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Abstract With impressive progress in Boolean Satisfiability (SATvaw and
several extensions to pseudo-Boolean (PB) constraintsy ayplications that use
SAT, such as high-performance formal verification techegjare still restricted
to checkingsatisfiability of certain conditions. However, there is also frequently
a need to express preferencefor certain solutions. Extending SAT-solving to
Boolean optimization allows the use of objective functieaslescribe a desir-
able solution. Although recent work in 0-1 Integer Lineaogtamming (ILP) of-
fers extensions that can optimize a linear objective fumctihis is often achieved
by solving a series of SAT or ILP decision problems. Our watticalates some
pitfalls of this approach. An objective function may coneplie the use of any
symmetry that might be present in the given constraintsh eveen the con-
straints are unsatisfiable and the objective function &exant. \We propose sev-
eral new techniques that treat objective functions difilyefrom CNF/PB con-
straints and accelerate Boolean optimization in many jpaatases. We also de-
velop an adaptive flow that analyzes a given Boolean optiizgproblem and
picks the symmetry-breaking technique that is best sudetié problem charac-
teristics. Empirically, we show that for non-trivial obje® functions that destroy
constraint symmetries, the benefit of static symmetrydinggis lost but dynamic
symmetry-breaking accelerates problem-solving in masgsaNe also introduce
a new objective function, Localized Bit Selection (LBS)tlsan be used to spec-
ify a preference for bit values in formal verification appliions.

1 Introduction

Recent well-documented breakthroughs in backtrack sdarddoolean Satisfia-
bility (SAT) have led to the development of sophisticated@SAT solvers such
as Grasp, Chaff, and BerkMin [14,11,10]. These develops®ntngthened tradi-
tional SAT applications, such as equivalence checking,&8Rd bounded model
checking, and facilitated new ones, including FPGA roufit] and microproces-
sor verification [15]. Progress in SAT has been recentlysletad to more general
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problem encodings using pseudo-Boolean (PB) constr&ng,[which are linear
inequalities with 0-1 variables and arbitrary coefficiefitsey are particularly con-
venient for “counting” (i-choosek) constraints, leading to more compact problem
encodings and faster problem-solving. Work on PB congsdias been extended
to Boolean optimization through 0-1 Integer Linear Progréanyg (ILP). This may
be attractive in formal verification because some countaraples are much more
useful for debugging. For example, for a circuit contairérfginary counter, it may
be useful to find counter-examples or bugs at the smallesewvafl the counter
(since it presumably takes fewer cycles to reach such a) sWfeecan design an
objective function that encourages counter-examples svithller integers in the
binary counter, with weights in the objective function refleg preferences for
certain bits — the lower the weights, the lower the prefegefitius, by assigning
negative coefficients to all bits in the counter value, welgias the search toward
smaller values of the counter. Such an objective functiagthraetic-min, behaves
in much the same way as the MinLex SBPs discussed in the Append

Existing 0-1 ILP solvers PBS [2] and Galena [5] handle a givkjective func-
tion f(-) by re-solving all PB/SAT constraints with the added constré(-) <C
for varying values o€ and without optimization. I€ is progressively lowered, the
solver may retain its database of learned clauses. A cotiveedpproach involves
a form of binary search for mifi(-). We point out that objective functions should
not be handled simply by treating them as additional PB caimdt in the context
of structure-aware SAT/ILP solving. To this end we consslgnmetry — a prac-
tical and exploitable type of structure found in some apian-derived SAT/ILP
instances. Earlier work [6,1] has shown that detecting aedking symmetries
in SAT instances accelerates problem solving. This hasitlydeeen extended to
0-1 ILP in [4]. Importantly, high-performance techniques §ymmetry-breaking
in SAT and ILP arestatic— all work is done duringpre-processingThis is conve-
nient because no solver modifications are required. It alsilithtes Boolean con-
straint propagation and conflict-driven learning with @sdo symmetry-breaking
clauses. However, static symmetry-breaking is not fuliyedulle for Boolean opti-
mization and is outright incompatible with incrementaisi@bility. An objective
function or new clauses added in the future may destroyiegisymmetries in the
original CNF/PB constraints. Therefore, using those sytrigeis in general in-
correct. However, if the original constraints are unsaigé, an objective function
or future clauses make no difference, and symmetries coailldetpful in con-
cluding unsatisfiability faster. However, we cannot telliethassignments satisfy
constraints in advance. Once symmetry breaking predi¢8®Bs) are added, it is
very difficult to track down and undo all clauses learned duthém. Therefore,
symmetries of existing constraints cannot be used at afidremental satisfiabil-
ity and are intersected with the symmetries of the objedtivetion in Boolean
optimization.

