Dynamic Symmetry-Breaking for Boolean Satisfiability

Fadi A. Aloul" Arathi Ramarii Igor L. Markov® and Karem A. Sakallah
T Department of Computer Engineering, American Universit§bérjah, UAE
faloul@aus.edu,
* Department of EECS, University of Michigan, Ann Arbor, USA
{ramania, imarkov, kareh@eecs.umich.edu

Abstract

With impressive progress in Boolean Satisfiability (SAT)vswy and several extensions to pseudo-
Boolean (PB) constraints, many applications that use Sédh @s high-performance formal verification
techniques are still restricted to checkisagtisfiability of certain conditions. However, there is also fre-
guently a need to exprespeeferencdor certain solutions. Extending SAT-solving to Booleatimjization
allows the use of objective functions to describe a desérablution. Although recent work in 0-1 Inte-
ger Linear Programming (ILP) offers extensions that cainape a linear objective function, this is often
achieved by solving a series of SAT or ILP decision proble@sr work articulates some pitfalls of this
approach. An objective function may complicate the use gf mmetry that might be present in the
given constraints, even when the constraints are unséatisféand the objective function is irrelevant. We
propose several new techniques that treat objective fumtiifferently from CNF/PB constraints and ac-
celerate Boolean optimization in many practical cases. M @evelop an adaptive flow that analyzes a
given Boolean optimization problem and picks the symmétgaking technique that is best suited to the
problem characteristics. Empirically, we show that for +tigvial objective functions that destroy constraint
symmetries, the benefit of static symmetry-breaking is lngtdynamic symmetry-breaking accelerates
problem-solving in many cases. We also introduce a new tigeftinction, Localized Bit Selection (LBS),
that can be used to specify a preference for bit values indbwerification applications.

1 Introduction

Recent well-documented breakthroughs in backtrack séar@doolean Satisfiability (SAT) have led to the
development of sophisticated exact SAT solvers such aspG@saff, and BerkMin [14, 11, 10]. These
developments strengthened traditional SAT applicatisnsh as equivalence checking, ATPG and bounded
model checking, and facilitated new ones, including FPG#éting [12] and microprocessor verification
[15]. Progress in SAT has been recently translated to marergéproblem encodings using pseudo-Boolean
(PB) constraints [2, 5], which are linear inequalities Witll variables and arbitrary coefficients. They are
particularly convenient for “counting’nfchoosek) constraints, leading to more compact problem encodings
and faster problem-solving. Work on PB constraints has e&tmded to Boolean optimization through 0-1
Integer Linear Programming (ILP). This may be attractivdarmmal verification because some counter-
examples are much more useful for debugging. For exampley &ircuit containing a binary counter, it
may be useful to find counter-examples or bugs at the smalést of the counter (since it presumably takes
fewer cycles to reach such a state). We can design an olgjdatiction that encourages counter-examples
with smaller integers in the binary counter, with weightshia objective function reflecting preferences for
certain bits — the lower the weights, the lower the prefegenthus, by assigning negative coefficients to
all bits in the counter value, we can bias the search towaallenvalues of the counter. Such an objective
function, arithmetic-min, behaves in much the same way @adtinLex SBPs discussed in the Appendix.
Existing 0-1 ILP solvers PBS [2] and Galena [5] handle a givbjective functionf (-) by re-solving all
PB/SAT constraints with the added constrdift) < C for varying values o€ and without optimization. If
C is progressively lowered, the solver may retain its datatiddearned clauses. A competitive approach
involves a form of binary search for mfij-). We point out that objective functions should not be handled
simply by treating them as additional PB constraints in thietext of structure-aware SAT/ILP solving. To

