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Abstract— Recent advances in engineering applications of 

chaos include multimedia security, disturbance modeling in 

power systems and performance enhancement of electronic 

circuits among others. This paper discusses the implementation 

of a rotated Lorenz chaotic system on a Field Programmable 

Gate Array (FPGA). Unlike most published work, we do not rely 

on Hardware Description Language (HDL) code generated from 

MATLAB/SIMULINK using general code conversion tools like 

HDL coder. Instead, we code the system and all of its modules 

using the Verilog HDL and highlight the benefits of taking this 

approach in allowing for a systematic design procedure that 

tends to minimize the complexity of the design, the number of 

design errors and simplifies the debugging process. We 

anticipate that by using Verilog HDL and not relying on 

converters-generated code, we can improve on hardware 

resource utilization, synthesis frequency, accuracy, and 

throughput. The platform used is the DE2-115 development 

board equipped with Altera Cyclone IV FPGA device. 
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I. INTRODUCTION 

In recent years, Field Programmable Gate Arrays (FPGAs) 
have gained ground as feasible design platforms for 
prototyping complex digital systems since they prove to 
perform at an equivalent level with DSPs and 
microprocessors, especially when considering factors such as 
flexibility, and true parallelism. FPGAs have been used 
successfully in numerous designs with impressive 
performance outcomes [1-3]. 

Continuous-time chaotic systems and their fractional 
orders are used in several applications such as 
communications and encryption schemes [4-6]. Usually, 
analog circuits are used to realize these systems. However, the 
reliability of digital systems in general, tempted designers to 
implement chaotic systems digitally using FPGAs, then 
convert the system’s digital variables to the analog domain 
using Digital to Analog Converters.  

Examples of FPGA realization of chaotic systems include 
the work discussed in [7-9]. Noticeably, in most of the 
published work, a combination of MATLAB/Simulink or 
MATLAB DSP builder toolbox is used during 
implementation. These designs rely on  programs such as 
HDL coder [10] to convert a MATLAB code or Simulink 
design to the equivalent hardware description language 

Verilog HDL or VHDL which in turn is used to synthesize the 
circuit for FPGA implementations. It is often the case that 
these programs will generate code that is far from optimal and 
in turn would lead to excessive consumption of FPGA 
resources, and sometimes even a delay in the speed with which 
an implementation can be executed. 

In the work presented here, we propose an implementation 
approach of a rotated Lorenz chaotic system on an FPGA. 
Based on its specification, a system prototype is developed 
directly using Verilog HDL to avoid using MATLAB or 
Simulink during design entry; hence, the need for HDL 
converters in the  development process. Such an approach 
would yield an optimized and more efficient implementation 
that uses less resources and therefore run faster when 
compared to implementations synthesized using a converter-
generated Verilog HDL code. Furthermore, compared to 
Simulink/HDL Coder workflow, traditional forms of using 
hardware description languages can be highly optimized and 
offer a greater degree of control over pipelining, reset and 
enable behaviors [11]. 

II. BACKGROUND 

In [12], it was shown that it is possible to rotate chaotic 

attractors and that the dynamics do not change as a result of 

this rotation because the eigenvalues at all equilibrium points 

remain unchanged. The authors considered first the original 

Lorenz system of differential equations given by: 

 

𝑥′ = 𝑎 (𝑦 − 𝑥) 
𝑦′ = (𝑏 − 𝑧) 𝑥 − 𝑦 

𝑧′ = 𝑥𝑦 − 𝑐𝑧 
(1) 

 
where (a, b, c) are user-specified parameters. Using an Euler 
discretization technique, this system can be described by: 

 

𝑥𝑖+1  =  𝑥𝑖 + ℎ ∗ 𝑎 (𝑦𝑖  −  𝑥𝑖) 

𝑦𝑖+1  =  𝑦𝑖 + ℎ ((𝑏 − 𝑧𝑖) 𝑥𝑖 −  𝑦𝑖) 

