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Abstract With impressive progress in Boolean Satisfiability (SAT) solving and
several extensions to pseudo-Boolean (PB) constraints, many applications that use
SAT, such as high-performance formal verification techniques are still restricted
to checkingsatisfiabilityof certain conditions. However, there is also frequently
a need to express apreferencefor certain solutions. Extending SAT-solving to
Boolean optimization allows the use of objective functionsto describe a desir-
able solution. Although recent work in 0-1 Integer Linear Programming (ILP) of-
fers extensions that can optimize a linear objective function, this is often achieved
by solving a series of SAT or ILP decision problems. Our work articulates some
pitfalls of this approach. An objective function may complicate the use of any
symmetry that might be present in the given constraints, even when the con-
straints are unsatisfiable and the objective function is irrelevant. We propose sev-
eral new techniques that treat objective functions differently from CNF/PB con-
straints and accelerate Boolean optimization in many practical cases. We also de-
velop an adaptive flow that analyzes a given Boolean optimization problem and
picks the symmetry-breaking technique that is best suited to the problem charac-
teristics. Empirically, we show that for non-trivial objective functions that destroy
constraint symmetries, the benefit of static symmetry-breaking is lost but dynamic
symmetry-breaking accelerates problem-solving in many cases. We also introduce
a new objective function, Localized Bit Selection (LBS), that can be used to spec-
ify a preference for bit values in formal verification applications.

1 Introduction

Recent well-documented breakthroughs in backtrack searchfor Boolean Satisfia-
bility (SAT) have led to the development of sophisticated exact SAT solvers such
as Grasp, Chaff, and BerkMin [14,11,10]. These developments strengthened tradi-
tional SAT applications, such as equivalence checking, ATPG and bounded model
checking, and facilitated new ones, including FPGA routing[12] and microproces-
sor verification [15]. Progress in SAT has been recently translated to more general
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problem encodings using pseudo-Boolean (PB) constraints [2,5], which are linear
inequalities with 0-1 variables and arbitrary coefficients. They are particularly con-
venient for “counting” (n-choose-k) constraints, leading to more compact problem
encodings and faster problem-solving. Work on PB constraints has been extended
to Boolean optimization through 0-1 Integer Linear Programming (ILP). This may
be attractive in formal verification because some counter-examples are much more
useful for debugging. For example, for a circuit containinga binary counter, it may
be useful to find counter-examples or bugs at the smallest value of the counter
(since it presumably takes fewer cycles to reach such a state). We can design an
objective function that encourages counter-examples withsmaller integers in the
binary counter, with weights in the objective function reflecting preferences for
certain bits – the lower the weights, the lower the preference. Thus, by assigning
negative coefficients to all bits in the counter value, we canbias the search toward
smaller values of the counter. Such an objective function, arithmetic-min, behaves
in much the same way as the MinLex SBPs discussed in the Appendix.

Existing 0-1 ILP solvers PBS [2] and Galena [5] handle a givenobjective func-
tion f (·) by re-solving all PB/SAT constraints with the added constraint f (·) ≤C
for varying values ofC and without optimization. IfC is progressively lowered, the
solver may retain its database of learned clauses. A competitive approach involves
a form of binary search for minf (·). We point out that objective functions should
not be handled simply by treating them as additional PB constraints in the context
of structure-aware SAT/ILP solving. To this end we considersymmetry – a prac-
tical and exploitable type of structure found in some application-derived SAT/ILP
instances. Earlier work [6,1] has shown that detecting and breaking symmetries
in SAT instances accelerates problem solving. This has recently been extended to
0-1 ILP in [4]. Importantly, high-performance techniques for symmetry-breaking
in SAT and ILP arestatic— all work is done duringpre-processing. This is conve-
nient because no solver modifications are required. It also facilitates Boolean con-
straint propagation and conflict-driven learning with respect to symmetry-breaking
clauses. However, static symmetry-breaking is not fully suitable for Boolean opti-
mization and is outright incompatible with incremental satisfiability. An objective
function or new clauses added in the future may destroy existing symmetries in the
original CNF/PB constraints. Therefore, using those symmetries is in general in-
correct. However, if the original constraints are unsatisfiable, an objective function
or future clauses make no difference, and symmetries could be helpful in con-
cluding unsatisfiability faster. However, we cannot tell which assignments satisfy
constraints in advance. Once symmetry breaking predicates(SBPs) are added, it is
very difficult to track down and undo all clauses learned due to them. Therefore,
symmetries of existing constraints cannot be used at all in incremental satisfiabil-
ity and are intersected with the symmetries of the objectivefunction in Boolean
optimization.

