
Abstract

To excite a stuck-open fault in a CMOS combinational
circuit, it is only necessary that the output of the gate con-
taining the fault takes on opposite values during the applica-
tion of two successive input vectors to the primary inputs of
the circuit. In this paper we formulate the excitation problem
as an ILP instance and use two advanced ILP solvers, one is
Boolean satisfiability (SAT)-based and the other is generic,
to search for a pair of input vectors that maximizes the si-
multaneous excitation of as many stuck-open faults in the
circuit as possible. The proposed approach was tested using
benchmarks from the ISCAS 89 suite of circuits. Experimen-
tal results indicate that fault-excitation, within a reasonable
CPU time limit, is possible in most cases. 

1. Introduction

To review the problem of detecting FET stuck-open
faults in CMOS gates, consider the circuit diagram of the 2-
input NOR gate shown in Figure 1. Assume the existence of
an open circuit on the N2 transistor. Input condition 
and  should pull the output node to logic 0 value; but
due to the presence of the open fault the output node will not
be pulled to ground level. Hence the gate output will assume
the value of the previous logic state for a short time. That is,
the presence of the stuck-open fault introduces a sequential
behavior and that is why sometimes stuck-open faults are re-
ferred to as memory faults [25]. To generalize, consider the
block diagram of a general CMOS gate shown in Figure 2. A
CMOS gate consists of two complementary networks of p-
channel FETs (PFETs) and n-channel FETs (NFETs). The
output of a CMOS gate is a 0 (1) if a path through the con-
ducting NFETs (PFETs) is established from the output to
Vss (Vdd) and no conducting path are established in the
PFET (NFET) network. To detect a single PFET (NFET)
transistor stuck-open fault, an initializing input vector T1 is
used to set the output to 0 (1). This vector is then followed
by a second vector T2 that is intended to establish a conduct-
ing path in the PFET (NFET) network. When T2 is applied
and the PFET (NFET) network was presumed to be fault-
free then the circuit is output is pulled to logic 1 value (logic
0 for NFET networks). Otherwise the circuit will maintain a
faulty gate output value which the value established by the
initializing vector T1.

The vector pair <T1, T2> is called a two-pattern test.
Therefore, a stuck-open fault in a CMOS gate realizing a

function f is detectable if there exists and input vector T2 for
which the output becomes floating and shows the previous
logic value that has been established by the application of an
initializing vector T1.

If the CMOS gate is embedded in a very large combina-
tional circuit then the detection problem is aggravated due to
the fact that the test pair must excite the fault and must be
able of propagating the effect of the fault to an observable
output. 

It was proven that the problem of finding a two-pattern
test <T1, T2> is NP-hard [20]. Several methods have been
proposed to generate this type of test [8, 11, 14, 9]. However
none of these methods have attempted to investigate the use
Boolean satisfiability (SAT) techniques to search for the test
vector pair. In [3], SAT was used to compute test vectors for
stuck-at faults but stuck-open faults were not considered.
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In this paper we present a SAT based approach to search
for two vectors that would simultaneously excite stuck-open
faults in as many CMOS gates in combinational circuits as
possible. Note that in this work we are only concerned with
finding a pair that would excite many faults. Propagating the
fault effect to an external output and assessing the fault cov-
erage in the circuit is left for future work. It has been ob-
served that the likelihood that a number of faults in the
circuit are typically easy to detect is high. This makes the ap-
plication of initial input pair either random or user supplied
to a fault simulation system very desirable. One can argue
that, applying the excitation vector pair as a user-supplied
test pair to the fault simulation system would definitely im-
prove the probability of detecting more faults when com-
pared to the approach of applying random vectors to the fault
simulator. 

This paper is organized as follows. Section 2 provides a
discussion of Boolean satisfiability. Sections 3 and 4 explain
the formulation of the problem within its context. In Section
5 we present and discuss the experimental results. The paper
is concluded in Section 6.

