensional datasets due to its speed and accuracy.

6) Light Gradient Boosting Machine (LGBM): LGBM

consists of an ensemble of decision trees built iteratively

using gradient boosting [29]. As a result, it minimizes the loss

function, utilizes gradient-based techniques, and handles

imbalanced data [30]. Due to its ability to split datasets by a

leaf-wise rather than level-wise modes and use histogram-

based algorithms to compute split points, LGBM is faster and

more accurate than other gradient boosting algorithms, such

as XGBoost. While LGBM can handle categorical and

numerical data, it performs optimally with numerical data,

specifically continuous data [31]. In addition, it is capable of

handling high-dimensional data with a large number of

features.
CatBoost: In CatBoost, gradient-boosting techniques are

utilized to build an ensemble of decision trees based on
supervised machine learning [32]. The platform is designed to
handle categorical data efficiently and effectively without
requiring any prior encoding or preprocessing. CatBoost
utilizes techniques such as gradient-based optimization,
learning-to-rank, and ordered boosting to handle categorical
features [33]. Additionally, it is capable of handling numerical
features as well as missing values. In both classification and
regression tasks, CatBoost is widely used due to its high
performance, accuracy and speed. It is noteworthy that
CatBoost is an efficient and robust algorithm that is
particularly suited to datasets that contain categorical features
[34]. Therefore, CatBoost is a popular choice for data
scientists and machine learning practitioners because of its
speed, accuracy, and ability to handle categorical data
effectively.

IV. EXPERIMENTAL RESULTS

In this section, the results of the machine learning
algorithms are presented. For testing the machine learning
models, 5-fold cross validation was considered. The results
presented in this section represent the average performance of
the model using testing data across several folds.

For the KNN model, it achieved its highest accuracy when
k was set to 1, with an accuracy of 99.2%. As we increase the
number of neighbors, the overall accuracy tends to decrease
slightly. For example, setting k as 50 resulted in an accuracy
of 96.1%, which still indicates a good accuracy overall. The
precision, recall, and f1-score of classifying malware were
99%, 97% and 98%, respectively. Whereas for classifying
goodware, the precision, recall, and f1-score were 99%, 100%
and 100%, respectively. Fig. 1 and Fig. 2 show the learning
curve for KNN models at K=1 and K=50, respectively.

Fig. 1. Learning curve for KNN model at K = 1

Fig. 2. Learning curve for KNN model at K = 50

As for the DT, the maximum depth was hypertuned.
Initially at depth 1, the accuracy has reached 91.5%. As the
maximum depth increases, the accuracy tends to increase as
well, reaching maximum accuracy of 99.3% at depth 11. The
precision, recall, and f1-score of classifying malware were
99%, 98% and 98%, respectively. In comparison, they were
99%, 100% and 100% when classifying goodware. Fig. 3 and
Fig. 4 show the learning curve for DT models at maximum
depth =1 and maximum depth = 11, respectively.

Fig. 3. Learning curve for Decision Tree model at max depth = 1

Fig. 4. Learning curve for Decision Tree model at max depth = 11

For the SVM with a linear kernel, the model achieved an
accuracy of 98.1%. The precision, recall, and f1-score for
classifying malware were 94%, 96% and 95%, respectively.
At the same time, they were 99%, 98% and 99%, respectively
for classifying goodware. For the SVM with a nonlinear
kernel, Radial Basis Function (RBF), the model achieved the
highest accuracy of 99.5% when C = 2 and gamma = 0.3.
Changing values of both gamma and C does not lead to
significant changes as it converged to 99% accuracy for most
of the cases. The precision, recall and f1-score of classifying
malware were 99%, 99% and 99%, respectively, whereas for
classifying goodware, the precision, recall and f1-score were
100%, 100% and 100%, respectively. Fig. 5 and Fig. 6 show
the learning curve for SVM models with linear and non-linear
(RBF) kernels, respectively.

Fig. 5. Learning curve for SVM model with linear kernel

Fig. 6. Learning curve for SVM model with non-linear kernel (RBF)

When using NB on the features after preprocessing (total
of 199 features), the resulting accuracy was 24%. The
performance is considered low compared to the rest of the
machine learning models used. To handle this, dimensionality
reduction using PCA was applied. PCA transformed the
dataset into a new space consisting of 100 principal
component. The NB model was trained on these 100
component as input features and the testing result increased to
92%. Even with PCA being used, NB showed the lowest
performance results among the rest of the models. The
precision, recall, and f1-score of classifying malware were

82%, 79% and 81%, respectively whereas for classifying
goodware, the precision, recall, and f1-score were 95%, 96%
and 95%, respectively. Fig. 7 shows the learning curve for NB
model used considering the resulting 100 principal
components as the input features.