We propose adynamic symmetry-breakingtechnique which adds SBPs when
conflicts are identified during the search process. This prunes all unsatisfying as-
signments symmetric to the one that induced the conflict, accelerating optimization
in cases where the objective function destroys many constraint symmetries. Dy-
namic symmetry-breaking is also safe for incremental satisfiability. Unfortunately,
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dynamic SBPs added later during the search may not assist learning at the same
rate as static SBPs added at the outset. However, they are more attractive than ex-
plicitly pruning symmetric branches of the search tree which does not contribute to
learning at all. Related dynamic symmetry breaking techniques have been recently
studied for constraint programming [13,9] and shown to be effective.

Another contribution of our work is the generalization of commonly-used static
lex-leader or MinLex SBPs, introduced in [6], to account fora given objective
function. This involves encoding the objective function asa set of predicates so
that it becomes part of the constraints, and static symmetry-breaking can be ap-
plied. Unfortunately, arbitrary objective functions are not as well-suited to this
approach as the MinLex function, and it is not likely to be competitive with dy-
namic symmetry-breaking in general. Since empirical results for static and dy-
namic symmetry-breaking indicate that neither one is universally preferable to the
other, we propose a flow that picks the type of symmetry-breaking best suited to
the problem in question. We perform an empirical comparisonof static vs. dy-
namic symmetry-breaking on several application-derived decision and optimiza-
tion instances, and point out that the adaptive flow we propose would pick the best
configuration in every case.

The remainder of this paper is organized as follows. Section2 reviews pre-
vious work in symmetry-breaking for SAT and 0-1 ILP. Section3 introduces dy-
namic symmetry-breaking and explains its implementation in the PBS solver [2].
Section 4 outlines our adaptive symmetry-breaking flow. Experimental results are
discussed in Section 5, and Section 6 concludes the paper. The Appendix discusses
SBPs tailored to a given objective function, such as MinLex.

2 Background

In this section, we survey previous work in symmetry-breaking for SAT and 0-
1 ILP. Currently, most symmetry-detection approaches are static, and dynamic
symmetry-detection appears impractical. The Boolean Satisfiability (SAT) and 0-1
ILP problems are well-known and have been extensively discussed in the literature
[6,1,4,5]. We do not define them here.

Previous work [6,1] showed that breaking symmetries in CNF formulas for
SAT instances can prune the search space and lead to significant runtime speedups.
Symmetries are detected using graph automorphism. The formula is expressed as
an undirected graph such that the symmetry group of the graphis isomorphic to the
symmetry group of the CNF formula. Symmetries induce equivalence relations on
the set of truth assignments of the CNF formula. All assignments in an equivalence
class result in the same truth value for the formula. Therefore, it is only necessary
to consider one assignment from each class. Both [6,1] propose adding symmetry-
breaking predicates (SBPs) that choose lexicographicallysmallest assignments, or
lex leadersfrom each equivalence class. These SBPs are added statically during
pre-processing. An efficient tautology-free SBP construction, whose size is linear
in the number of problem variables is proposed in [3]. Symmetry detection and
breaking via graph automorphism is extended to 0-1 ILP problems with objective
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functions in [4], and empirical results show that the addition of SBPs to PB for-
mulas results in considerable speedups for the 0-1 ILP solver PBS [2] on FPGA
routing and ASIC global routing instances.

Figures 1 and 2 illustrate how breaking symmetries is useful. Figure 1 shows
a formula with six CNF constraints, the four assignments that satisfy it, and an
unpruned search tree for the formula assuming variables areassigned in the order
(a,b,c,d). Figure 2 (a) shows the two generators of the symmetry group for this
formula, and the lex-leader SBPs added for each generator. Figure 2 (b) shows
how the 24 = 16 possible assignments are partitioned into four equivalence classes
under the symmetry group. Lex-leader SBPs permit only the smallest assignment
from each class. Figure 2 (c) shows the effect of static SBPs on the search tree.
Bold lines indicate pruned search paths.

