
Dynamic Symmetry-Breaking for Boolean Satisfiability

Fadi A. Aloul†, Arathi Ramani∗, Igor L. Markov∗ and Karem A. Sakallah∗
† Department of Computer Engineering, American University ofSharjah, UAE

faloul@aus.edu,
∗ Department of EECS, University of Michigan, Ann Arbor, USA

{ramania, imarkov, karem}@eecs.umich.edu

Abstract
With impressive progress in Boolean Satisfiability (SAT) solving and several extensions to pseudo-

Boolean (PB) constraints, many applications that use SAT, such as high-performance formal verification
techniques are still restricted to checkingsatisfiability of certain conditions. However, there is also fre-
quently a need to express apreferencefor certain solutions. Extending SAT-solving to Boolean optimization
allows the use of objective functions to describe a desirable solution. Although recent work in 0-1 Inte-
ger Linear Programming (ILP) offers extensions that can optimize a linear objective function, this is often
achieved by solving a series of SAT or ILP decision problems.Our work articulates some pitfalls of this
approach. An objective function may complicate the use of any symmetry that might be present in the
given constraints, even when the constraints are unsatisfiable and the objective function is irrelevant. We
propose several new techniques that treat objective functions differently from CNF/PB constraints and ac-
celerate Boolean optimization in many practical cases. We also develop an adaptive flow that analyzes a
given Boolean optimization problem and picks the symmetry-breaking technique that is best suited to the
problem characteristics. Empirically, we show that for non-trivial objective functions that destroy constraint
symmetries, the benefit of static symmetry-breaking is lostbut dynamic symmetry-breaking accelerates
problem-solving in many cases. We also introduce a new objective function, Localized Bit Selection (LBS),
that can be used to specify a preference for bit values in formal verification applications.

1 Introduction
Recent well-documented breakthroughs in backtrack searchfor Boolean Satisfiability (SAT) have led to the
development of sophisticated exact SAT solvers such as Grasp, Chaff, and BerkMin [14, 11, 10]. These
developments strengthened traditional SAT applications,such as equivalence checking, ATPG and bounded
model checking, and facilitated new ones, including FPGA routing [12] and microprocessor verification
[15]. Progress in SAT has been recently translated to more general problem encodings using pseudo-Boolean
(PB) constraints [2, 5], which are linear inequalities with0-1 variables and arbitrary coefficients. They are
particularly convenient for “counting” (n-choose-k) constraints, leading to more compact problem encodings
and faster problem-solving. Work on PB constraints has beenextended to Boolean optimization through 0-1
Integer Linear Programming (ILP). This may be attractive informal verification because some counter-
examples are much more useful for debugging. For example, for a circuit containing a binary counter, it
may be useful to find counter-examples or bugs at the smallestvalue of the counter (since it presumably takes
fewer cycles to reach such a state). We can design an objective function that encourages counter-examples
with smaller integers in the binary counter, with weights inthe objective function reflecting preferences for
certain bits – the lower the weights, the lower the preference. Thus, by assigning negative coefficients to
all bits in the counter value, we can bias the search toward smaller values of the counter. Such an objective
function, arithmetic-min, behaves in much the same way as the MinLex SBPs discussed in the Appendix.

Existing 0-1 ILP solvers PBS [2] and Galena [5] handle a givenobjective functionf (·) by re-solving all
PB/SAT constraints with the added constraintf (·) ≤C for varying values ofC and without optimization. If
C is progressively lowered, the solver may retain its database of learned clauses. A competitive approach
involves a form of binary search for minf (·). We point out that objective functions should not be handled
simply by treating them as additional PB constraints in the context of structure-aware SAT/ILP solving. To

1

this end we consider symmetry – a practical and exploitable type of structure found in some application-
derived SAT/ILP instances. Earlier work [6, 1] has shown that detecting and breaking symmetries in SAT
instances accelerates problem solving. This has recently been extended to 0-1 ILP in [4]. Importantly,
high-performance techniques for symmetry-breaking in SATand ILP arestatic— all work is done during
pre-processing. This is convenient because no solver modifications are required. It also facilitates Boolean
constraint propagation and conflict-driven learning with respect to symmetry-breaking clauses. However,
static symmetry-breaking is not fully suitable for Booleanoptimization and is outright incompatible with
incremental satisfiability. An objective function or new clauses added in the future may destroy existing
symmetries in the original CNF/PB constraints. Therefore,using those symmetries is in general incorrect.
However, if the original constraints are unsatisfiable, an objective function or future clauses make no dif-
ference, and symmetries could be helpful in concluding unsatisfiability faster. However, we cannot tell
which assignments satisfy constraints in advance. Once symmetry breaking predicates (SBPs) are added, it
is very difficult to track down and undo all clauses learned due to them. Therefore, symmetries of existing
constraints cannot be used at all in incremental satisfiability and are intersected with the symmetries of the
objective function in Boolean optimization.