We propose alynamic symmetry-breakingchnique which adds SBPs when
conflicts are identified during the search process. Thisggail unsatisfying as-
signments symmetric to the one that induced the conflicglacating optimization
in cases where the objective function destroys many canssgmmetries. Dy-
namic symmetry-breaking is also safe for incremental Saltigity. Unfortunately,
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dynamic SBPs added later during the search may not assistrigat the same

rate as static SBPs added at the outset. However, they aeeatimactive than ex-

plicitly pruning symmetric branches of the search tree Widiges not contribute to

learning at all. Related dynamic symmetry breaking tealeschave been recently
studied for constraint programming [13,9] and shown to lhecéfe.

Another contribution of our work is the generalization ofrtmonly-used static
lex-leader or MinLex SBPs, introduced in [6], to account &given objective
function. This involves encoding the objective functionaaset of predicates so
that it becomes part of the constraints, and static symnrteagking can be ap-
plied. Unfortunately, arbitrary objective functions aretras well-suited to this
approach as the MinLex function, and it is not likely to be gatitive with dy-
namic symmetry-breaking in general. Since empirical tssiar static and dy-
namic symmetry-breaking indicate that neither one is usaMy preferable to the
other, we propose a flow that picks the type of symmetry-bnggkest suited to
the problem in question. We perform an empirical comparigbaetatic vs. dy-
namic symmetry-breaking on several application-derivecision and optimiza-
tion instances, and point out that the adaptive flow we prepasuld pick the best
configuration in every case.

The remainder of this paper is organized as follows. SeQioeviews pre-
vious work in symmetry-breaking for SAT and 0-1 ILP. Sect®mtroduces dy-
namic symmetry-breaking and explains its implementatiothé PBS solver [2].
Section 4 outlines our adaptive symmetry-breaking flow.dfkpental results are
discussed in Section 5, and Section 6 concludes the papeAdjtendix discusses
SBPs tailored to a given objective function, such as MinLex.

2 Background

In this section, we survey previous work in symmetry-bragkior SAT and O-
1 ILP. Currently, most symmetry-detection approaches tatics and dynamic
symmetry-detection appears impractical. The Boolearsfatility (SAT) and 0-1
ILP problems are well-known and have been extensively disediin the literature
[6,1,4,5]. We do not define them here.

Previous work [6,1] showed that breaking symmetries in Chiffnfulas for
SAT instances can prune the search space and lead to sighificéime speedups.
Symmetries are detected using graph automorphism. Theufarisexpressed as
an undirected graph such that the symmetry group of the gsapbmorphic to the
symmetry group of the CNF formula. Symmetries induce edeiee relations on
the set of truth assignments of the CNF formula. All assigmisian an equivalence
class result in the same truth value for the formula. Theegfibis only necessary
to consider one assignment from each class. Both [6, 1] pepdding symmetry-
breaking predicates (SBPs) that choose lexicographisailgilest assignments, or
lex leadersfrom each equivalence class. These SBPs are added syatioalhg
pre-processing. An efficient tautology-free SBP constomctwhose size is linear
in the number of problem variables is proposed in [3]. Synmyndéetection and
breaking via graph automorphism is extended to 0-1 ILP mklwith objective
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functions in [4], and empirical results show that the additof SBPs to PB for-
mulas results in considerable speedups for the 0-1 ILP s&IBS [2] on FPGA
routing and ASIC global routing instances.

Figures 1 and 2 illustrate how breaking symmetries is us€&igure 1 shows
a formula with six CNF constraints, the four assignments dadisfy it, and an
unpruned search tree for the formula assuming variableassigned in the order
(a,b,c,d). Figure 2 (a) shows the two generators of the symmetry groufhfs
formula, and the lex-leader SBPs added for each generatpe=2 (b) shows
how the 2 = 16 possible assignments are partitioned into four equicalelasses
under the symmetry group. Lex-leader SBPs permit only thallsst assignment
from each class. Figure 2 (c) shows the effect of static SBPthe search tree.
Bold lines indicate pruned search paths.