this end we consider symmetry — a practical and exploitaljje bf structure found in some application-
derived SAT/ILP instances. Earlier work [6, 1] has showrt tietecting and breaking symmetries in SAT
instances accelerates problem solving. This has receatiy lextended to 0-1 ILP in [4]. Importantly,
high-performance techniques for symmetry-breaking in 8Ad ILP arestatic— all work is done during
pre-processingThis is convenient because no solver modifications areinegyult also facilitates Boolean
constraint propagation and conflict-driven learning witgspect to symmetry-breaking clauses. However,
static symmetry-breaking is not fully suitable for Boolegtimization and is outright incompatible with
incremental satisfiability. An objective function or nevaates added in the future may destroy existing
symmetries in the original CNF/PB constraints. Therefasng those symmetries is in general incorrect.
However, if the original constraints are unsatisfiable, Bjective function or future clauses make no dif-
ference, and symmetries could be helpful in concluding tisfsability faster. However, we cannot tell
which assignments satisfy constraints in advance. Oncengfnj breaking predicates (SBPs) are added, it
is very difficult to track down and undo all clauses learned ttuthem. Therefore, symmetries of existing
constraints cannot be used at all in incremental satistiabihd are intersected with the symmetries of the
objective function in Boolean optimization.

We propose alynamic symmetry-breakirtgchnique which adds SBPs when conflicts are identified
during the search process. This prunes all unsatisfyingrmsents symmetric to the one that induced the
conflict, accelerating optimization in cases where the abje function destroys many constraint symme-
tries. Dynamic symmetry-breaking is also safe for incretalesatisfiability. Unfortunately, dynamic SBPs
added later during the search may not assist learning atatie sate as static SBPs added at the outset.
However, they are more attractive than explicitly prunigmsetric branches of the search tree which does
not contribute to learning at all. Related dynamic symmbtgaking techniques have been recently studied
for constraint programming [13, 9] and shown to be effective

Another contribution of our work is the generalization ohuoonly-used static lex-leader or MinLex
SBPs, introduced in [6], to account for a given objectivection. This involves encoding the objective
function as a set of predicates so that it becomes part ofghsti@ints, and static symmetry-breaking can
be applied. Unfortunately, arbitrary objective functi@me not as well-suited to this approach as the MinLex
function, and it is not likely to be competitive with dynansigmmetry-breaking in general. Since empirical
results for static and dynamic symmetry-breaking indi¢cage neither one is universally preferable to the
other, we propose a flow that picks the type of symmetry-bneglest suited to the problem in question. We
perform an empirical comparison of static vs. dynamic symnyalereaking on several application-derived
decision and optimization instances, and point out thaiatteptive flow we propose would pick the best
configuration in every case.

The remainder of this paper is organized as follows. SeQioeviews previous work in symmetry-
breaking for SAT and 0-1 ILP. Section 3 introduces dynamitisyetry-breaking and explains its imple-
mentation in the PBS solver [2]. Section 4 outlines our agapymmetry-breaking flow. Experimental
results are discussed in Section 5, and Section 6 conclhdgmper. The Appendix discusses SBPs tailored
to a given objective function, such as MinLex.

2 Background

In this section, we survey previous work in symmetry-bragkior SAT and 0-1 ILP. Currently, most
symmetry-detection approaches are static, and dynamimsyiy-detection appears impractical. The Boolean
Satisfiability (SAT) and 0-1 ILP problems are well-known aral’e been extensively discussed in the liter-
ature [6, 1, 4, 5]. We do not define them here.

Recent work [6, 1] showed that breaking symmetries in CNRfdas for SAT instances can prune the
search space and lead to significant runtime speedups. Syiesrae detected using graph automorphism.
The formula is expressed as an undirected graph such thaytheetry group of the graph is isomorphic
to the symmetry group of the CNF formula. Symmetries indumpgiv@lence relations on the set of truth
assignments of the CNF formula. All assignments in an edgprivg class result in the same truth value for
the formula. Therefore, itis only necessary to consideragssgnment from each class. Both [6, 1] propose
adding symmetry-breaking predicates (SBPs) that chooseolraphically smallest assignments, lex
leadersfrom each equivalence class. These SBPs are added syatioélhg pre-processing. An efficient
tautology-free SBP construction, whose size is linear érthmber of problem variables is proposed in [3].

Symmetry detection and breaking via graph automorphismteneed to 0-1 ILP problems with objective
functions in [4], and empirical results show that the additof SBPs to PB formulas results in considerable
speedups for the 0-1 ILP solver PBS [2] on FPGA routing and@A§bbal routing instances.