We propose adynamic symmetry-breakingtechnique which adds SBPs when conflicts are identified
during the search process. This prunes all unsatisfying assignments symmetric to the one that induced the
conflict, accelerating optimization in cases where the objective function destroys many constraint symme-
tries. Dynamic symmetry-breaking is also safe for incremental satisfiability. Unfortunately, dynamic SBPs
added later during the search may not assist learning at the same rate as static SBPs added at the outset.
However, they are more attractive than explicitly pruning symmetric branches of the search tree which does
not contribute to learning at all. Related dynamic symmetrybreaking techniques have been recently studied
for constraint programming [13, 9] and shown to be effective.

Another contribution of our work is the generalization of commonly-used static lex-leader or MinLex
SBPs, introduced in [6], to account for a given objective function. This involves encoding the objective
function as a set of predicates so that it becomes part of the constraints, and static symmetry-breaking can
be applied. Unfortunately, arbitrary objective functionsare not as well-suited to this approach as the MinLex
function, and it is not likely to be competitive with dynamicsymmetry-breaking in general. Since empirical
results for static and dynamic symmetry-breaking indicatethat neither one is universally preferable to the
other, we propose a flow that picks the type of symmetry-breaking best suited to the problem in question. We
perform an empirical comparison of static vs. dynamic symmetry-breaking on several application-derived
decision and optimization instances, and point out that theadaptive flow we propose would pick the best
configuration in every case.

The remainder of this paper is organized as follows. Section2 reviews previous work in symmetry-
breaking for SAT and 0-1 ILP. Section 3 introduces dynamic symmetry-breaking and explains its imple-
mentation in the PBS solver [2]. Section 4 outlines our adaptive symmetry-breaking flow. Experimental
results are discussed in Section 5, and Section 6 concludes the paper. The Appendix discusses SBPs tailored
to a given objective function, such as MinLex.

2 Background

In this section, we survey previous work in symmetry-breaking for SAT and 0-1 ILP. Currently, most
symmetry-detection approaches are static, and dynamic symmetry-detection appears impractical. The Boolean
Satisfiability (SAT) and 0-1 ILP problems are well-known andhave been extensively discussed in the liter-
ature [6, 1, 4, 5]. We do not define them here.

Recent work [6, 1] showed that breaking symmetries in CNF formulas for SAT instances can prune the
search space and lead to significant runtime speedups. Symmetries are detected using graph automorphism.
The formula is expressed as an undirected graph such that thesymmetry group of the graph is isomorphic
to the symmetry group of the CNF formula. Symmetries induce equivalence relations on the set of truth
assignments of the CNF formula. All assignments in an equivalence class result in the same truth value for
the formula. Therefore, it is only necessary to consider oneassignment from each class. Both [6, 1] propose
adding symmetry-breaking predicates (SBPs) that choose lexicographically smallest assignments, orlex
leadersfrom each equivalence class. These SBPs are added statically during pre-processing. An efficient
tautology-free SBP construction, whose size is linear in the number of problem variables is proposed in [3].

2

Symmetry detection and breaking via graph automorphism is extended to 0-1 ILP problems with objective
functions in [4], and empirical results show that the addition of SBPs to PB formulas results in considerable
speedups for the 0-1 ILP solver PBS [2] on FPGA routing and ASIC global routing instances.

Figures 1 and 2 illustrate how breaking symmetries is useful. Figure 1 shows a formula with six CNF
constraints, the four assignments that satisfy it, and an unpruned search tree for the formula assuming
variables are assigned in the order(a,b,c,d). Figure 2 (a) shows the two generators of the symmetry group
for this formula, and the lex-leader SBPs added for each generator. Figure 2 (b) shows how the 24 = 16
possible assignments are partitioned into four equivalence classes under the symmetry group. Lex-leader
SBPs permit only the smallest assignment from each class. Figure 2 (c) shows the effect of static SBPs on
the search tree. Bold lines indicate pruned search paths.