Handling Objective Functions. The work in [4] accommodates optimization
problems byintersectingsymmetries of the objective function and the constraints,
and describes appropriate graph constructions. Taking theintersection implies that
some constraint symmetries may be discarded.
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Fig. 1 CNF constraints with satisfying assignments and unpruned search tree.

3 Dynamic Symmetry-Breaking

When SBPs are added statically, they are applied only to the intersection of the
objective function and constraint symmetries. This is necessary to ensure correct-
ness because an optimal assignment needs to have the best value for the objective
functionandsatisfy the constraints. Optimizing an objective is critical to many ap-
plications. Formal verification applications can use an objective to specify a pref-
erence for solutions that conform with statistical data. For example, the Localized
Bit Selection (LBS) objective proposed in this work can be used to find a solution
with the desired percentages of 0s, 1s and don’t-cares, based on input frequencies
known in advance. The MinLex objective can be used to find the smallest value
of a counter that causes a bug. However, adding the objectivemay destroy several
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Fig. 2 Effect of SBPs on search tree. Part (a) shows symmetry generators and SBPs
for the example in Figure 1. Part (b) shows equivalence classes (ECs) induced by sym-
metries. Part (c) shows the pruning effect on the search tree Bold lines indicate pruned
paths.

constraint symmetries. An important observation is that constraint symmetries are
not alwaysrelated to the objective function, and may be quite different. For a sat-
isfying assignment, overlooking symmetric assignments isincorrect because they
may have different values of the objective function. However, an unsatisfying as-
signment can never be optimal, and we can safely prune its symmetric images.
This cannot be done statically, since it is not possible to tell whether an assignment
is satisfying before the search has even begun. This indicates a need for flexible
schemes that cover symmetries more comprehensively.

We propose that symmetries be broken dynamically for 0-1 ILPproblems with
objective functions. Our algorithm works as follows. Symmetries of theconstraints
are detected in advance, but no SBPs are immediately added. Problem solving be-
gins as usual using a modified 0-1 ILP solver. When an assignment induces a
conflict (i.e., a clause becomes fully resolved, but not satisfied), SBPs are applied
only to conflict-induced clauses, eliminating symmetric images of the unsatisfy-
ing assignment. This can have no impact on the optimal solution, since it affects
only unsatisfying assignments. However, SBPs added late inthe search may not
contribute as much to conflict-driven learning and Boolean constraint propagation.
Static SBPs contribute to learning because they are added inadvance. The success
of dynamic SBPs depends on the objective function: if it destroys many constraint
symmetries, the improved coverage offered by dynamic SBPs can make up for
the lack of learning.If considering the objective function leaves the constraint
symmetries unchanged, static SBPs will perform better since they break all
the same symmetries without affecting learning.Our results in Section 5 indi-
cate that dynamic symmetry-breaking is effective when usedwith the MinLex and
LBS objectives, which destroy all constraint symmetries. MinLex seeks the lex-
icographically smallest assignment, and LBS seeks an assignment with specified
proportions of 0s and 1s.
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Figure 3 shows the effect of dynamic SBPs. Figure 3 (a) shows the constraints
from Figure 1 intersected with a maximizing objective function. This destroys all
constraint symmetries, because equivalent satisfying assignments, such as(0,1,0,0)
and (0,1,0,1) have different values for the objective function (1 and 2 respec-
tively). The search tree reverts to the unpruned version of Figure 1. Figure 3 (b)
shows a search with dynamic SBPs in progress. When a conflict-induced clause
is learned, SBPs are applied to it so that any symmetric images of it are also
added to the clause database. Figure 3 (c) shows the effect ofdynamic SBPs on
the search tree, where many unsatisfying assignments are eliminated. Bold lines
indicate pruned search paths.
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Fig. 3 Utility of dynamic SBPs. Part (a) shows the new function that includes an
objective. Part (b) shows the creation of dynamic SBPs from conflict-induced clauses
during search. Part (c) shows the pruning of the search tree withdynamic SBPs. Bold
lines indicate pruned paths.