Figures 1 and 2 illustrate how breaking symmetries is uséfigure 1 shows a formula with six CNF
constraints, the four assignments that satisfy it, and gruned search tree for the formula assuming
variables are assigned in the orderb, c,d). Figure 2 (a) shows the two generators of the symmetry group
for this formula, and the lex-leader SBPs added for eachrgéore Figure 2 (b) shows how thé 2 16
possible assignments are partitioned into four equivalerasses under the symmetry group. Lex-leader
SBPs permit only the smallest assignment from each clagsiré-R (c) shows the effect of static SBPs on
the search tree. Bold lines indicate pruned search paths.

Handling Objective Functions. The work in [4] accommodates optimization problemsridgrsecting
symmetries of the objective function and the constraintsl describes appropriate graph constructions.
Taking the intersection implies that some constraint syinieseemay be discarded.

—h

corr |
RROO |T
corr |o
PR R

Generator SBP
(dd)— (d —

@DE) = | (@) o -
(@

EC1={0000, 0001, 0010, 0011}
EC2={0100, 0101, 1010, 1011}
EC3={0110, 0111, 1000, 1001}
EC4={1100, 1101, 1110, 1111}

(b)

Figure 2:Effect of SBPs on search tree. Part (a) shows symmetry gendcsis and SBPs for the
example in Figure 1. Part (b) shows equivalence classes (E@sduced by symmetries. Part (c)
shows the pruning effect on the search tree Bold lines indi¢a pruned paths.

3 Dynamic Symmetry-Breaking

When SBPs are added statically, they are applied only to tieesiction of the objective function and
constraint symmetries. This is necessary to ensure coagggbecause an optimal assignment needs to have
the best value for the objective functiamd satisfy the constraints. Optimizing an objective is caltito
many applications. Formal verification applications camaus objective to specify a preference for solutions
that conform with statistical data. For example, the LaeadiBit Selection (LBS) objective proposed in this
work can be used to find a solution with the desired percestafifs, 1s and don't-cares, based on input
frequencies known in advance. The MinLex objective can leelus find the smallest value of a counter
that causes a bug. However, adding the objective may destr@ral constraint symmetries. An important
observation is that constraint symmetries areatefiysrelated to the objective function, and may be quite
different. For a satisfying assignment, overlooking symrioessignments is incorrect because they may
have different values of the objective function. Howeveruasatisfying assignment can never be optimal,
and we can safely prune its symmetric images. This cannobhe dtatically, since it is not possible to
tell whether an assignment is satisfying before the seaasketien begun. This indicates a need for flexible
schemes that cover symmetries more comprehensively.

We propose that symmetries be broken dynamically for 0-1 pkéblems with objective functions.
Our algorithm works as follows. Symmetries of tbenstraintsare detected in advance, but no SBPs are
immediately added. Problem solving begins as usual usingdified 0-1 ILP solver. When an assignment
induces a conflict (i.e., a clause becomes fully resolvethbusatisfied), SBPs are appliedly to conflict-
induced clausesliminating symmetric images of the unsatisfying assigninThis can have no impact on
the optimal solution, since it affects only unsatisfyingigaments. However, SBPs added late in the search
may not contribute as much to conflict-driven learning an@IBan constraint propagation. Static SBPs
contribute to learning because they are added in advance.siitcess of dynamic SBPs depends on the
objective function: if it destroys many constraint symriesty the improved coverage offered by dynamic
SBPs can make up for the lack of learninfjconsidering the objective function leaves the constrain
symmetries unchanged, static SBPs will perform better sire they break all the same symmetries
without affecting learning. Our results in Section 5 indicate that dynamic symmetryakirg is effective
when used with the MinLex and LBS objectives, which destribganstraint symmetries. MinLex seeks
the lexicographically smallest assignment, and LBS seakasaignment with specified proportions of Os
and 1s.

Figure 3 shows the effect of dynamic SBPs. Figure 3 (a) shbevsanstraints from Figure 1 intersected
with a maximizing objective function. This destroys all stnaint symmetries, because equivalent satisfying
assignments, such 6,1,0,0) and (0,1,0,1) have different values for the objective function (1 and 2
respectively). The search tree reverts to the unprunedoweos$ Figure 1. Figure 3 (b) shows a search with
dynamic SBPs in progress. When a conflict-induced clauseaiséel, SBPs are applied to it so that any
symmetric images of it are also added to the clause databagee 3 (c) shows the effect of dynamic SBPs
on the search tree, where many unsatisfying assignmengdianieated. Bold lines indicate pruned search
paths.