Handling Objective Functions. The work in [4] accommodates optimization
problems byintersectingsymmetries of the objective function and the constraints,
and describes appropriate graph constructions. Takinigtiesection implies that
some constraint symmetries may be discarded.
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Fig. 1 CNF constraints with satisfying assignments and unpruned s&ch tree.

3 Dynamic Symmetry-Breaking

When SBPs are added statically, they are applied only to tieesiection of the
objective function and constraint symmetries. This is Beagy to ensure correct-
ness because an optimal assignment needs to have the hestorahe objective
functionandsatisfy the constraints. Optimizing an objective is caltitm many ap-
plications. Formal verification applications can use arectdje to specify a pref-
erence for solutions that conform with statistical data. &@mple, the Localized
Bit Selection (LBS) objective proposed in this work can bedi find a solution
with the desired percentages of 0s, 1s and don’t-caresd lmasmput frequencies
known in advance. The MinLex objective can be used to find thallest value
of a counter that causes a bug. However, adding the objettiyedestroy several
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Fig. 2 Effect of SBPs on search tree. Part (a) shows symmetry igerators and SBPs
for the example in Figure 1. Part (b) shows equivalence classes (Efdnduced by sym-
metries. Part (c) shows the pruning effect on the search tree Balines indicate pruned
paths.

constraint symmetries. An important observation is thast@int symmetries are
notalwaysrelated to the objective function, and may be quite differEor a sat-
isfying assignment, overlooking symmetric assignmenisdsrrect because they
may have different values of the objective function. Howeaa unsatisfying as-
signment can never be optimal, and we can safely prune itsngfrit images.
This cannot be done statically, since it is not possibleltovigether an assignment
is satisfying before the search has even begun. This iretiGaneed for flexible
schemes that cover symmetries more comprehensively.

We propose that symmetries be broken dynamically for 0-1didblems with
objective functions. Our algorithm works as follows. Syntrigs of theconstraints
are detected in advance, but no SBPs are immediately addssem solving be-
gins as usual using a modified 0-1 ILP solver. When an assigninduces a
conflict (i.e., a clause becomes fully resolved, but nosfiatl), SBPs are applied
only to conflict-induced clausgesliminating symmetric images of the unsatisfy-
ing assignment. This can have no impact on the optimal swlu§ince it affects
only unsatisfying assignments. However, SBPs added latieeirsearch may not
contribute as much to conflict-driven learning and Booleamstraint propagation.
Static SBPs contribute to learning because they are addet/ance. The success
of dynamic SBPs depends on the objective function: if itidgst many constraint
symmetries, the improved coverage offered by dynamic SBiRsntake up for
the lack of learninglf considering the objective function leaves the constraih
symmetries unchanged, static SBPs will perform better sire they break all
the same symmetries without affecting learningOur results in Section 5 indi-
cate that dynamic symmetry-breaking is effective when wa#dthe MinLex and
LBS objectives, which destroy all constraint symmetriesnlMx seeks the lex-
icographically smallest assignment, and LBS seeks anrassigt with specified
proportions of 0s and 1s.
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Figure 3 shows the effect of dynamic SBPs. Figure 3 (a) shbersdnstraints
from Figure 1 intersected with a maximizing objective fuant This destroys all
constraint symmetries, because equivalent satisfyirigrasents, such &9, 1,0,0)
and(0,1,0,1) have different values for the objective function (1 and Zees
tively). The search tree reverts to the unpruned versiongire 1. Figure 3 (b)
shows a search with dynamic SBPs in progress. When a comftioted clause
is learned, SBPs are applied to it so that any symmetric isafét are also
added to the clause database. Figure 3 (c) shows the effeghamic SBPs on
the search tree, where many unsatisfying assignmentsiarmaied. Bold lines
indicate pruned search paths.

(a) f?a,b,c,d) =f(a,b,c,dn Max(a+b+c+d)

Search w. Dynamic SBPs:
Decision #1:a=1
Decision #2: b =1
Decision #3:c=1
Imply:d=1 d=afd
Conflict #1:

Learn :(loyc)” v
Apply gens. to

(@ v

®>@@@00@@@@

Fig. 3 Utility of dynamic SBPs. Part (a) shows the new function that icludes an
objective. Part (b) shows the creation of dynamic SBPs from cdhct-induced clauses
during search. Part (c) shows the pruning of the search tree witldynamic SBPs. Bold
lines indicate pruned paths.