Fig. 7. Learning curve for Naïve Bayes

Moreover, it was found that all ensemble classifiers
performed well in this work. For example, XGBoost achieved
an accuracy of 99.3%. The precision, recall, and f1-score of
classifying malware were 99%, 98%, and 98%, respectively.
They were 99%, 100%, and 100%, respectively, when
classifying goodware. The LGBM model achieved an
accuracy of 99.2%. The precision, recall, and f1-score of
classifying malware were 99%, 97%, and 98%, respectively.
They were 99%, 100%, and 100%, respectively, when
classifying goodware. Additionally, the CatBoost model
achieved an accuracy of 99.3%. The precisions, recall, and f1-
score for classifying malware were 99%, 98%, and 98%,
respectively. In comparison, they were 99%, 100%, and 100%
for classifying goodware.

Table II provides a summary of the results for classifying
malware and goodware using the different machine learning
algorithms used in this work. As can be seen from the table,
SVM with the RBF kernel had the best overall performance
with an average accuracy of 99.5%.

TABLE II. SUMMARY OF THE CLASSIFICATION RESULTS

Model Class Precision Recall F1-score
Overall

Accuracy

KNN

Malware 99% 97% 98%

99.2%

Goodware 99% 100% 100%

DT

Malware 99% 98% 98%

99.3%

Goodware 99% 100% 100%

SVM
(linear)

Malware 94% 96% 95%

98.1%

Goodware 99% 98% 99%

SVM
(RBF)

Malware 99% 99% 99%

99.5%

Goodware 100% 100% 100%

NB

Malware 82% 79% 81%

92.6%

Goodware 95% 96% 95%

XGBoost

Malware 99% 98% 98%

99.3%

Goodware 99% 100% 100%

LGBM

Malware 99% 97% 98%

99.2%

Goodware 99% 100% 100%

CatBoost

Malware 99% 98% 98%

99.3%

Goodware 99% 100% 100%

V. CONCLUSION

In this work, a machine learning based malware detection
method was proposed. Several machine learning algorithms
were used for this task, including DT, SVM with linear and
non-linear kernels, KNN, NB, and other ensemble methods.
These machine learning models were trained and evaluated
based on the TUANDROMD dataset. Experimental results
demonstrated that SVM with RBF kernel had the best overall
performance among all other classifiers with an average
accuracy of 99.5%.

This paper showed that machine learning is an effective
approach for detecting Android malware and improving the
security of mobile devices. The results of this work can be
used to build robust systems that can protect devices and
networks from malicious attacks. As a future work,
researchers can explore using machine learning for multiclass
classification problems where the models can classify samples
into different categories within goodware and malware
classes. Multiclass classification can provide a higher level of
protection in mobile devices as sophisticated protection
measures can be designed for each of the different types of
attacks.

REFERENCES

[1] T. Alsmadi and N. Alqudah, “A survey on malware detection
techniques,” 2021 International Conference on Information
Technology (ICIT), 2021.

[2] M.S. Akhtar and T. Feng, “Malware analysis and detection using
machine learning algorithms,” Symmetry, vol. 14, no. 11, p. 2304,
2022.

[3] A. Hamza, F. Hammam, M. Abouzeid, M.A. Ahmed, S. Dhou and F.
Aloul, "Malicious URL and Intrusion Detection using Machine
Learning," 2024 International Conference on Information Networking
(ICOIN), Ho Chi Minh City, Vietnam, 2024, pp. 795-800, doi:
10.1109/ICOIN59985.2024.10572207.

[4] M. Alshamkhany, W. Alshamkhany, M. Mansour, M. Khan, S. Dhou
and F. Aloul, "Botnet Attack Detection using Machine Learning," 2020
14th International Conference on Innovations in Information
Technology (IIT), Al Ain, United Arab Emirates, 2020, pp. 203-208,
doi: 10.1109/IIT50501.2020.9299061

[5] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based Android
malware detection,” IEEE Transactions on Industrial Informatics, vol.
14, no. 7, pp. 3216–3225, 2018.

[6] S.Y. Yerima, S. Sezer, and I. Muttik, “Android malware detection
using Parallel Machine Learning Classifiers,” 2014 Eighth
International Conference on Next Generation Mobile Apps, Services
and Technologies, 2014.

[7] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An efficient Android
malware detection system based on method-level behavioral semantic
analysis,” IEEE Access, vol. 7, pp. 69246–69256, 2019.

[8] W.-L. Chang, H.-M. Sun, and W. Wu, “An Android Behavior-Based
Malware Detection Method using Machine Learning,” in 2016 IEEE
International Conference on Signal Processing, Communications and
Computing (ICSPCC), Aug. 2016, pp. 1–4. doi:
10.1109/ICSPCC.2016.7753624.

[9] F.M. Darus, N.A. Salleh, and A.F. Mohd Ariffin, “Android malware
detection using machine learning on image patterns,” 2018 Cyber
Resilience Conference (CRC), 2018.