4 Adaptive Boolean Optimization

Dynamic symmetry-breaking is most useful when the objediinction destroys many constraint symme-
tries. However, it is preferable to use static SBPs whersiplesto facilitate learning since they are added
in advance. Even when the intersection of the objectivetfan@and constraint symmetries is small, static
SBPs can be used to obtain@oper boundn the objective function value. The constraint set is fiobtexd

as an optimization problem, using static SBPs to break a#laed symmetries. If constraints are unsat-
isfiable, solving is terminated. However, if a satisfyingigament® is found, the value of the objective
function, y for @ is used as an upper bound by adding a constraint specifyatgtie objective function
value must be< y. The problem is then solved using dynamic SBPs when ungatishssignments are de-
tected, as explained in Section 3 above. This approachallevto utilize constraint symmetries to a greater
extent. However, there is a trade-off: symmetries foundhandonstraints cannot be applied to implications
or conflict clauses learned from the objective functiongsithere symmetries were found using constraints
alone. Therefore, as soon as an implication from the objedtinction is detected, we disable all learning

(a) f~(a,b,c,d) =f(a,b,c,dn Max(a+b+c+d)

Search w. Dynamic SBPs:
Decision #1:a=1
Decision #2: b =1
Decision #3:c=1
Imply:d=1 d=afAd
Conflict #1.: _
Learn :(lo;c) v ~
Apply gens. to
(@ ©v

CEIN00.000000

Figure 3:Utility of dynamic SBPs. Part (a) shows the new function thaincludes an objective.
Part (b) shows the creation of dynamic SBPs from conflict-indced clauses during search. Part
(c) shows the pruning of the search tree with dynamic SBPs. Balines indicate pruned paths.

from SBPs.

Another potentially useful technique in Boolean optimiaatis the use of optimization-aware SBPs,
discussed in the Appendix. The idea here is to encode thetalgdunction as a set of predicates that
become part of the constraints. This way, the whole problembe solved usingnly static SBPs. However,
optimization-aware SBPs are feasible only in cases wher@ptimization function is not too complex to
encode. They are unlikely to be competitive with dynamic syatry-breaking in general, except for certain
objective functions such as the MinLex function describethe Appendix. We propose a flow that chooses
either dynamic or static SBREpending on the the nature of the optimization problem tedbe=d By not
committing to one strategy, we can employ static and dynagmzmetry-breaking only in cases where they
are likely to be useful. The flow is outlined as follows, andlisstrated in Figure 4.

e For an optimization problem, symmetries of the constraamig the objective function are detected
separately, and their intersection is computed

e [f the intersection is almost the same as the set of consgginmetries, the use of static SBPs is not
restricted, and we follow the static flow from [3]

e If the intersection is small but the objective function candificiently encoded using optimization-
aware SBPs, the optimization function is replaced with SBRg the problem solved with static
symmetry-breaking

o If the intersection is small, invalidates most of the coaisitr symmetries, and the objective function
is too complex to be encoded as predicates, the constramsolved with static SBPs to verify satis-
fiability and obtain an upper bound. The optimal solutionoisrfd using dynamic SBPs as discussed
above

5 Results

We evaluate the effectiveness of dynamic symmetry breakinggveral well-known decision and optimiza-
tion problems. Experiments are performed on an Intel XeorHz @achine with 1 GB of RAM running
Linux. Time-out is set at 20000 seconds. For decision probjeve use one large instance from each of the
pigeon holghole) [8], FPGA routing [12](chnl), (fpga) , and global routing [1{grout) fami-
lies. Optimization benchmarks include selected MaxOness3AT, and MinLex instances from the FPGA
[12], global routing [1] and XOR chain families [16}) which are relevant to circuits for error-correcting
codes. We also introduce a new objective function, LocdlB# Selection (LBS) that allows values to be
specified for subsets of bits. We summarize each objectivetitn below.