4 Adaptive Boolean Optimization

Dynamic symmetry-breaking is most useful when the objediinction destroys
many constraint symmetries. However, it is preferable ® static SBPs where
possible to facilitate learning since they are added in ackwaEven when the in-
tersection of the objective function and constraint symiiegis small, static SBPs
can be used to obtain arpper boundon the objective function value. The con-
straint set is first solved as an optimization problem, ustagic SBPs to break all
detected symmetries. If constraints are unsatisfiablgirgpls terminated. How-
ever, if a satisfying assignmedt is found, the value of the objective functiop,
for @ is used as an upper bound by adding a constraint specifyatdghh objec-
tive function value must b& y. The problem is then solved using dynamic SBPs
when unsatisfying assignments are detected, as explairigetition 3 above. This
approach allows us to utilize constraint symmetries to atgreextent. However,
there is a trade-off: symmetries found in the constraintsroaibe applied to im-
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plications or conflict clauses learned from the objectivecfion, since there sym-
metries were found using constraints alone. Thereforepas as an implication
from the objective function is detected, we disable alligzy from SBPs.

Another potentially useful technique in Boolean optimiaatis the use of
optimization-aware SBPs, discussed in the Appendix. Tha ltkre is to encode
the objective function as a set of predicates that beconteopane constraints.
This way, the whole problem can be solved usomgy static SBPs. However,
optimization-aware SBPs are feasible only in cases whereptimization func-
tion is not too complex to encode. They are unlikely to be cetitipe with dy-
namic symmetry-breaking in general, except for certairectdje functions such
as the MinLex function described in the Appendix. We propo8ew that chooses
either dynamic or static SBR¥epending on the the nature of the optimization
problem to be solvedy not committing to one strategy, we can employ static and
dynamic symmetry-breaking only in cases where they ardylikebe useful. The
flow is outlined as follows, and is illustrated in Figure 4.

— For an optimization problem, symmetries of the constraamid the objective
function are detected separately, and their intersectieoiinputed

— If the intersection is almost the same as the set of conssgimmetries, the
use of static SBPs is not restricted, and we follow the stltve from [3]

— If the intersection is small but the objective function cam dfficiently en-
coded using optimization-aware SBPs, the optimizatiorction is replaced
with SBPs and the problem solved with static symmetry-treak

— If the intersection is small, invalidates most of the coaistr symmetries, and
the objective function is too complex to be encoded as pateli; the con-
straints are solved with static SBPs to verify satisfiap#ihd obtain an upper
bound. The optimal solution is found using dynamic SBPs ssudised above

5 Results

We evaluate the effectiveness of dynamic symmetry breakimgeveral well-
known decision and optimization problems. Experimentgparéormed on an In-
tel Xeon 2 GHz machine with 1 GB of RAM running Linux. Time-astset at
20000 seconds. For decision problems, we use one largen@esteom each of
the pigeon holéhole) [8], FPGA routing [12](chnl), (fpga) , and global
routing [1] (grout)  families. Optimization benchmarks include selected Max-
Ones, MaxSAT, and MinLex instances from the FPGA [12], globating [1] and
XOR chain families [16](x) which are relevant to circuits for error-correcting
codes. We also introduce a new objective function, LocdlB# Selection (LBS)
that allows values to be specified for subsets of bits. We samzmeach objective
function below.

1.MinLex: Seeks the lexicographically smallest satisfyisgignment. This is ide-
ally accomplished minimizing the functio®2, + 21, + . .. + 2" 1x,. This cannot
be realized in practice because coefficient sizes are tge.ls¥e minimize the fol-
lowing approximationx; + 2xXo + ... + nx,. MinLex breaks all constraint SBPs.
We expect dynamic SBPs to be most useful in this situation.
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Fig. 4 Adaptive flow for Boolean optimization.

2. MaxSAT: Seeks to maximize the number of satisfied clausesrisatisfiable
benchmarks.

3. MaxOnes: Seeks a satisfying assignment that maximizesuthber of vari-
ables set to 1.

4.Localized Bit Selection (LBS): This objective allows casitover individual bits
by assigning coefficients in the objective function for ebithHere, we test a ver-
sion that divides the variables into three groups by randeletion. One group is
maximized, another minimized and the third treated as dmanés.