4 Adaptive Boolean Optimization

Dynamic symmetry-breaking is most useful when the objective function destroys
many constraint symmetries. However, it is preferable to use static SBPs where
possible to facilitate learning since they are added in advance. Even when the in-
tersection of the objective function and constraint symmetries is small, static SBPs
can be used to obtain anupper boundon the objective function value. The con-
straint set is first solved as an optimization problem, usingstatic SBPs to break all
detected symmetries. If constraints are unsatisfiable, solving is terminated. How-
ever, if a satisfying assignmentΦ is found, the value of the objective function,γ
for Φ is used as an upper bound by adding a constraint specifying that the objec-
tive function value must be≤ γ. The problem is then solved using dynamic SBPs
when unsatisfying assignments are detected, as explained in Section 3 above. This
approach allows us to utilize constraint symmetries to a greater extent. However,
there is a trade-off: symmetries found in the constraints cannot be applied to im-
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plications or conflict clauses learned from the objective function, since there sym-
metries were found using constraints alone. Therefore, as soon as an implication
from the objective function is detected, we disable all learning from SBPs.

Another potentially useful technique in Boolean optimization is the use of
optimization-aware SBPs, discussed in the Appendix. The idea here is to encode
the objective function as a set of predicates that become part of the constraints.
This way, the whole problem can be solved usingonly static SBPs. However,
optimization-aware SBPs are feasible only in cases where the optimization func-
tion is not too complex to encode. They are unlikely to be competitive with dy-
namic symmetry-breaking in general, except for certain objective functions such
as the MinLex function described in the Appendix. We proposea flow that chooses
either dynamic or static SBPsdepending on the the nature of the optimization
problem to be solved. By not committing to one strategy, we can employ static and
dynamic symmetry-breaking only in cases where they are likely to be useful. The
flow is outlined as follows, and is illustrated in Figure 4.

– For an optimization problem, symmetries of the constraintsand the objective
function are detected separately, and their intersection is computed

– If the intersection is almost the same as the set of constraint symmetries, the
use of static SBPs is not restricted, and we follow the staticflow from [3]

– If the intersection is small but the objective function can be efficiently en-
coded using optimization-aware SBPs, the optimization function is replaced
with SBPs and the problem solved with static symmetry-breaking

– If the intersection is small, invalidates most of the constraint symmetries, and
the objective function is too complex to be encoded as predicates, the con-
straints are solved with static SBPs to verify satisfiability and obtain an upper
bound. The optimal solution is found using dynamic SBPs as discussed above

5 Results

We evaluate the effectiveness of dynamic symmetry breakingon several well-
known decision and optimization problems. Experiments areperformed on an In-
tel Xeon 2 GHz machine with 1 GB of RAM running Linux. Time-outis set at
20000 seconds. For decision problems, we use one large instance from each of
the pigeon hole(hole) [8], FPGA routing [12](chnl), (fpga) , and global
routing [1] (grout) families. Optimization benchmarks include selected Max-
Ones, MaxSAT, and MinLex instances from the FPGA [12], global routing [1] and
XOR chain families [16],(x) which are relevant to circuits for error-correcting
codes. We also introduce a new objective function, Localized Bit Selection (LBS)
that allows values to be specified for subsets of bits. We summarize each objective
function below.
1.MinLex: Seeks the lexicographically smallest satisfying assignment. This is ide-
ally accomplished minimizing the function 20x1+21x2+ . . .+2n−1xn. This cannot
be realized in practice because coefficient sizes are too large. We minimize the fol-
lowing approximation:x1 + 2x2 + . . . + nxn. MinLex breaks all constraint SBPs.
We expect dynamic SBPs to be most useful in this situation.
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Fig. 4 Adaptive flow for Boolean optimization.

2. MaxSAT: Seeks to maximize the number of satisfied clauses forunsatisfiable
benchmarks.
3. MaxOnes: Seeks a satisfying assignment that maximizes the number of vari-
ables set to 1.
4.Localized Bit Selection (LBS): This objective allows control over individual bits
by assigning coefficients in the objective function for eachbit. Here, we test a ver-
sion that divides the variables into three groups by random selection. One group is
maximized, another minimized and the third treated as don’tcares.
We modified the 0-1 ILP solver PBS [2] to dynamically break symmetries. The
SBPs from [3] are applied to generators of the symmetry groupfound by the graph
automorphism tool Saucy [7]. Whenever a conflict-induced clause is learned, we
apply the generators to the clause and create dynamic SBPs that are added to the
clause database. Results for the decision problem experiments are listed in Ta-
ble 1. The table shows instance names, satisfiability (SAT orUNSAT), sizes w.
and w/o SBPs, symmetry detection runtimes, number of symmetries and gener-
ators, solver runtimes for static and dynamic symmetry breaking, and also with
no symmetry-breaking of any kind. The best runtime for an instance is boldfaced.
Static symmetry breaking outperforms dynamic symmetry breaking on most in-
stances, probably because SBPs added in advance contributeto learning. Results
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Instance Size w. and w/o static SBPs Constraints-Only Symmetry Detection No SBPs:
Instance Original w. Static SBPs Symmetry Stats Static SBP Dynamic SBP Orig.
Name Saucy PBS PBS PBS