1. MinLex: Seeks the lexicographically smallest satisfyisgignment. This is ideally accomplished mini-
mizing the function 9% + 2% + ... + 2" 1x,. This cannot be realized in practice because coefficieassiz

Boolean

Optimization
Problem

Symmetries
of
Objective

Symmetries
of
Constraints

Intersection

ntersection

Cons—fr'aint,)
Symms. ¢

Add Static

Objective
function

encodable w/
Opt.-away,

; bound using
SBPs Encode obj. static SBPs
v SBPs on constrnts
[Solve w/Generic]
0-1 ILP solver Solve w/ modified

0-1 ILP solver w/
dynamic SBPs

Figure 4:Adaptive flow for Boolean optimization.

are too large. We minimize the following approximation:-+ 2x + ... + nx,. MinLex breaks all constraint
SBPs. We expect dynamic SBPs to be most useful in this Situati

2. MaxSAT: Seeks to maximize the number of satisfied clausesrfsatisfiable benchmarks.

3. MaxOnes: Seeks a satisfying assignment that maximizesutméer of variables set to 1.

4. Localized Bit Selection (LBS): This objective allows casitover individual bits by assigning coefficients
in the objective function for each bit. Here, we test a vershat divides the variables into three groups by
random selection. One group is maximized, another minicharel the third treated as don't cares.

We modified the 0-1 ILP solver PBS [2] to dynamically break syetries. The SBPs from [3] are applied
to generators of the symmetry group found by the graph autohigm tool Saucy [7]. Whenever a conflict-
induced clause is learned, we apply the generators to theecknd create dynamic SBPs that are added to
the clause database. Results for the decision problemimes are listed in Table 1. The table shows
instance names, satisfiability (SAT or UNSAT), sizes w. aihdl 8BPs, symmetry detection runtimes, num-
ber of symmetries and generators, solver runtimes forcstatil dynamic symmetry breaking, and also with
no symmetry-breaking of any kind. The best runtime for amainse is boldfaced. Static symmetry break-
ing outperforms dynamic symmetry breaking on most instgngmbably because SBPs added in advance
contribute to learning. Results for optimization experniseare listed in Tables 2 and 3. Table 2 shows
results for MinLex instances, and Table 3 shows data for Max®laxOnes and LBS instances. The tables
provide an empirical comparison of two different configioas of our flow. Thestatic configuration uses
static SBPs on the intersection of the objective functioth @nstraint symmetries Thiynamicconfigura-
tion uses dynamic SBPs on the constraints with an upper bobtadned with static SBPs. Although we
show results for both configurations, the flow picks the camfitjon best suited to a given instance. Thus,
for all instances here, it effectively achieves the besiltedtained by either configuration.

Tables 2 and 3 show benchmark names followed by ‘S’ or ‘U’ wdidgate whether constraints are sat-
isfiable. Next, we show results for the static configurationmber of symmetries and generators, Saucy’s
symmetry detection runtime, PBS solving runtime, and wiietit not the optimal solution was found (pi-
geonhole instances are all unsatisfiable and finding thenapsiolution means satisfying the largest possible
number of clauses). The same statistics are repeated fdyttaenic configuration. The best runtime for an

Instance Size w. and w/o static SBRs Constraints-Only Symmetry Detection No SBPs:

Instance Original w. Static SBPs Symmetry Stats Static SBP | Dynamic SBP Orig.
Name Saucy PBS PBS PBS

S/U \Y, C PB | V C #Symm. | #Gen. | Time Time Time Time
chnl1012 U 240 | 24 | 20 | 796 | 2167 6.04E+30 41 0.08 0.01 43.7 472
fpgalllo S 165 | 120 | 21 | 443 | 1181 4.51E+15 26 0.04 0 88.9 470
hole10 U 110 | 11 | 10 | 309 770 1.45E+14 19 0.01 0 32.7 251
grout3-3-5 S 240 | 634 | 12 | 288 819 16 4 0.02 0.02 0.02 0.04

Table 1:Static vs. dynamic symmetry breaking: Results for 0-1 ILP deision problems without objective functions.