We modified the 0-1 ILP solver PBS [2] to dynamically break syetries. The
SBPs from [3] are applied to generators of the symmetry gfoupd by the graph
automorphism tool Saucy [7]. Whenever a conflict-inducedszais learned, we
apply the generators to the clause and create dynamic SBParthadded to the
clause database. Results for the decision problem expetsnage listed in Ta-
ble 1. The table shows instance names, satisfiability (SAUNSAT), sizes w.
and w/o SBPs, symmetry detection runtimes, number of syneseand gener-
ators, solver runtimes for static and dynamic symmetry kingg and also with
no symmetry-breaking of any kind. The best runtime for ateinse is boldfaced.
Static symmetry breaking outperforms dynamic symmetryakiregy on most in-
stances, probably because SBPs added in advance contdbdatgning. Results
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Instance Size w. and w/o static SBPR Constraints-Only Symmetry Detection No SBPs:

Instance Original w. Static SBPs Symmetry Stats Static SBP [ Dynamic SBP Orig.
Name Saucy PBS PBS PBS

S/U \% C PB \% C #Symm. | #Gen. | Time Time Time Time
chnl1Q12 V] 240 | 24 20 | 796 | 2167 6.04E+30 41 0.08 0.01 43.7 472
fpgalllO S 165 | 120 | 21 | 443 1181 4.51E+15 26 0.04 0 88.9 470
hole10 u 110 | 11 10 | 309 770 1.45E+14 19 0.01 0 32.7 251
grout3-3-5 S 240 | 634 | 12 | 288 819 16 4 0.02 0.02 0.02 0.04

Table 1 Static vs. dynamic symmetry breaking: Results for 0-1 ILP @cision problems
without objective functions.

for optimization experiments are listed in Tables 2 and &ld& shows results
for MinLex instances, and Table 3 shows data for MaxSAT, Mag®and LBS
instances. The tables provide an empirical comparison ofdifferent configura-

tions of our flow. Thestatic configuration uses static SBPs on the intersection of

the objective function and constraint symmetries @iipamicconfiguration uses
dynamic SBPs on the constraints with an upper bound obtaiitbdstatic SBPs.
Although we show results for both configurations, the flovkpithe configuration
best suited to a given instance. Thus, for all instances ktextfectively achieves
the best result attained by either configuration.

Tables 2 and 3 show benchmark names followed by ‘S’ or ‘U’ tdidate
whether constraints are satisfiable. Next, we show resoittthe static configu-
ration: number of symmetries and generators, Saucy’s symrdetection run-
time, PBS solving runtime, and whether or not the optimalsoh was found
(pigeonhole instances are all unsatisfiable and finding phienal solution means
satisfying the largest possible number of clauses). Thesaatistics are repeated
for the dynamic configuration. The best runtime for an inséais boldfaced. If the
solver times out, the better value for the optimal solut®also boldfacetd As ex-
pected, MinLex does not intersect with constraint symrestiso static symmetry-
breaking finds nothing. However, the dynamic method doesditibreak many
symmetries, and is faster than the static configuration rimoat all cases. The
greatest benefit is seen with XOR chain benchmarks, whicls@wed with dy-
namic SBPs in under 40 seconds, but the static configuradi@stseveral thou-
sand seconds in many cases. For the MaxSat and MaxOnesregptgiin Table
3, the objective function does not destroy any constraintregtries. Both con-
figurations work with the same set of symmetries. Here,s@BPs are clearly
superior, finding optimal solutions faster and more fredqyemhe LBS function,
like MinLex, is non-trivial and destroys constraint symniet. Consequently, the
dynamic configuration is more effective for LBS instances.

6 Conclusion

This work is motivated by the observation that recent bieakighs in solving
SAT and pseudo-Boolean (PB) constraint satisfaction prabl(CSPs) have not

1 In some cases PBS times out when its current assignment has the ogtloel The
timeout occurs while proving optimality.
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Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only