Handling Objective Functions. The work in [4] accommodates optimization problems byintersecting
symmetries of the objective function and the constraints, and describes appropriate graph constructions.
Taking the intersection implies that some constraint symmetries may be discarded.

 (a b c)
 (a b c)
 (a c d)
 (a c d)
 (b c d)
 (b c d)

ν ν
ν ν
ν ν
ν ν
ν ν
ν ν

c

d d

0 0 0 0

 a

b b

c c c

d d d d d d

0 00 0 0 0 0 01 1 1 1

1 0

fa b c d

1 0 1 1
1 0 1 0
0 1 0 1
0 1 0 0

1
1
1
1

f(a,b,c,d):

Figure 1:Formula with only CNF constraints, satisfying assignmentsand unpruned search tree.

c

d d

0

 a

b b

c c c

d d d d d d

0 01

1 0
 (d d) (d)

(a b)
(a = b) (c)

Generator SBP

(a b)(c c)
ν .

EC1={0000, 0001, 0010, 0011}
EC2={0100, 0101, 1010, 1011}
EC3={0110, 0111, 1000, 1001}
EC4={1100, 1101, 1110, 1111}

(a)

(b)

(c)

Figure 2:Effect of SBPs on search tree. Part (a) shows symmetry generators and SBPs for the
example in Figure 1. Part (b) shows equivalence classes (ECs) induced by symmetries. Part (c)
shows the pruning effect on the search tree Bold lines indicate pruned paths.

3

3 Dynamic Symmetry-Breaking

When SBPs are added statically, they are applied only to the intersection of the objective function and
constraint symmetries. This is necessary to ensure correctness because an optimal assignment needs to have
the best value for the objective functionand satisfy the constraints. Optimizing an objective is critical to
many applications. Formal verification applications can use an objective to specify a preference for solutions
that conform with statistical data. For example, the Localized Bit Selection (LBS) objective proposed in this
work can be used to find a solution with the desired percentages of 0s, 1s and don’t-cares, based on input
frequencies known in advance. The MinLex objective can be used to find the smallest value of a counter
that causes a bug. However, adding the objective may destroyseveral constraint symmetries. An important
observation is that constraint symmetries are notalwaysrelated to the objective function, and may be quite
different. For a satisfying assignment, overlooking symmetric assignments is incorrect because they may
have different values of the objective function. However, an unsatisfying assignment can never be optimal,
and we can safely prune its symmetric images. This cannot be done statically, since it is not possible to
tell whether an assignment is satisfying before the search has even begun. This indicates a need for flexible
schemes that cover symmetries more comprehensively.

We propose that symmetries be broken dynamically for 0-1 ILPproblems with objective functions.
Our algorithm works as follows. Symmetries of theconstraintsare detected in advance, but no SBPs are
immediately added. Problem solving begins as usual using a modified 0-1 ILP solver. When an assignment
induces a conflict (i.e., a clause becomes fully resolved, but not satisfied), SBPs are appliedonly to conflict-
induced clauses, eliminating symmetric images of the unsatisfying assignment. This can have no impact on
the optimal solution, since it affects only unsatisfying assignments. However, SBPs added late in the search
may not contribute as much to conflict-driven learning and Boolean constraint propagation. Static SBPs
contribute to learning because they are added in advance. The success of dynamic SBPs depends on the
objective function: if it destroys many constraint symmetries, the improved coverage offered by dynamic
SBPs can make up for the lack of learning.If considering the objective function leaves the constraint
symmetries unchanged, static SBPs will perform better since they break all the same symmetries
without affecting learning. Our results in Section 5 indicate that dynamic symmetry-breaking is effective
when used with the MinLex and LBS objectives, which destroy all constraint symmetries. MinLex seeks
the lexicographically smallest assignment, and LBS seeks an assignment with specified proportions of 0s
and 1s.

Figure 3 shows the effect of dynamic SBPs. Figure 3 (a) shows the constraints from Figure 1 intersected
with a maximizing objective function. This destroys all constraint symmetries, because equivalent satisfying
assignments, such as(0,1,0,0) and (0,1,0,1) have different values for the objective function (1 and 2
respectively). The search tree reverts to the unpruned version of Figure 1. Figure 3 (b) shows a search with
dynamic SBPs in progress. When a conflict-induced clause is learned, SBPs are applied to it so that any
symmetric images of it are also added to the clause database.Figure 3 (c) shows the effect of dynamic SBPs
on the search tree, where many unsatisfying assignments areeliminated. Bold lines indicate pruned search
paths.