[10] J.D. Koli, “RanDroid: Android malware detection using random
machine learning classifiers,” in 2018 Technologies for Smart-City
Energy Security and Power (ICSESP), Mar. 2018, pp. 1–6.

[11] H.-S. Ham, H.-H. Kim, M.-S. Kim, and M.-J. Choi, “Linear SVM-
based Android malware detection for reliable IOT services,” Journal
of Applied Mathematics, vol. 2014, pp. 1–10, 2014.

[12] P.R. Varma, K.P. Raj, and K.V.S. Raju, “Android mobile security by
detecting and classification of malware based on permissions using
machine learning algorithms,” 2017 International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017.

[13] N. Peiravian and X. Zhu, “Machine learning for Android malware
detection using permission and API calls,” 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence, 2013.

[14] UCI Machine Learning Repository: TUANDROMD (Tezpur University
Android Malware Dataset) data set. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/TUANDROMD+%28+Tezpur+
University+Android+Malware+Dataset%29.

[15] A.R. Guzman, “Image steganography using Deep Learning
Techniques, figshare.” Purdue University Graduate School, 2022.
Available at:
https://hammer.purdue.edu/articles/thesis/Image_Steganography_Usin
g_Deep_Learning_Techniques/19666473 (Accessed: April 26, 2023).

[16] O. Harrison, “Machine learning basics with the K-nearest neighbors
algorithm, Medium,” Towards Data Science, 2019, Available at:
https://towardsdatascience.com/machine-learning-basics-with-the-k-
nearest-neighbors-algorithm-6a6e71d01761 (Accessed: April 29,
2023).

[17] “Cloud Data Intelligence detection based on decision tree algorithm,”
Machine Learning Theory and Practice, 1(1), 2020.

[18] “Creating a decision tree classifier,” Machine Learning for iOS
Developers, pp. 175–202., 2022.

[19] A. Murphy, “Decision tree (machine learning),” Radiopaedia.org
[Preprint], 2017.

[20] D. Lowd and P. Domingos, “Naive Bayes models for probability
estimation,” Proceedings of the 22nd international conference on
Machine learning - ICML '05, 2005 [Preprint].

[21] “Naive Bayes” Bayesian Reasoning and Machine Learning, pp. 243–
255, 2012.

[22] “Text classification and naive Bayes” Introduction to Information
Retrieval, pp. 234–265, 2008.

[23] A.D. Cahyani and W. Budiharto, “Modeling Intelligent Human
Resources Systems (IRHS) using big data and support vector machine
(SVM),” Proceedings of the 9th International Conference on Machine
Learning and Computing, 2017 [Preprint].

[24] “Support Vector Machine (SVM)” Encyclopedic Dictionary of
Genetics, Genomics and Proteomics, 2004 [Preprint].

[25] “Support Vector Machine” Applications of Machine Learning and
Data Analytics Models in Maritime Transportation, pp. 79–92, 2022,
Available at: https://doi.org/10.1049/pbtr038e_ch7.

[26] “21 extreme gradient boosting” Data Science for Supply Chain
Forecasting, pp. 189–199, 2021.

[27] T.C. Nokeri “Big Data, machine learning, and Deep Learning
Frameworks,” Data Science Solutions with Python, pp. 7–14, 2021.
Available at: https://doi.org/10.1007/978-1-4842-7762-1_2.

[28] Y. Zheng, “A default prediction method using XGBoost and lightgbm,”
2022 International Conference on Image Processing, Computer Vision
and Machine Learning (ICICML) [Preprint], 2022, Available at:
https://doi.org/10.1109/icicml57342.2022.10009823.

[29] “Classical machine-learning paradigms for Data Mining” (2016) Data
Mining and Machine Learning in Cybersecurity, pp. 45–78.

[30] M. Osman et al., “ML-LGBM: A machine learning model based on
light gradient boosting machine for the detection of version number
attacks in RPL-based networks,” IEEE Access, 9, pp. 83654–83665,
2021.

[31] A. Shukla, et al. “Integrating comparison of malware detection
classification using LGBM and XGB machine learning algorithms,”
2022 IEEE International Conference on Blockchain and Distributed
Systems Security (ICBDS), 2022 [Preprint].

[32] J.T. Hancock and T.M. Khoshgoftaar, “CatBoost for Big Data: An
interdisciplinary review,” Journal of Big Data, 7(1), 2020.

[33] A.A. Ibrahim et al., “Comparison of the CatBoost classifier with other
machine learning methods,” International Journal of Advanced
Computer Science and Applications, 11(11), 2020.

[34] J. Moubarak and T. Feghali, “Comparing machine learning techniques
for malware detection,” Proceedings of the 6th International
Conference on Information Systems Security and Privacy, 2020
[Preprint].