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only

MinLex Saucy | PBS | Best Saucy | PBS Best

Instance S/U || #Symm. | #Gen. | Time | Time | Soln. | Optimal? || #Symm. | #Gen.| Time Time | Soln. | Optimal?
fpga87 S 1 0 0 94.8 | 689 YES 4.18E+08 17 0 93.6 689 YES
fpgaQ7 S 1 0 0 691 759 YES 2.09E+09 18 0 664 759 YES
grout3-3-1 S 1 0 0 T/IO | 6735 NO 5.32E+17 49 0.1 9882 | 3323 YES
grout3-3-3 S 1 0 0 T/IO | 6775 NO 1.20E+19 50 0.13 8427 | 3729 YES
x1.1.40s S 1 0 0 476 | 652 YES 1.10E+12 40 0.01 0.28 652 YES
x1.144s S 1 0 0 8.89 | 634 YES 8.80E+12 43 0.01 33 634 YES
x1.148s S 1 0 0 55.47 | 816 YES 1.41E+14 47 0.02 1.88 816 YES
x1.156s S 1 0 0 139 850 YES 3.60E+16 55 0.01 6.86 850 YES
x1.164s S 1 0 0 9988 | 846 YES 9.22E+18 63 0.01 32.13 | 846 YES
x1.1.72s S 1 0 0 5798 | 949 YES 2.36E+21 71 0.02 21.93 | 949 YES
x2_40s S 1 0 0 2.24 | 902 YES 5.50E+11 39 0.01 1.78 902 YES
x2_44s S 1 0 0 458 | 1016 YES 8.80E+12 43 0.01 1.69 1016 YES
X2_72s S 1 0 0 217.3 | 1942 YES 2.36E+21 71 0.03 | 110.25| 1942 YES

Table 2: Static vs. dynamic symmetry breaking: Symmetry statisticsand runtimes for FPGA, global routing and
XOR chain instances with MinLex objective. No intersection gmmetries were found for the static case, so we are
effectively solving the original problem w/o SBPs. Timeouis set at 20000 seconds.

instance is boldfaced. If the solver times out, the bettkrevgor the optimal solution is also boldfaced\s
expected, MinLex does not intersect with constraint synmiegtso static symmetry-breaking finds nothing.
However, the dynamic method does find and break many symeaetmd is faster than the static configu-
ration in almost all cases. The greatest benefit is seen WitR Xhain benchmarks, which are solved with
dynamic SBPs in under 40 seconds, but the static configur#dices several thousand seconds in many
cases. For the MaxSat and MaxOnes experiments in Table ®bfbetive function does not destroy any
constraint symmetries. Both configurations work with thmeaset of symmetries. Here, static SBPs are
clearly superior, finding optimal solutions faster and mivegjuently. The LBS function, like MinLex, is
non-trivial and destroys constraint symmetries. Consetlyjehe dynamic configuration is more effective
for LBS instances.

6 Conclusion

This work is motivated by the observation that recent bt@akighs in solving SAT and pseudo-Boolean
(PB) constraint satisfaction problems (CSPs) have not leeéended to Boolean optimization, which is
useful in many applications, including formal verificatidfor example, one may seek solutions that are sta-
tistically common, and conform to a known frequency disttibn. 0-1 ILP solvers have been developed in
[2, 5], but they perform optimization by solving a series 8ff%r 0-1 ILP CSPs without objective functions.
This approach may experience difficulty in the context afcture-aware problem solving. Specifically, the
objective function may interfere with the use of symmetrieffen found in SAT and 0-1 ILP problems
from the circuit domain. We propose new techniques desi¢meil’e Boolean objective functions special
treatment and to accelerate optimization. One such methdghiamic symmetry-breakinwhich utilizes

the knowledge that constraint symmetries can be brakeimg search when unsatisfiable assignments are
found. Previous work in this field breaks symmetséstically[1, 4], and cannot make use of this property.

1in some cases PBS times out when its current assignment has the ogtineal The timeout occurs while proving optimality.

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
Opt. Inst. Saucy | PBS | Best Saucy | PBS Best
Fn. Name S/U #Symm. | #Gen.| Time | Time | Soln. | Optimal? #Symm. | #Gen.| Time | Time | Soln. | Optimal?
Max- | hole9 u 1.32E+12 17 0.26 0.31 | 414 YES 1.32E+12 17 0.26 1.3 414 YES
SAT | holel0 u 1.45E+14 19 0.53 0.68 560 YES 1.45E+14 19 0.53 8.89 560 YES
Max- | fpga87 S 4.18E+08 17 0 0.01 14 YES 4.18E+08 17 0 175 14 YES
Ones | fpgaQ7 S 2.09E+09 18 0.01 0 14 YES 2.09E+09 18 0.01 1156 14 YES
x1.144s S 1 0 0 32.11| 15 YES 8.79E+12 43 0.01 21.3 15 YES
LBS | x1.148s S 1 0 0 25.4 15 YES 1.407E+14| 47 0.01 17.8 15 YES
x1.164s S 1 0 0 T/O 20 NO 9.22E+18 63 0.02 | 11833 | 20 YES