S/U V C PB V C #Symm. # Gen. Time Time Time Time
chnl1012 U 240 24 20 796 2167 6.04E+30 41 0.08 0.01 43.7 472
fpga1110 S 165 120 21 443 1181 4.51E+15 26 0.04 0 88.9 470
hole10 U 110 11 10 309 770 1.45E+14 19 0.01 0 32.7 251
grout3-3-5 S 240 634 12 288 819 16 4 0.02 0.02 0.02 0.04

Table 1 Static vs. dynamic symmetry breaking: Results for 0-1 ILP decision problems
without objective functions.

for optimization experiments are listed in Tables 2 and 3. Table 2 shows results
for MinLex instances, and Table 3 shows data for MaxSAT, MaxOnes and LBS
instances. The tables provide an empirical comparison of two different configura-
tions of our flow. Thestaticconfiguration uses static SBPs on the intersection of
the objective function and constraint symmetries Thedynamicconfiguration uses
dynamic SBPs on the constraints with an upper bound obtainedwith static SBPs.
Although we show results for both configurations, the flow picks the configuration
best suited to a given instance. Thus, for all instances here, it effectively achieves
the best result attained by either configuration.

Tables 2 and 3 show benchmark names followed by ‘S’ or ‘U’ to indicate
whether constraints are satisfiable. Next, we show results for the static configu-
ration: number of symmetries and generators, Saucy’s symmetry detection run-
time, PBS solving runtime, and whether or not the optimal solution was found
(pigeonhole instances are all unsatisfiable and finding the optimal solution means
satisfying the largest possible number of clauses). The same statistics are repeated
for the dynamic configuration. The best runtime for an instance is boldfaced. If the
solver times out, the better value for the optimal solution is also boldfaced1. As ex-
pected, MinLex does not intersect with constraint symmetries, so static symmetry-
breaking finds nothing. However, the dynamic method does findand break many
symmetries, and is faster than the static configuration in almost all cases. The
greatest benefit is seen with XOR chain benchmarks, which aresolved with dy-
namic SBPs in under 40 seconds, but the static configuration takes several thou-
sand seconds in many cases. For the MaxSat and MaxOnes experiments in Table
3, the objective function does not destroy any constraint symmetries. Both con-
figurations work with the same set of symmetries. Here, static SBPs are clearly
superior, finding optimal solutions faster and more frequently. The LBS function,
like MinLex, is non-trivial and destroys constraint symmetries. Consequently, the
dynamic configuration is more effective for LBS instances.

6 Conclusion

This work is motivated by the observation that recent breakthroughs in solving
SAT and pseudo-Boolean (PB) constraint satisfaction problems (CSPs) have not

1 In some cases PBS times out when its current assignment has the optimalvalue. The
timeout occurs while proving optimality.
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Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
MinLex Saucy PBS Best Saucy PBS Best
Instance S/U #Symm. # Gen. Time Time Soln. Optimal? #Symm. # Gen. Time Time Soln. Optimal?
fpga87 S 1 0 0 94.8 689 YES 4.18E+08 17 0 93.6 689 YES
fpga97 S 1 0 0 691 759 YES 2.09E+09 18 0 664 759 YES
grout3-3-1 S 1 0 0 T/O 6735 NO 5.32E+17 49 0.1 9882 3323 YES
grout3-3-3 S 1 0 0 T/O 6775 NO 1.20E+19 50 0.13 8427 3729 YES
x1.1 40s S 1 0 0 4.76 652 YES 1.10E+12 40 0.01 0.28 652 YES
x1.1 44s S 1 0 0 8.89 634 YES 8.80E+12 43 0.01 3.3 634 YES
x1.1 48s S 1 0 0 55.47 816 YES 1.41E+14 47 0.02 1.88 816 YES
x1.1 56s S 1 0 0 139 850 YES 3.60E+16 55 0.01 6.86 850 YES
x1.1 64s S 1 0 0 9988 846 YES 9.22E+18 63 0.01 32.13 846 YES
x1.1 72s S 1 0 0 5798 949 YES 2.36E+21 71 0.02 21.93 949 YES
x2 40s S 1 0 0 2.24 902 YES 5.50E+11 39 0.01 1.78 902 YES
x2 44s S 1 0 0 4.58 1016 YES 8.80E+12 43 0.01 1.69 1016 YES
x2 72s S 1 0 0 217.3 1942 YES 2.36E+21 71 0.03 110.25 1942 YES