𝑧𝑖+1  =  𝑧𝑖 + ℎ ( 𝑥𝑖 ∗  𝑦𝑖 − 𝑐 ∗  𝑧𝑖) 
(2) 

 
where h is a constant step.  
 This model forms the basis for building the rotated 
attractor that is comprehensively discussed in [12] and is 
described by the equation set below:  
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𝑢𝑖+1 =  𝑢𝑖 + ℎ (𝑎 cos 𝜃 (𝑇2 − 𝑇1)
− 𝑠𝑖𝑛𝜃 ((𝑏 − 𝑤𝑖) 𝑇1 − 𝑇2)) 

𝑣𝑖+1 =  𝑣𝑖 + ℎ (𝑎 sin 𝜃 (𝑇2 − 𝑇1)
+ 𝑐𝑜𝑠𝜃 ((𝑏 − 𝑤𝑖) 𝑇1 − 𝑇2)) 

𝑤𝑖+1 =  𝑤𝑖 + ℎ (𝑇1 ∗ 𝑇2 − 𝑐 ∗ 𝑤𝑖) 

(4) 

 
where u, v and w are the rotated state variables while T1and 
T2 are related to the rotation angle in two-dimensions by: 
 

𝑇1 = 𝑐𝑜𝑠𝜃 ∗  𝑢𝑖 + 𝑠𝑖𝑛𝜃 ∗  𝑣𝑖 

𝑇2 = 𝑠𝑖𝑛𝜃 ∗  𝑢𝑖 + 𝑐𝑜𝑠𝜃 ∗  𝑣𝑖 
(5) 

 
To code the system in Verilog our basis was the equation 
given in (2) (switched) and (4) (rotated version).  

III. MATLAB PROTOTYPING 

Using MATLAB, we built and simulated a model of the 
system described by equation (4) above. The Chaotic system 
in [12] was implemented for a finite number of rotation angles, 
namely, 0, −45, and −90 degrees. The rotation angles 0 and 
−90 were chosen on purpose to simplify the work needed in 
writing the Verilog modules to develop their sine and cosine 
values. This is because sin(0) = cos(−90) = 0 which implies 
that a sizable segment of the equation will cancel out, and 
hence we can simplify the system accordingly by avoiding 
expensive multiplication operations. However, and to 
illustrate the design complexity, the angle −45 was chosen to 
demonstrate the results when rotation angles other than 0 
or−90 are needed. The values of the coefficients a, b, and c 
were set to be 10, 28, and 8/3, respectively in all experiments. 
For illustration, the realized Euler equations in the case of -45 
degrees rotation are 

 
 T1 = 0.707 (ui − vi) (8.a) 
 T2 = 0.707 (vi + ui) (8.b) 
ui+1 = ui + 0.071 (T2 −  T1) +0.007 (T1 (28 − wi) −  T2)(8.c) 

vi+1 = vi + 0.007 (T1 (28 − wi) −  T2) −   

 0.071 (T2 − T1) (8.d) 

 wi+1 = wi + 0.01 (T1T2 − 
8

3
wi) (8.e) 

Eventually, FPGA experimental results are compared to 
results from MATLAB for verification. 

IV.  IMPLEMENTATION 

For comparison purposes, we first used MATLAB HDL 
coder to generate the Verilog code that describes the Lorenz 
attractor. As expected, the generated code was obscure and 
hard to optimize. Hence, a Verilog code that describes the 
system was developed from scratch. To further optimize this 
code, we opted for replacing the trigonometric operations by 
simple constant multiplications, that can be implemented 
using adders and shift operations. The design flow to 
implement the rotated chaotic system on FPGA is illustrated 
in Fig. 1. Following the design entry, one can verify the 
functionality of the design at different points, for example 
behavioral simulation before synthesis and gate level after 
synthesis. The implementation steps include translation or 
merging of input netlists and design constraints, mapping 
allocates the logic to the different FPGA components, and 
place and route which places and routes the design per the 

timing constraints. A clear advantage of this flow is the 
designer’s ability to review reports generated at different 
phases of the implementation such as Map report or Place and 
Route report and subsequently further improve the design by 
changing for example source file code or the constraints. 
Hence, a clear advantage when compared to using 
MATLAB/SIMULINK is being able to smoothly iterate 
through several design trials till the most efficient design is 
reached.  