2. Boolean Satisfiability

Recent years have seen a remarkable growth in the use of
Boolean Satisfiability (SAT) models and algorithms for
solving various problems in Electronic Design Automation
(EDA). This is mainly due to the fact that SAT algorithms
have seen tremendous improvements in the last few years,
allowing larger problem instances to be solved in different
applications domains. Such applications include formal ver-
ification [4], FPGA routing [19], global routing [1], logic
synthesis [17], and sequential equivalence checking [5].
SAT has also been extended to a variety of applications in
Artificial Intelligence including other well-known NP-com-
plete problems such as graph colorability, vertex cover, and
Hamiltonian path [7]. 

In SAT, given a formula f, the objective is to identify an
assignment to a set of Boolean variables that will satisfy a
set of constraints. If an assignment is found, it is known as a
satisfying assignment, and the formula is called satisfiable.
Otherwise if an assignment doesn’t exist, the formula is
called unsatisfiable. The constraints are typically expressed
in conjunctive normal form (CNF). In CNF, the formula
consists of the conjunction (AND) of m clauses 
each of which consists of the disjunction (OR) of k literals. A
literal l is an occurrence of a Boolean variable or its comple-
ment. Hence, in order to satisfy a formula, each of its clauses
must have at least one literal evaluated to true.

As an example, the CNF instance

 (1)

consists of 3 variables, 2 clauses, and 5 literals. The assign-
ment {a = 0, b = 1, c = 0} leads to a conflict, whereas the as-
signment {a = 0, b = 0, c = 1} satisfies f.

Despite the problem being NP-Complete, there have been
dramatic improvements in SAT solver technology over the
past decade. This has lead to the development of several
powerful SAT solvers, e.g. zchaff and miniSAT, that are ca-
pable of handling problems consisting of thousands of vari-
ables and millions of constraints [2, 12, 15, 18, 27]. These
solvers claim competitive results in runtime efficiency and
robustness.

Recently, SAT solvers [1, 6, 10, 24, 26] have been ex-
tended to handle pseudo-Boolean (PB) constraints which are
linear inequalities with integer coefficients that can be ex-
pressed in the normalized form [1] of:

(2)

where  and  are Boolean variables. PB con-
straints can, in some cases, replace an exponential number of
CNF constraints. They have been found to be very efficient
in expressing “counting constraints” [1]. Another key ad-
vantage of PB constraints is the ability to express optimiza-
tion problems (as opposed to only decision problems) which
are traditionally handled as integer linear programming
(ILP) problems. Hence, SAT solvers can now handle both
decision and optimization problems.

Note that circuits can be easily represented as a CNF for-
mula by conjuncting the CNF formulas for each gate output.
A gate output can be expressed using a set of clauses which
specify the valid input-output combinations for the given

ω1 … ωm, ,

f a b c, ,( ) a b+( ) a b c+ +( )⋅=

Table 1. CNF formulas representing simple gates.

x z+( ) x z+( )⋅z NOT x( )=

z NOR x y,( )=

Gate Type Gate Equation

z NAND x y,( )=

z AND x y,( )=

z OR x y,( )=

z XOR x y,( )=

x z+( ) y z+( )⋅ ⋅
x y z+ +( )

x z+( ) y z+( )⋅ ⋅
x y z+ +( )

x z+( ) y z+( )⋅ ⋅
x y z+ +( )

x z+( ) y z+( )⋅ ⋅
x y z+ +( )
x y z++( ) x y+ z+( )⋅ ⋅
x y z++( ) x y+ z+( )⋅

CNF Expression

a1x1 a2x2 … anxn+ + + b≥

ai b, Z∈ xi



gate. Hence, a CNF formula  for a circuit is defined as the
union of set of clauses  for each gate with output x:

(3)

where Q denotes all gate outputs and primary inputs in the
circuit. Table 1 shows generalized CNF formulas for various
gates. For example, a NOR gate with inputs x and y and out-
put z is represented using the following set of clauses

. If x is assigned the value 1, the
first clause will imply , since this is the only possible
assignment that will satisfy the first clause. Similarly if x and
y are assigned the value 0, z will be implied to 1 since this is
the only assignment that will satisfy the third clause.