Table 2 Static vs. dynamic symmetry breaking: Symmetry statisticsand runtimes for
FPGA, global routing and XOR chain instances with MinLex objective. No intersec-
tion symmetries were found for the static case, so we are effectively solving the original
problem w/o SBPs. Timeout is set at 20000 seconds.

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
Opt. Inst. Saucy PBS Best Saucy PBS Best
Fn. Name S/U #Symm. # Gen. Time Time Soln. Optimal? #Symm. # Gen. Time Time Soln. Optimal?
Max- hole9 U 1.32E+12 17 0.26 0.31 414 YES 1.32E+12 17 0.26 1.3 414 YES
SAT hole10 U 1.45E+14 19 0.53 0.68 560 YES 1.45E+14 19 0.53 8.89 560 YES
Max- fpga87 S 4.18E+08 17 0 0.01 14 YES 4.18E+08 17 0 175 14 YES
Ones fpga97 S 2.09E+09 18 0.01 0 14 YES 2.09E+09 18 0.01 1156 14 YES

x1.1 44s S 1 0 0 32.11 15 YES 8.79E+12 43 0.01 21.3 15 YES
LBS x1.1 48s S 1 0 0 25.4 15 YES 1.407E+14 47 0.01 17.8 15 YES

x1.1 64s S 1 0 0 T/O 20 NO 9.22E+18 63 0.02 11833 20 YES

Table 3 Static vs. dynamic symmetry breaking: Results for unsatisfiable pigeonhole
benchmarks with MaxSat objective, satisfiable FPGA routing benchmarks with Max-
Ones objective and satisfiable XOR-chain instances with the Localized Bit Selection
(LBS) objective. Static symmetry-breaking outperforms dynamic symmetry-breaking
on MaxSAT and MaxOnes instances, but the dynamic configuration issuperior on
LBS instances, which may be relevant to formal verification.

been extended to Boolean optimization, which is useful in many applications, in-
cluding formal verification. For example, one may seek solutions that are statis-
tically common, and conform to a known frequency distribution. 0-1 ILP solvers
have been developed in [2,5], but they perform optimizationby solving a series
of SAT or 0-1 ILP CSPs without objective functions. This approach may expe-
rience difficulty in the context of structure-aware problemsolving. Specifically,
the objective function may interfere with the use of symmetries, often found in
SAT and 0-1 ILP problems from the circuit domain. We propose new techniques
designed to give Boolean objective functions special treatment and to accelerate
optimization. One such method isdynamic symmetry-breaking, which utilizes the
knowledge that constraint symmetries can be brokenduring search when unsatis-
fiable assignments are found. Previous work in this field breaks symmetriesstati-
cally [1,4], and cannot make use of this property. Another proposed method is the
use ofoptimization-aware SBPsto encode an objective functionf . We call these
Min- f SBPs and prove that their addition to an optimization problem does not
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impact optimal solutions. However, Min-f SBPs can be very difficult to encode,
and are likely to be competitive with dynamic symmetry-breaking only for certain
functions.