4 Adaptive Boolean Optimization

Dynamic symmetry-breaking is most useful when the objective function destroys many constraint symme-
tries. However, it is preferable to use static SBPs where possible to facilitate learning since they are added
in advance. Even when the intersection of the objective function and constraint symmetries is small, static
SBPs can be used to obtain anupper boundon the objective function value. The constraint set is first solved
as an optimization problem, using static SBPs to break all detected symmetries. If constraints are unsat-
isfiable, solving is terminated. However, if a satisfying assignmentΦ is found, the value of the objective
function, γ for Φ is used as an upper bound by adding a constraint specifying that the objective function
value must be≤ γ. The problem is then solved using dynamic SBPs when unsatisfying assignments are de-
tected, as explained in Section 3 above. This approach allows us to utilize constraint symmetries to a greater
extent. However, there is a trade-off: symmetries found in the constraints cannot be applied to implications
or conflict clauses learned from the objective function, since there symmetries were found using constraints
alone. Therefore, as soon as an implication from the objective function is detected, we disable all learning

4

c

d d

0 0 0 0

 a

b b

c c c

d d d d d d

0 00 0 0 0 0 01 1 1 1

1 0

(a)

(c)

f (a,b,c,d) = f (a,b,c,d) Max(a + b + c + d)^
~

and

(b)

Search w. Dynamic SBPs:
Decision #1: a = 1
Decision #2: b = 1
Decision #3: c = 1
Imply: d = 1 d = 0
Conflict #1:
 Learn :(b c)
Apply gens. to
 (a c)

ν

ν

ω1
ω1

Figure 3:Utility of dynamic SBPs. Part (a) shows the new function thatincludes an objective.
Part (b) shows the creation of dynamic SBPs from conflict-induced clauses during search. Part
(c) shows the pruning of the search tree with dynamic SBPs. Bold lines indicate pruned paths.

from SBPs.
Another potentially useful technique in Boolean optimization is the use of optimization-aware SBPs,

discussed in the Appendix. The idea here is to encode the objective function as a set of predicates that
become part of the constraints. This way, the whole problem can be solved usingonlystatic SBPs. However,
optimization-aware SBPs are feasible only in cases where the optimization function is not too complex to
encode. They are unlikely to be competitive with dynamic symmetry-breaking in general, except for certain
objective functions such as the MinLex function described in the Appendix. We propose a flow that chooses
either dynamic or static SBPsdepending on the the nature of the optimization problem to besolved. By not
committing to one strategy, we can employ static and dynamicsymmetry-breaking only in cases where they
are likely to be useful. The flow is outlined as follows, and isillustrated in Figure 4.

• For an optimization problem, symmetries of the constraintsand the objective function are detected
separately, and their intersection is computed

• If the intersection is almost the same as the set of constraint symmetries, the use of static SBPs is not
restricted, and we follow the static flow from [3]

• If the intersection is small but the objective function can be efficiently encoded using optimization-
aware SBPs, the optimization function is replaced with SBPsand the problem solved with static
symmetry-breaking

• If the intersection is small, invalidates most of the constraint symmetries, and the objective function
is too complex to be encoded as predicates, the constraints are solved with static SBPs to verify satis-
fiability and obtain an upper bound. The optimal solution is found using dynamic SBPs as discussed
above

5 Results

We evaluate the effectiveness of dynamic symmetry breakingon several well-known decision and optimiza-
tion problems. Experiments are performed on an Intel Xeon 2 GHz machine with 1 GB of RAM running
Linux. Time-out is set at 20000 seconds. For decision problems, we use one large instance from each of the
pigeon hole(hole) [8], FPGA routing [12](chnl), (fpga) , and global routing [1](grout) fami-
lies. Optimization benchmarks include selected MaxOnes, MaxSAT, and MinLex instances from the FPGA
[12], global routing [1] and XOR chain families [16],(x) which are relevant to circuits for error-correcting
codes. We also introduce a new objective function, Localized Bit Selection (LBS) that allows values to be
specified for subsets of bits. We summarize each objective function below.
1. MinLex: Seeks the lexicographically smallest satisfying assignment. This is ideally accomplished mini-
mizing the function 20x1 +21x2 + . . .+2n−1xn. This cannot be realized in practice because coefficient sizes

5

Symmetries
of

Objective

Symmetries
of

Constraints

Intersection

Intersection

~~Constraint
Symms. ?