3. Problem Formulation and Implementation

In this paper, we are interested in using SAT solvers to
identify two input vectors that can excite the maximum
number of stuck-open faults in a circuit. The optimization
problem consists of the following set of constraints:

1. A Set of clauses representing the circuit’s logical
behavior after the application of input vector V1.

2. A Set of clauses representing the circuit’s logical
behavior after the application of input vector V2. Note
that the set of constraints in (1) and (2) are identical but
the variables are renamed differently.

3. A Set of clauses representing XOR gates between the
outputs of gates in (1) and (2). The number of XOR
gates equals the number of gates in the original circuit.
An XOR gate output of logic 1 indicates that a
transition (0 to 1 or 1 to 0) has occurred at the output
of the gate in the original circuit upon the successive
application of the vector V1 followed by vector V2.

4. An objective constraint which consists of the sum of
all XOR outputs. 

Constraints (1) and (2) represent the circuit’s logical behav-
ior following the application of the two vectors respectively.
The constraints are represented as explained in the back-
ground section of this paper. Constraint (3) compares the
output of the same gate for the two vectors. If a transition or
a change in the output has occurred the XOR gate will pro-
duce an output of 1, else, the XOR gate output will be 0.
Here also, the constraint is expressed using the principles ex-
plained in the background section. A new variable is de-
clared for each XOR gate’s output to indicate whether a
transition occurred in the original circuit. Finally, the goal of
the objective function in constraint (4) is to identify the two
input vectors that would maximize the number of transitions
in the circuit. This is expressed as a PB constraint consisting
of the sum of the XOR gate’s outputs. In other words, this

can be viewed as a constraint representing the predicate,
“there exist two input vectors that can cause a summation of
gate transitions > k” where k is an integer value.

Figure 3 (a,b) is an illustration of the proposed approach
applied to a simple combinational circuit. The solver re-
turned two vectors that force all gates to assume two differ-
ent values upon the application of each vector.

4. Generating Robust Input Vector Pairs

As discussed earlier, detection of a stuck-open fault in a
combinational CMOS circuit requires a two-pattern test con-
sisting of an initialization vector followed by a test vector.
The second vector (i.e. the test vector) may differ in multiple
bits when compared with the initializing vector. In the pres-
ence of arbitrary delays in the circuit, all these bits may not
change simultaneously, and therefore a different vector may
appear temporarily during the transition from the initializing
vector to the test vector. In cases like these, the desired ini-
tialization might change and the two-pattern test are said to
be invalidated. To ensure robust testability the two vectors
must be at only a unit Hamming distance apart [9, 22].

To satisfy this requirement in terms of the hamming dis-
tance, extra constraints are added to guarantee that the two
input vectors differ by a single PI value only. The constraints
include:

1. A Set of clauses representing XOR gates between the
primary inputs of gates in (1) and (2). The number of
XOR gates equals the number of primary inputs in the
original circuit. An XOR gate output of logic 1
indicates that the two vectors have different values for
the same primary input.

2. A PB constraint is added to ensure that the sum of all
PI-XOR gates is equal to 1.

Figure 3 (c) shows an example where the solver was suc-
cessful in finding a pair that is only a unit hamming distance
apart.

5. Experimental Results

Table I summarizes the results obtained using the SAT-
based ILP solver PBS 4.0 [1, 21] and the commercial ILP
solver CPLEX 7.0 [13]. The PBS experiments were con-
ducted on a Pentium-IV 2.8 Ghz workstation running Linux
with 500 MB of RAM. The CPLEX experiments were con-
ducted on a SunBlade 1000 workstation with 2MB cache
running SunOS 5.9. We used the default settings for PBS
and CPLEX. We used the MCNC [16] benchmark circuits.
Each benchmark was sensitized using “sis” [23] into a cir-
cuit consisting of 2-input NAND, NOR and inverter gates.
The runtime was set to a limit of 1000 seconds. Note that
both solvers perform a complete search, i.e. if an optimal so-

ϕ
ϕx

ϕ ϕx
x Q∈
∪=

x z+( ) y z+( ) x y z+ +( )⋅ ⋅
z 0=



lution is found, no other test pair exists that can excite a larg-
er number of stuck-open faults.