We have implemented novel techniques for dynamic symmetry breaking on
top of a high-performance pseudo-Boolean solver (source code is available at
http://www.eecs.umich.edu/˜faloul/SymFile.tar.gz). Empirical results indicate that
dynamic symmetry-breaking is effective for objective functions that destroy con-
straint symmetries, such MinLex and our proposed objectivefunction Localized
Bit Selection (LBS). For functions that leave constraint symmetries intact and for
CSPs without optimization, static SBPs are more useful, possibly because they
contribute to learning by SAT and 0-1 ILP solvers at a greaterrate. However,
non-trivial objective functions such as MinLex and LBS may arise in formal ver-
ification applications that are required to specify a preference for solutions with
certain properties. Dynamic SBPs are especially effectiveon XOR-chain bench-
marks which are relevant to circuit applications, e.g. circuits that generate error
correcting codes. Given that both types of symmetry-breaking have advantages in
different situations, we propose an adaptive flow that pickseither a static or dy-
namic SBP configuration to achieve the most effective Boolean optimization for a
given instance. In terms of the results presented here, the adaptive flow is always
able to achieve the best result obtained by either configuration.

Our work considerably extends the scope of symmetry-breaking in Boolean
optimization. However, the full impact of symmetry-breaking on learning and
decision ordering in SAT solvers is not known. While it is clear that symmetry-
breaking is a powerful tool for Boolean constraint satisfaction and optimization,
the full measure of its effectiveness is not yet understood.
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Appendix: Optimization-aware SBPs

Here, we discuss how an objective function may be encoded as predicates which
form a part of the constraints. Such an encoding would eliminate the need for
dynamic symmetry-breaking and allow the use of more efficient static SBPs. The
original construction of symmetry-breaking predicates [6] selects representatives
of equivalence classes under symmetries and prefers those truth assignments that
are not equivalent to any lexicographically-smaller assignments. Those SBPs are
formulated as follows.

MinLex−SBP= ∏
π∈AllSymmetries

(x̄≤lex x̄π) (1)

Herex is a multi-bit truth assignment (bit-vector),xπ is the image ofx under
an arbitrary symmetryπ, and≤lex performs a lexicographic comparison between
the two bit-vectors. These predicates are referred to as LL-SBPs or MinLex-SBPs.
Adding these predicates to any CNF formula preserves its satisfiability because
every equivalence class of truth assignments has a lexicographically smallest ele-
ment.

We now generalize MinLex-SBPs to Minf -SBPs which select representatives
of equivalence classes by comparing values of a given linearobjective function
f (·). Since the lexicographic ordering is a linear function, MinLex-SBPs are just
a special case forf (x) = ∑i 2

ixi .

Min f−SBP= ∏
π∈AllSymmetries

( f (x) ≤ f (xπ)) (2)

Here≤ is just a comparison of numbers, usually integers since the coefficients
of f are usually integers.
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Theorem.Using Min-f SBPs statically during Boolean optimization of f does
not affect optimal solutions.

Proof. Let Φ f be the set of assignments that satisfy constraints inf . Let γ f be
the optimal solution forf . Clearly,γ f ∈ Φ f . Also,∀a∈Φ f f (γ f ) ≤ f (a). The set of
variable assignments forf is partitioned into equivalence classes by the symmetry
group for f , Θ f . Let Θ f partition Φ f into K ≥ 1 equivalence classesφ1 . . .φK .
Assume thatγ f belongs to some equivalence classφi . Clearly,∀a∈φi f (γ f ) ≤ f (a).
Since Min-f SBPs pick the representative with the smallest value off in a class,
they must pickγ f from φi . Let Ω f be the set of assignments that satisfy Min-f
SBPs, i.e. have the smallestf -values in their equivalence classes. We know that
Ω f ⊂ Φ f andγ f ∈ Ω f . The optimization function picks the assignment inΩ f with
the smallestf -value. Since∀a∈Φ f f (γ f )≤ f (a) andΩ f ⊂ Φ f , ∀b∈Ω f f (γ f )≤ f (b).
�

MinLex-SBPs are very effective in practice because the Lex function induces a
total ordering on truth assignments. However, functions like MinOnes or MaxOnes
(minimize or maximize the number of variables set to 1) can potentially be satisfied
by many assignments in the same class. In general, Minf -SBPs are likely to be
weaker than MinLex. Additionally, there are known simple CNF constructions
for MinLex predicates, such as the one in [3]. Generic Minf -SBPs may be much
more difficult to encode in CNF iff has non-trivial coefficients.Overall, it appears
unlikely that Minf -SBPs will be competitive with dynamic symmetry-breaking,
except for very specialized objective functions.