 

Fig. 1. Flowchart of the development process 

A. Verilog HDL Modelling  

Three different Verilog modules were developed, one for 
each rotation angle. Figure. 2 shows a high-level view of the 
module designed for the −π/2 rotation angle. The core 
computational units Lorenz0, Lorenz45 and Lorenz90, are all 
pure combinational circuits, which are responsible for 
generating the next values of the three state variables ui+1, vi+1, 
and wi+1 given the previous values ui, vi, and wi. The only 
sequential part in these modules is the register file in the 
feedback loop. This enables the new outputs corresponding of 
each set of inputs to develop in one clock cycle only with 
acceptable latency. Therefore, the outputs of the Lorenz 
modules are synchronized, and the results can develop and be 
captured in a predictable manner. At reset, all register files 
reset to the initial conditions of u, v, and w. 
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Fig. 2. Rotated Lorenz chaotic system with rotation angle = −π/2 

The three modules are then encapsulated in a higher-level 
module that consists of a state machine to control the number 
of iterations of the system. In other words, the state machine 
limits the number of Euler steps performed towards estimating 
the solution of the main differential equations. Moreover, the 
encapsulation module contains multiplexers and selection 
logic modules to select between the rotated systems’ output 
signals to be passed to the DAC, and eventually being 
displayed on the oscilloscope. To further clarify the operation 
of the selection logic, our Lorenz system can produce nine 
signals in total, u, v, and w of the three rotation angles. 
Therefore, the selection logic was necessary in order to 
specify which two signals are passed at a time to the DAC to 
be visualized on the oscilloscope as an X-Y two-dimensional 
plot. This selection logic control module has two modes of 
operation, the manual mode and the automatic mode. The 
manual mode enables the user to select only one of the three 
rotation angles and the two dimensions to be displayed on the 
scope of that rotation angle. Therefore, the resulting plot of the 
manual mode is either the u-v projection, u-w projection, or 
the v-w projection of the specified rotation angle. Whereas, the 
automatic mode enables the user to select two rotation angles 
and only one of the three projections. Consequently, the 
automatic mode enables the alternation between the two 
rotation angles at 30 frames per second refresh rate such that 
the same projection is displayed at two different rotation 
angles on the oscilloscope screen at the same time. 

In summary, the selection logic shown in Fig. 3 can route 
the following pairs to the two DAC outputs (Sig_A, Sig_B) 
based on the user’s input: 

  

 (u_i,v_i), (u_i,w_i), or (v_i,w_i); ∀ i ∈[0,−π/4,−π/2], or 

 an alternation between (u_i,v_i), and (u_j,v_j), ∀ i,j ∈
[0,−π/4,−π/2], @30Hz, or 

 an alternation between (u_i,w_i), and (u_j,w_j), ∀ i,j ∈
[0,−π/4,−π/2], @30Hz, or 

 an alternation between (v_i,w_i), and (v_j,w_j), ∀ i,j ∈
[0,−π/4,−π/2], @30Hz. 

B. The Fixed Point Architecture 

Throughout the entire design, 64-bit signed fixed-point 
arithmetic was exclusively implemented. All internal signals 
and wires were denoted according to (1.m.n) convention 
where m is the number of bits for the integer part of the 
number, and n is the number of bits dedicated for the fraction 
part. Of course, 1+m+n = 64. The number of bits allocated for 

m and n, was decided according to the maximum expected 
values of u, v, and w, throughout the entire run duration.  