Add Static
SBPs

Solve w/Generic
0-1 ILP solver

End

Y

Boolean
 Optimization

 Problem

N
Objective
function

encodable w/
Opt.-aware

SBPs?

N

Encode obj.
as minF-

SBPs

Y Obtain upper
bound using
static SBPs

on constrnts

Solve w/ modified
0-1 ILP solver w/

dynamic SBPs

Figure 4:Adaptive flow for Boolean optimization.

are too large. We minimize the following approximation:x1 +2x2 + . . .+nxn. MinLex breaks all constraint
SBPs. We expect dynamic SBPs to be most useful in this situation.
2. MaxSAT: Seeks to maximize the number of satisfied clauses forunsatisfiable benchmarks.
3. MaxOnes: Seeks a satisfying assignment that maximizes the number of variables set to 1.
4. Localized Bit Selection (LBS): This objective allows control over individual bits by assigning coefficients
in the objective function for each bit. Here, we test a version that divides the variables into three groups by
random selection. One group is maximized, another minimized and the third treated as don’t cares.
We modified the 0-1 ILP solver PBS [2] to dynamically break symmetries. The SBPs from [3] are applied
to generators of the symmetry group found by the graph automorphism tool Saucy [7]. Whenever a conflict-
induced clause is learned, we apply the generators to the clause and create dynamic SBPs that are added to
the clause database. Results for the decision problem experiments are listed in Table 1. The table shows
instance names, satisfiability (SAT or UNSAT), sizes w. and w/o SBPs, symmetry detection runtimes, num-
ber of symmetries and generators, solver runtimes for static and dynamic symmetry breaking, and also with
no symmetry-breaking of any kind. The best runtime for an instance is boldfaced. Static symmetry break-
ing outperforms dynamic symmetry breaking on most instances, probably because SBPs added in advance
contribute to learning. Results for optimization experiments are listed in Tables 2 and 3. Table 2 shows
results for MinLex instances, and Table 3 shows data for MaxSAT, MaxOnes and LBS instances. The tables
provide an empirical comparison of two different configurations of our flow. Thestaticconfiguration uses
static SBPs on the intersection of the objective function and constraint symmetries Thedynamicconfigura-
tion uses dynamic SBPs on the constraints with an upper boundobtained with static SBPs. Although we
show results for both configurations, the flow picks the configuration best suited to a given instance. Thus,
for all instances here, it effectively achieves the best result attained by either configuration.

Tables 2 and 3 show benchmark names followed by ‘S’ or ‘U’ to indicate whether constraints are sat-
isfiable. Next, we show results for the static configuration:number of symmetries and generators, Saucy’s
symmetry detection runtime, PBS solving runtime, and whether or not the optimal solution was found (pi-
geonhole instances are all unsatisfiable and finding the optimal solution means satisfying the largest possible
number of clauses). The same statistics are repeated for thedynamic configuration. The best runtime for an

6

Instance Size w. and w/o static SBPs Constraints-Only Symmetry Detection No SBPs:
Instance Original w. Static SBPs Symmetry Stats Static SBP Dynamic SBP Orig.
Name Saucy PBS PBS PBS

S/U V C PB V C #Symm. # Gen. Time Time Time Time
chnl1012 U 240 24 20 796 2167 6.04E+30 41 0.08 0.01 43.7 472
fpga1110 S 165 120 21 443 1181 4.51E+15 26 0.04 0 88.9 470
hole10 U 110 11 10 309 770 1.45E+14 19 0.01 0 32.7 251
grout3-3-5 S 240 634 12 288 819 16 4 0.02 0.02 0.02 0.04

Table 1:Static vs. dynamic symmetry breaking: Results for 0-1 ILP decision problems without objective functions.