Table 3: Static vs. dynamic symmetry breaking: Results for unsatisfible pigeonhole benchmarks with MaxSat
objective, satisfiable FPGA routing benchmarks with MaxOnesbjective and satisfiable XOR-chain instances with
the Localized Bit Selection (LBS) objective. Static symmey-breaking outperforms dynamic symmetry-breaking

on MaxSAT and MaxOnes instances, but the dynamic configuratioris superior on LBS instances, which may be
relevant to formal verification.

Another proposed method is the useoptimization-aware SBR® encode an objective functidn We call
these Minf SBPs and prove that their addition to an optimization pnobtkoes not impact optimal solu-
tions. However, Minf SBPs can be very difficult to encode, and are likely to be cditiygewith dynamic
symmetry-breaking only for certain functions.

We have implemented novel techniques for dynamic symmetgking on top of a high-performance
pseudo-Boolean solver (source code is available at httpuleecs.umich.edu/faloul/SymFile.tar.gz). Em-
pirical results indicate that dynamic symmetry-breakimgffective for objective functions that destroy con-
straint symmetries, such MinLex and our proposed objedtinetion Localized Bit Selection (LBS). For
functions that leave constraint symmetries intact and ®PE€without optimization, static SBPs are more
useful, possibly because they contribute to learning by &40 0-1 ILP solvers at a greater rate. However,
non-trivial objective functions such as MinLex and LBS maiga in formal verification applications that
are required to specify a preference for solutions withaierproperties. Dynamic SBPs are especially
effective on XOR-chain benchmarks which are relevant toudtirapplications, e.g. circuits that generate
error correcting codes. Given that both types of symmetegking have advantages in different situations,
we propose an adaptive flow that picks either a static or dym&BP configuration to achieve the most
effective Boolean optimization for a given instance. Imisrof the results presented here, the adaptive flow
is always able to achieve the best result obtained by eith&iguration.

Our work considerably extends the scope of symmetry-bnegki Boolean optimization. However, the
full impact of symmetry-breaking on learning and decisiodesing in SAT solvers is not known. While it
is clear that symmetry-breaking is a powerful tool for B@sleonstraint satisfaction and optimization, the
full measure of its effectiveness is not yet understood.

References

[1] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “8ang Difficult SAT Instances In The
Presence of SymmetrylEEE Trans. on CADvol. 22(9), 1117-1137, 2003.

[2] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “@eric ILP versus Specialized 0-1 ILP:
An Update”,in Proc. Intl. Conf. on CAD450-457, 2002.

[3] F. A. Aloul, I. L. Markov and K. A. Sakallah, “Shatter: Effient Symmetry-Breaking for Boolean
Satisfiability”,in Proc. Intl. Joint. Conf. on Al271-282, 2003.

[4] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “®ymetry-Breaking for Pseudo-Boolean
Formulas”, inProc. Asia-South Pacific Design Autom. Cp884-887, 2004.

[5] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Coistraolver”, in Proc. Design Autom.
Conf, 830-835, 2003.

[6] J.Crawford, M. Ginsberg, E. Luks and A. Roy, “Symmetmgaking Predicates for Search Problems”,
in Proc. of the Intl. Conf. on Principles of Knowledge Reprasation and Reasoning48-159, 1996.

[7] P. Darga, “SAUCY: Graph Automorphism Tool”,
http://www.eecs.umich.edu/"pdarga/pub/auto/saucy.ht ml

[8] DIMACS SAT benchmarks:ftp://Dimacs.rutgers.
EDU/pub/challenge/sat/benchmarks/cnf

[9] I. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, a& Smith, "Conditional Symmetry Breaking,”
in Proc. of Principles and Practice of Constraint Programmit@p), 256-270, 2005.