In Table 2, the circuit name is provided in the first col-
umn, the number of primary inputs and the number of gates
are given in columns two and three, respectively. The Time
column indicates the runtime (in seconds) for each solver.

The MaxExcited columns represents the total number of
gates for which the solver succeeded in exciting their stuck-
open faults. The %-excited is the percentage of gates excited
in proportion to the total number of gates in the circuit.

We run the solvers once without the hamming distance
constraint and then with the constraint imposed. From the re-

Figure 3. An illustrative example showing how to determine the two vectors that will excite the maximum 
number of stuck-opens in a circuit. (a) Original circuit (b) Constraints needed to compute the input pair 
(c) Additional constraints when computing the input pair with the hamming distance condition imposed.

a1

b1

d1

e1

f1

c1
g1

Circuit A Consistency Function
a1 d1+( ) a1 d1+( )⋅

a1 e1+( ) b1 e1+( ) a1 b1 e1+ +( )⋅ ⋅

c1 g1+( ) e1 g1+( ) c1 e1 g1+ +( )⋅ ⋅
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c2 g2+( ) e2 g2+( ) c2 e2 g2+ +( )⋅ ⋅

d2 f2+( ) e2 f2+( ) d2 e2 f2+ +( )⋅ ⋅

Circuit B Consistency Function
Maximize d e f g+ + +( )

Transition Objective Function

XORs on Gate Outputs

d1 d2 d++( ) d1 d2+ d+( )⋅

d1 d2 d++( ) d1 d2+ d+( )⋅

e1 e2 e++( ) e1 e2+ e+( )⋅

e1 e2 e++( ) e1 e2+ e+( )⋅

f1 f2 f++( ) f1 f2+ f+( )⋅

f1 f2 f++( ) f1 f2+ f+( )⋅

g1 g2 g++( ) g1 g2+ g+( )⋅

g1 g2 g++( ) g1 g2+ g+( )⋅

Max Transitions 4=
Solution:

a1 b1 c1, ,{ } 1 1 0, ,{ }=
a2 b2 c2, ,{ } 0 1 1, ,{ }=

Force at most one PI to be different
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a1 a2 a++( ) a1 a2+ a+( )⋅

a1 a2 a++( ) a1 a2+ a+( )⋅

b1 b2 b++( ) b1 b2+ b+( )⋅

b1 b2 b++( ) b1 b2+ b+( )⋅

c1 c2 c++( ) c1 c2+ c+( )⋅

c1 c2 c++( ) c1 c2+ c+( )⋅

(a)

(b)

(c)

Max Transitions 4=
Solution:

a1 b1 c1, ,{ } 0 1 0, ,{ }=
a2 b2 c2, ,{ } 1 1 0, ,{ }=



sults it is clear that, when the constraint is removed both PBS
and CPLEX are able to excite a higher percentage of faults,
however, as explained earlier, the test pairs can be invalidat-
ed. Overall the performance of the SAT-based ILP solver,
PBS, is better than the generic ILP solver, CPLEX, when we
consider both, run time and percentage of faults excited. Fi-
nally, note that in some instances the solvers returned close
to 75% excitation (with the hamming distance constraint). 