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
MinLex Saucy PBS Best Saucy PBS Best
Instance S/U #Symm. # Gen. Time Time Soln. Optimal? #Symm. # Gen. Time Time Soln. Optimal?
fpga87 S 1 0 0 94.8 689 YES 4.18E+08 17 0 93.6 689 YES
fpga97 S 1 0 0 691 759 YES 2.09E+09 18 0 664 759 YES
grout3-3-1 S 1 0 0 T/O 6735 NO 5.32E+17 49 0.1 9882 3323 YES
grout3-3-3 S 1 0 0 T/O 6775 NO 1.20E+19 50 0.13 8427 3729 YES
x1.1 40s S 1 0 0 4.76 652 YES 1.10E+12 40 0.01 0.28 652 YES
x1.1 44s S 1 0 0 8.89 634 YES 8.80E+12 43 0.01 3.3 634 YES
x1.1 48s S 1 0 0 55.47 816 YES 1.41E+14 47 0.02 1.88 816 YES
x1.1 56s S 1 0 0 139 850 YES 3.60E+16 55 0.01 6.86 850 YES
x1.1 64s S 1 0 0 9988 846 YES 9.22E+18 63 0.01 32.13 846 YES
x1.1 72s S 1 0 0 5798 949 YES 2.36E+21 71 0.02 21.93 949 YES
x2 40s S 1 0 0 2.24 902 YES 5.50E+11 39 0.01 1.78 902 YES
x2 44s S 1 0 0 4.58 1016 YES 8.80E+12 43 0.01 1.69 1016 YES
x2 72s S 1 0 0 217.3 1942 YES 2.36E+21 71 0.03 110.25 1942 YES

Table 2: Static vs. dynamic symmetry breaking: Symmetry statisticsand runtimes for FPGA, global routing and
XOR chain instances with MinLex objective. No intersection symmetries were found for the static case, so we are
effectively solving the original problem w/o SBPs. Timeoutis set at 20000 seconds.

instance is boldfaced. If the solver times out, the better value for the optimal solution is also boldfaced1. As
expected, MinLex does not intersect with constraint symmetries, so static symmetry-breaking finds nothing.
However, the dynamic method does find and break many symmetries, and is faster than the static configu-
ration in almost all cases. The greatest benefit is seen with XOR chain benchmarks, which are solved with
dynamic SBPs in under 40 seconds, but the static configuration takes several thousand seconds in many
cases. For the MaxSat and MaxOnes experiments in Table 3, theobjective function does not destroy any
constraint symmetries. Both configurations work with the same set of symmetries. Here, static SBPs are
clearly superior, finding optimal solutions faster and morefrequently. The LBS function, like MinLex, is
non-trivial and destroys constraint symmetries. Consequently, the dynamic configuration is more effective
for LBS instances.

6 Conclusion

This work is motivated by the observation that recent breakthroughs in solving SAT and pseudo-Boolean
(PB) constraint satisfaction problems (CSPs) have not beenextended to Boolean optimization, which is
useful in many applications, including formal verification. For example, one may seek solutions that are sta-
tistically common, and conform to a known frequency distribution. 0-1 ILP solvers have been developed in
[2, 5], but they perform optimization by solving a series of SAT or 0-1 ILP CSPs without objective functions.
This approach may experience difficulty in the context of structure-aware problem solving. Specifically, the
objective function may interfere with the use of symmetries, often found in SAT and 0-1 ILP problems
from the circuit domain. We propose new techniques designedto give Boolean objective functions special
treatment and to accelerate optimization. One such method is dynamic symmetry-breaking, which utilizes
the knowledge that constraint symmetries can be brokenduring search when unsatisfiable assignments are
found. Previous work in this field breaks symmetriesstatically[1, 4], and cannot make use of this property.

1In some cases PBS times out when its current assignment has the optimalvalue. The timeout occurs while proving optimality.

7

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
Opt. Inst. Saucy PBS Best Saucy PBS Best
Fn. Name S/U #Symm. # Gen. Time Time Soln. Optimal? #Symm. # Gen. Time Time Soln. Optimal?
Max- hole9 U 1.32E+12 17 0.26 0.31 414 YES 1.32E+12 17 0.26 1.3 414 YES
SAT hole10 U 1.45E+14 19 0.53 0.68 560 YES 1.45E+14 19 0.53 8.89 560 YES
Max- fpga87 S 4.18E+08 17 0 0.01 14 YES 4.18E+08 17 0 175 14 YES
Ones fpga97 S 2.09E+09 18 0.01 0 14 YES 2.09E+09 18 0.01 1156 14 YES