MinLex Saucy [ PBS Best Saucy PBS Best
Instance S/U #Symm. | #Gen. | Time Time | Soln. | Optimal? #Symm. | #Gen. | Time Time Soln. | Optimal?
fpga87 S 1 0 0 94.8 689 YES 4.18E+08 17 0 93.6 689 YES
fpgaQ7 S 1 0 0 691 759 YES 2.09E+09 18 0 664 759 YES
grout3-3-1 S 1 0 0 T/O 6735 NO 5.32E+17 49 0.1 9882 3323 YES
grout3-3-3 S 1 0 0 T/O 6775 NO 1.20E+19 50 0.13 8427 3729 YES
x1.140s S 1 0 0 4.76 652 YES 1.10E+12 40 0.01 0.28 652 YES
x1.144s S 1 0 0 8.89 634 YES 8.80E+12 43 0.01 3.3 634 YES
x1.1.48s S 1 0 0 55.47 816 YES 1.41E+14 47 0.02 1.88 816 YES
x1.156s S 1 0 0 139 850 YES 3.60E+16 55 0.01 6.86 850 YES
x1.164s S 1 0 0 9988 846 YES 9.22E+18 63 0.01 32.13 846 YES
x1.172s S 1 0 0 5798 949 YES 2.36E+21 71 0.02 21.93 949 YES
x2_40s S 1 0 0 2.24 902 YES 5.50E+11 39 0.01 1.78 902 YES
x2_44s S 1 0 0 4.58 1016 YES 8.80E+12 43 0.01 1.69 1016 YES
X2_72s S 1 0 0 217.3 | 1942 YES 2.36E+21 71 0.03 110.25 | 1942 YES

Table 2 Static vs. dynamic symmetry breaking: Symmetry statisticend runtimes for

FPGA, global routing and XOR chain instances with MinLex objective No intersec-

tion symmetries were found for the static case, so we are effeetly solving the original

problem w/o SBPs. Timeout is set at 20000 seconds.

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
Opt. Inst. Saucy | PBS Best Saucy PBS Best
Fn. Name S/U #Symm. | #Gen. | Time Time | Soln. | Optimal? #Symm. #Gen. | Time Time Soln. | Optimal?
Max- hole9 U 1.32E+12 17 0.26 0.31 414 YES 1.32E+12 17 0.26 1.3 414 YES
SAT hole10 U 1.45E+14 19 0.53 0.68 560 YES 1.45E+14 19 0.53 8.89 560 YES
Max- | fpga87 S 4.18E+08 17 0 0.01 14 YES 4.18E+08 17 0 175 14 YES
Ones | fpgaQ7 S 2.09E+09 18 0.01 0 14 YES 2.09E+09 18 0.01 1156 14 YES
x1.144s S 1 0 0 32.11 15 YES 8.79E+12 43 0.01 21.3 15 YES
LBS x1.148s S 1 0 0 254 15 YES 1.407E+14 47 0.01 17.8 15 YES
x1.164s S 1 0 0 T/IO 20 NO 9.22E+18 63 0.02 11833 20 YES

Table 3 Static vs. dynamic symmetry breaking: Results for unsatiséible pigeonhole
benchmarks with MaxSat objective, satisfiable FPGA routing benobmarks with Max-

Ones objective and satisfiable XOR-chain instances with the Locakzl Bit Selection
(LBS) objective. Static symmetry-breaking outperforms dynanic symmetry-breaking
on MaxSAT and MaxOnes instances, but the dynamic configuration isuperior on
LBS instances, which may be relevant to formal verification.

been extended to Boolean optimization, which is useful imyregpplications, in-
cluding formal verification. For example, one may seek sohg that are statis-
tically common, and conform to a known frequency distribntiO-1 ILP solvers
have been developed in [2,5], but they perform optimizabigrsolving a series
of SAT or 0-1 ILP CSPs without objective functions. This apgrch may expe-
rience difficulty in the context of structure-aware problepiving. Specifically,
the objective function may interfere with the use of symmastroften found in
SAT and 0-1 ILP problems from the circuit domain. We propos® techniques
designed to give Boolean objective functions special tneat and to accelerate
optimization. One such methoddgnamic symmetry-breaking/hich utilizes the
knowledge that constraint symmetries can be brakaeing search when unsatis-
fiable assignments are found. Previous work in this field kssgmmetriestati-
cally [1,4], and cannot make use of this property. Another progposethod is the
use ofoptimization-aware SBP® encode an objective functioh We call these
Min-f SBPs and prove that their addition to an optimization pnobtbes not
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impact optimal solutions. However, Min-SBPs can be very difficult to encode,
and are likely to be competitive with dynamic symmetry-liiag only for certain
functions.