[10] E. Goldberg and Y. Novikov, “BerkMin: A Fast and RobugtTSsolver”, in Proc. Design Automation
and Test In Europel42-149, 2002.

[11] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang and S.lika'Chaff: Engineering an Efficient
SAT Solver”,Proc. Design Autom. Conf30-535, 2001.

[12] G. Nam, F. Aloul, K. Sakallah and R. Rutenbar, “A CompgaaStudy of Two Boolean Formulations
of FPGA Detailed Routing ConstraintdProc. ISPQ 222-227, 2001.

[13] K. Petrie, B. Smith, and N. Yorke-Smith, "Dynamic SymimyeBreaking in Constraint Programming
and Linear Programming Hybrids,” iRroc. of SRIRS, the2nd European Starting Al Researchers
Symposiunpp. 96-106, 2004.

[14] J. P. M. Silva and K. A. Sakallah, “GRASP: A New Search éithm for Satisfiability”,IEEE Trans.
On Computers48(5), 506-521, 1999.

[15] M. N. Velev and R. E. Bryant, “Effective Use of Boolean BRrocedures in the Formal Verification
of Superscalar and VLIW Microprocessorftoc. DAG 226-231, 2001.

[16] L. Zhang and S. Malik, XOR-chain SAT benchmarks, SAT 200Competition:
http://www.satlive.org/SAT/Competition/2002/submitt edbenchs.html

Appendix: Optimization-aware SBPs

Here, we discuss how an objective function may be encodedealicates which form a part of the con-
straints. Such an encoding would eliminate the need for miymaymmetry-breaking and allow the use of
more efficient static SBPs. The original construction of Bytry-breaking predicates [6] selects represen-
tatives of equivalence classes under symmetries and prtfese truth assignments that are not equivalent
to any lexicographically-smaller assignments. Those SBE$ormulated as follows.

MinLex — SBP= |_| (X <jexX™) (1)

TieAllSymmetries

HereX is a multi-bit truth assignment (bit-vectoRT is the image ok under an arbitrary symmetny,
and <jgx performs a lexicographic comparison between the two hiters. These predicates are referred
to as LL-SBPs or MinLex-SBPs. Adding these predicates to@N¥ formula preserves its satisfiability
because every equivalence class of truth assignments ggig@graphically smallest element.

We now generalize MinLex-SBPs to MirSBPs which select representatives of equivalence classes
by comparing values of a given linear objective functigi). Since the lexicographic ordering is a linear
function, MinLex-SBPs are just a special case () = ¥; 2'x;.

Minf-SBP= [(f(®%) < f(xY) @)

neAllSymmetries

Here< is just a comparison of numbers, usually integers sincedb#icients off are usually integers.

Theorem. Using Minf SBPs statically during Boolean optimization of f does nécfoptimal solu-
tions.

Proof. Let ®; be the set of assignments that satisfy constrainfs inet y; be the optimal solution for
f. Clearly,ys € ®¢. Also, Vacao, f(ys) < f(a). The set of variable assignments fbiis partitioned into
equivalence classes by the symmetry groupffo®s. Let ©¢ partition ®¢ into K > 1 equivalence classes
@1...¢x. Assume thays belongs to some equivalence class Clearly, Vacq f(ys) < f(a). Since Min{
SBPs pick the representative with the smallest valukiofa class, they must pick from @. Let Qs be the
set of assignments that satisfy MinSBPs, i.e. have the smallelivalues in their equivalence classes. We

9

know thatQ¢ C ®; andys € Q;. The optimization function picks the assignmentin with the smallest
f-value. Since/aco, f(yr) < f(a) andQs C P¢, Vpeq, f(yr) < f(b). O

MinLex-SBPs are very effective in practice because the luextion induces a total ordering on truth
assignments. However, functions like MinOnes or MaxOnaeaifmze or maximize the number of variables
set to 1) can potentially be satisfied by many assignmentisersame class. In general, MiSBPs are
likely to be weaker than MinLex. Additionally, there are kno simple CNF constructions for MinLex
predicates, such as the one in [3]. Generic MBBPs may be much more difficult to encode in CNF if
has non-trivial coefficients.Overall, it appears unlikétat Minf-SBPs will be competitive with dynamic
symmetry-breaking, except for very specialized objedtivetions.

10