x1.1 44s S 1 0 0 32.11 15 YES 8.79E+12 43 0.01 21.3 15 YES
LBS x1.1 48s S 1 0 0 25.4 15 YES 1.407E+14 47 0.01 17.8 15 YES

x1.1 64s S 1 0 0 T/O 20 NO 9.22E+18 63 0.02 11833 20 YES

Table 3: Static vs. dynamic symmetry breaking: Results for unsatisfiable pigeonhole benchmarks with MaxSat
objective, satisfiable FPGA routing benchmarks with MaxOnesobjective and satisfiable XOR-chain instances with
the Localized Bit Selection (LBS) objective. Static symmetry-breaking outperforms dynamic symmetry-breaking
on MaxSAT and MaxOnes instances, but the dynamic configurationis superior on LBS instances, which may be
relevant to formal verification.

Another proposed method is the use ofoptimization-aware SBPsto encode an objective functionf . We call
these Min-f SBPs and prove that their addition to an optimization problem does not impact optimal solu-
tions. However, Min-f SBPs can be very difficult to encode, and are likely to be competitive with dynamic
symmetry-breaking only for certain functions.

We have implemented novel techniques for dynamic symmetry breaking on top of a high-performance
pseudo-Boolean solver (source code is available at http://www.eecs.umich.edu/˜faloul/SymFile.tar.gz). Em-
pirical results indicate that dynamic symmetry-breaking is effective for objective functions that destroy con-
straint symmetries, such MinLex and our proposed objectivefunction Localized Bit Selection (LBS). For
functions that leave constraint symmetries intact and for CSPs without optimization, static SBPs are more
useful, possibly because they contribute to learning by SATand 0-1 ILP solvers at a greater rate. However,
non-trivial objective functions such as MinLex and LBS may arise in formal verification applications that
are required to specify a preference for solutions with certain properties. Dynamic SBPs are especially
effective on XOR-chain benchmarks which are relevant to circuit applications, e.g. circuits that generate
error correcting codes. Given that both types of symmetry-breaking have advantages in different situations,
we propose an adaptive flow that picks either a static or dynamic SBP configuration to achieve the most
effective Boolean optimization for a given instance. In terms of the results presented here, the adaptive flow
is always able to achieve the best result obtained by either configuration.

Our work considerably extends the scope of symmetry-breaking in Boolean optimization. However, the
full impact of symmetry-breaking on learning and decision ordering in SAT solvers is not known. While it
is clear that symmetry-breaking is a powerful tool for Boolean constraint satisfaction and optimization, the
full measure of its effectiveness is not yet understood.

References

[1] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “Solving Difficult SAT Instances In The
Presence of Symmetry”,IEEE Trans. on CAD, vol. 22(9), 1117-1137, 2003.

[2] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “Generic ILP versus Specialized 0-1 ILP:
An Update”,in Proc. Intl. Conf. on CAD, 450-457, 2002.

[3] F. A. Aloul, I. L. Markov and K. A. Sakallah, “Shatter: Efficient Symmetry-Breaking for Boolean
Satisfiability”, in Proc. Intl. Joint. Conf. on AI, 271-282, 2003.

[4] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “Symmetry-Breaking for Pseudo-Boolean
Formulas”, inProc. Asia-South Pacific Design Autom. Conf., 884-887, 2004.

[5] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Constraint Solver”, in Proc. Design Autom.
Conf., 830-835, 2003.

[6] J. Crawford, M. Ginsberg, E. Luks and A. Roy, “Symmetry-breaking Predicates for Search Problems”,
in Proc. of the Intl. Conf. on Principles of Knowledge Representation and Reasoning, 148-159, 1996.

8

[7] P. Darga, “SAUCY: Graph Automorphism Tool”,
http://www.eecs.umich.edu/˜pdarga/pub/auto/saucy.ht ml

[8] DIMACS SAT benchmarks:ftp://Dimacs.rutgers.
EDU/pub/challenge/sat/benchmarks/cnf

[9] I. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, andB. Smith, ”Conditional Symmetry Breaking,”
in Proc. of Principles and Practice of Constraint Programming(CP), 256-270, 2005.

[10] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT-solver”, in Proc. Design Automation
and Test In Europe, 142-149, 2002.

[11] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang and S. Malik, “Chaff: Engineering an Efficient
SAT Solver”,Proc. Design Autom. Conf., 530-535, 2001.