We have implemented novel techniques for dynamic symmeggking on
top of a high-performance pseudo-Boolean solver (sourcke ¢® available at
http://www.eecs.umich.edu/ faloul/SymFile.tar.gzinirical results indicate that
dynamic symmetry-breaking is effective for objective ftions that destroy con-
straint symmetries, such MinLex and our proposed objedtinetion Localized
Bit Selection (LBS). For functions that leave constrainhsyetries intact and for
CSPs without optimization, static SBPs are more usefulsipbsbecause they
contribute to learning by SAT and 0-1 ILP solvers at a greadte. However,
non-trivial objective functions such as MinLex and LBS maig@ in formal ver-
ification applications that are required to specify a prefiee for solutions with
certain properties. Dynamic SBPs are especially effediveXOR-chain bench-
marks which are relevant to circuit applications, e.g.uixthat generate error
correcting codes. Given that both types of symmetry-brapkiave advantages in
different situations, we propose an adaptive flow that p&ikiser a static or dy-
namic SBP configuration to achieve the most effective Bootgztimization for a
given instance. In terms of the results presented here dhgtiae flow is always
able to achieve the best result obtained by either configurat

Our work considerably extends the scope of symmetry-bnegki Boolean
optimization. However, the full impact of symmetry-breadsion learning and
decision ordering in SAT solvers is not known. While it is c¢léaat symmetry-
breaking is a powerful tool for Boolean constraint satiséatand optimization,
the full measure of its effectiveness is not yet understood.
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Appendix: Optimization-aware SBPs

Here, we discuss how an objective function may be encodedealicptes which
form a part of the constraints. Such an encoding would eliteirthe need for
dynamic symmetry-breaking and allow the use of more efftcitatic SBPs. The
original construction of symmetry-breaking predicatelsslects representatives
of equivalence classes under symmetries and prefers thabkeassignments that
are not equivalent to any lexicographically-smaller assignts. Those SBPs are
formulated as follows.

MinLex — SBP= M (X <jex X 1)

e AllSymmetries

Herex is a multi-bit truth assignment (bit-vectoRT is the image ok under
an arbitrary symmetryr, and <jex performs a lexicographic comparison between
the two bit-vectors. These predicates are referred to aSBPs or MinLex-SBPs.
Adding these predicates to any CNF formula preserves itsfigdility because
every equivalence class of truth assignments has a lexdpbgrally smallest ele-
ment.

We now generalize MinLex-SBPs to MirSBPs which select representatives
of equivalence classes by comparing values of a given liobgactive function
f(-). Since the lexicographic ordering is a linear function, Mir-SBPs are just
a special case fof (%) = 3; 2'x.

Minf-SBP= []  (f(%) < f(XY) @)

e AllSymmetries

Here< is just a comparison of numbers, usually integers sincedh#icients
of f are usually integers.
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Theorem. Using Min{ SBPs statically during Boolean optimization of f does
not affect optimal solutions.

Proof. Let @+ be the set of assignments that satisfy constrainfs lrety; be
the optimal solution forf. Clearly,ys € ®¢. Also, Vaco, f(yt) < f(a). The set of
variable assignments fdris partitioned into equivalence classes by the symmetry
group for f, ©;. Let ©¢ partition ®@¢ into K > 1 equivalence classes ... (k.
Assume thays belongs to some equivalence clgssClearly,Vacq f(yr) < f(a).
Since Min-f SBPs pick the representative with the smallest valué iof a class,
they must pickys from @. Let Q¢ be the set of assignments that satisfy Min-
SBPs, i.e. have the smallebtvalues in their equivalence classes. We know that
Qi C @ andy; € Q¢. The optimization function picks the assignmen€ipwith
the smallest-value. Since/aco, f(yf) < f(a) andQs C Py, Vpeq, f(yr) < f(b).

O

MinLex-SBPs are very effective in practice because the bextion induces a
total ordering on truth assignments. However, functickeslinOnes or MaxOnes
(minimize or maximize the number of variables set to 1) caempkially be satisfied
by many assignments in the same class. In generalf18iBPs are likely to be
weaker than MinLex. Additionally, there are known simple EEBonstructions
for MinLex predicates, such as the one in [3]. Generic MBBPs may be much
more difficult to encode in CNF if has non-trivial coefficients.Overall, it appears
unlikely that Minf-SBPs will be competitive with dynamic symmetry-breaking,
except for very specialized objective functions.