6. Conclusion

A search strategy for a test pair that would excite stuck-
open faults in CMOS combinational circuits was presented.
The proposed strategy utilized advanced SAT-based and ge-
neric ILP solvers to identify two vectors that would simulta-
neously excite stuck-open faults in as many CMOS gates in
combinational circuits as possible. The methodology was
tested on a number of benchmark circuits and showed prom-
ising results. The presented approach is complete and will
find the best possible input vector pair. In future work, we
intend to expand the ideas presented here and develop a
complete test generation system for stuck-open faults.
Meanwhile, the patterns returned by the solvers can un-
doubtedly be used initially in conjunction with a fault simu-
lator as user specified-inputs. This will assist in the initial
detection of some faults without resorting to time consuming
sensitization and propagation searches.
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Circuit
Name #PI #Gates
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pm1 16 67 0.03 55 82.1 0.86 55 82.1 0.03 20 29.9 4.46 20 29.9
pcle 19 71 0.69 48 67.6 0.66 48 67.6 0.02 45 63.4 1.03 45 63.4
x2 10 73 0.01 54 74.0 0.95 54 74.0 0.02 33 45.2 1.98 33 45.2
parity 16 75 732 50 66.7 68.66 50 66.7 0.04 12 16.0 1000 12 16.0
cu 14 78 0.2 52 66.7 1.49 52 66.7 0.03 25 32.1 3.44 25 32.1
cc 21 79 0.24 64 81.0 1.11 64 81.0 0.05 46 58.2 4.5 46 58.2
cm150a 21 79 0.01 77 97.5 0.08 77 97.5 0.02 60 75.9 2.86 60 75.9
pcler8 27 104 7.18 74 71.2 1.27 74 71.2 0.05 54 51.9 3.03 54 51.9
mux 21 106 0.09 98 92.5 1.29 98 92.5 0.09 64 60.4 35.95 64 60.4
i3 132 132 0.01 132 100.0 0.04 132 100.0 0.88 6 4.5 1000 6 4.5
frg1 28 143 0.02 140 97.9 1.24 140 97.9 0.09 53 37.1 1000 53 37.1
b9 41 147 0.27 130 88.4 2.96 130 88.4 0.07 57 38.8 1000 57 38.8
f51m 8 150 0.1 115 76.7 6.04 115 76.7 0.11 66 44.0 14.62 66 44.0
comp 32 178 1000 118 66.3 1000 123 69.1 0.26 28 15.7 1000 28 15.7
lal 26 179 4.09 157 87.7 9.78 157 87.7 0.08 67 37.4 673 67 37.4
c8 28 211 62.51 169 80.1 13.36 169 80.1 0.17 66 31.3 1000 66 31.3
my_adder 33 225 1000 154 68.4 1000 161 71.6 0.31 85 37.8 1000 84 37.3
i2 201 242 0.02 238 98.3 2.4 238 98.3 5.71 17 7.0 1000 16 6.6
9symml 9 252 59.04 148 58.7 259 148 58.7 1.64 66 26.2 279.3 66 26.2
C432 36 282 94.17 251 89.0 12.87 251 89.0 53.5 151 53.5 1000 141 50.0
i4 192 308 0.01 308 100.0 0.11 308 100.0 2.46 17 5.5 1000 14 4.5
i5 133 445 0.04 445 100.0 0.18 445 100.0 1.86 222 49.9 1000 70 15.7
alu2 10 462 51.9 238 51.5 1000 224 48.5 3.07 169 36.6 1000 156 33.8
term1 34 525 1000 390 74.3 489 409 77.9 2.22 175 33.3 1000 164 31.2
C1355 41 552 1000 277 50.2 1000 275 49.8 113 107 19.4 1000 68 12.3
C499 41 567 1000 312 55.0 1000 307 54.1 120 99 17.5 1000 74 13.1
apex6 135 803 1000 511 63.6 1000 557 69.4 23.35 175 21.8 1000 151 18.8
alu4 14 878 1000 430 49.0 1000 392 44.6 17.16 329 37.5 1000 236 26.9
too_large 38 1071 1000 707 66.0 1000 726 67.8 30.14 273 25.5 1000 201 18.8
vda 17 1417 519 400 28.2 1000 321 22.7 46.42 235 16.6 1000 226 15.9

Table 2. Experimental results using the SAT-based 0-1 ILP solver PBS and the generic ILP solver CPLEX.