[12] G. Nam, F. Aloul, K. Sakallah and R. Rutenbar, “A Comparative Study of Two Boolean Formulations
of FPGA Detailed Routing Constraints”,Proc. ISPD, 222-227, 2001.

[13] K. Petrie, B. Smith, and N. Yorke-Smith, ”Dynamic Symmetry Breaking in Constraint Programming
and Linear Programming Hybrids,” inProc. of STAIRS, the2nd European Starting AI Researchers
Symposium, pp. 96-106, 2004.

[14] J. P. M. Silva and K. A. Sakallah, “GRASP: A New Search Algorithm for Satisfiability”,IEEE Trans.
On Computers, 48(5), 506-521, 1999.

[15] M. N. Velev and R. E. Bryant, “Effective Use of Boolean SAT Procedures in the Formal Verification
of Superscalar and VLIW Microprocessors”,Proc. DAC, 226-231, 2001.

[16] L. Zhang and S. Malik, XOR-chain SAT benchmarks, SAT 2002 Competition:
http://www.satlive.org/SAT/Competition/2002/submitt edbenchs.html

Appendix: Optimization-aware SBPs

Here, we discuss how an objective function may be encoded as predicates which form a part of the con-
straints. Such an encoding would eliminate the need for dynamic symmetry-breaking and allow the use of
more efficient static SBPs. The original construction of symmetry-breaking predicates [6] selects represen-
tatives of equivalence classes under symmetries and prefers those truth assignments that are not equivalent
to any lexicographically-smaller assignments. Those SBPsare formulated as follows.

MinLex−SBP= ∏
π∈AllSymmetries

(x̄≤lex x̄π) (1)

Herex is a multi-bit truth assignment (bit-vector),xπ is the image ofx under an arbitrary symmetryπ,
and≤lex performs a lexicographic comparison between the two bit-vectors. These predicates are referred
to as LL-SBPs or MinLex-SBPs. Adding these predicates to anyCNF formula preserves its satisfiability
because every equivalence class of truth assignments has a lexicographically smallest element.

We now generalize MinLex-SBPs to Minf -SBPs which select representatives of equivalence classes
by comparing values of a given linear objective functionf (·). Since the lexicographic ordering is a linear
function, MinLex-SBPs are just a special case forf (x) = ∑i 2

ixi .

Min f−SBP= ∏
π∈AllSymmetries

(f (x) ≤ f (xπ)) (2)

Here≤ is just a comparison of numbers, usually integers since the coefficients off are usually integers.
Theorem. Using Min-f SBPs statically during Boolean optimization of f does not affect optimal solu-

tions.
Proof. Let Φ f be the set of assignments that satisfy constraints inf . Let γ f be the optimal solution for

f . Clearly, γ f ∈ Φ f . Also, ∀a∈Φ f f (γ f) ≤ f (a). The set of variable assignments forf is partitioned into
equivalence classes by the symmetry group forf , Θ f . Let Θ f partitionΦ f into K ≥ 1 equivalence classes
φ1 . . .φK . Assume thatγ f belongs to some equivalence classφi . Clearly,∀a∈φi f (γ f) ≤ f (a). Since Min-f
SBPs pick the representative with the smallest value off in a class, they must pickγ f from φi . Let Ω f be the
set of assignments that satisfy Min-f SBPs, i.e. have the smallestf -values in their equivalence classes. We

9

know thatΩ f ⊂ Φ f andγ f ∈ Ω f . The optimization function picks the assignment inΩ f with the smallest
f -value. Since∀a∈Φ f f (γ f) ≤ f (a) andΩ f ⊂ Φ f , ∀b∈Ω f f (γ f) ≤ f (b). �

MinLex-SBPs are very effective in practice because the Lex function induces a total ordering on truth
assignments. However, functions like MinOnes or MaxOnes (minimize or maximize the number of variables
set to 1) can potentially be satisfied by many assignments in the same class. In general, Minf -SBPs are
likely to be weaker than MinLex. Additionally, there are known simple CNF constructions for MinLex
predicates, such as the one in [3]. Generic Minf -SBPs may be much more difficult to encode in CNF iff
has non-trivial coefficients.Overall, it appears unlikelythat Minf -SBPs will be competitive with dynamic
symmetry-breaking, except for very specialized objectivefunctions.

10