To further optimize the design, increase its efficiency, and 
save on FPGA resources, all multiplications by single constant 
numbers were reduced to shift operations using the 
approximation algorithm described in [13]. For example, 
multiplying by 0.01 is approximately equivalent to 
multiplying by 41/4096; which is equal to (32 + 8 + 1)/4096 
or (25 + 23 + 20)/212. Therefore, instead of using the slow and 
resource consuming multiplication module, the addition needs 
two simple binary adders only, while the shift operation does 
not consume logic, since we have used fixed point notation. 
Figure 4 shows the data flow graph of the Lorenz90 module 
after replacing single constant multiplications with additions 
and shift operations.  

The internal architectures of Lorenz0 and Lorenz45 look 
very similar to that of Lorenz90. The dotted lines indicate 
slicing registers that segregate the inputs from the outputs. 
Fixed point notation was used instead of floating point since 
it requires simpler mathematical modules, and is easier in 
terms of synchronization between the developed results. 

 

Lorenz_00
_top

CU
Lorenz_45

_top

Lorenz_90
_top

 

 

 

Selection_Logic

 

Sig_A

Sig_B

To the 
ADC

PLL

DAC_clk

 

Fig. 3. The top-level module depicting the Lorenz blocks and output 

selection logic 



Moreover, floating point operations usually require more 
than one clock cycle to develop their results, whereas, fixed 
point computations are usually performed within a single 
clock cycle. Nevertheless, one of its drawbacks is the fact that 
it requires careful consideration of the alignment of the 
location of the binary points in the operands of any operation. 
For example, this crucial matter is depicted in the Lorenz0 
module where a subtraction operation between two numbers: 
(1.22.41) and (1.16.49) results in a fixed point number of 
(1.23.40). As a result, the two operands need to be 
arithmetically right shifted by 1 bit and 7 bits, respectively.  

C. Timing Analysis 

Timing analysis of the designed hardware was performed 
using Timing Quest Timing Analyzer tool in Intel Quartus 
Prime software [14]. Upon analyzing the behavior of the 
developed hardware, the input and output constraints of the 
Lorenz modules were set to a minimum delay of 2ns and a 
maximum delay of 3ns. After running the timing analysis, the 
timing analyzer indicated that the maximum allowed 
frequency to operate the Lorenz modules without violating 
any timing constraints is 15MHz. A Phase Locked Loop 
(PLL) was used to generate two different clock signals; the 
main clock signal runs at 15MHz to synchronize the operation 
of all the Lorenz modules with the DAC, and a 30Hz clock 
signal to work as a refresh rate for the oscilloscope display. 

V. FPGA PROTOTYPE 

The platform used is the DE2-115 development board 
equipped with Altera Cyclone IV EP4CE115 FPGA device 
[15]. This platform provides plentiful of IO peripherals, 

including sliding switches, push buttons, general purpose IO 
bank, and a High Speed Mezzanine Card (HSMC) connector. 
These peripherals were used to handle the system’s inputs and 
outputs, for debugging purposes, and to connect the system’s 
digital output to the external Digital to Analog Converter for 
plotting it on the oscilloscope. A single unit of Texas 
Instruments high-speed Digital to Analog Converter (TI 
DAC5672) [16] mounted on Altera’s Data Conversion HSMC 
card. This DAC unit can connect to the DE2-115 board using 
the HSMC connector [17]. Data is transferred from the 
motherboard to the daughter board in parallel, hence, 
eliminating the need of using serial transfer protocols, which 
in turn speeds up the process of digital to analog conversion 
and hence speeds up the overall execution of the system. The 
data conversion card connects to the DE2 development board 
using the HSMC interface as seen in Fig. 5. 

 

Fig. 5. DE2-115 equipped with the Terasic Data Conversion HSMC Card 

Fig. 4. The internal architecture of Lorenz90 module, showing the arrangement of adders, multipliers and shift operations 
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A. Digital to Analog Conversion  

TI DAC5672 is a monolithic, dual channel, 14-bit, high 
speed Digital-to-Analog converter with on-chip voltage 
reference. The MATLAB simulation indicated that the 
maximum and minimum values of the u, v, and w outputs are 
expected to lie within 6 binary bits. Therefore, the fixed point 
structure of the delivered output signals was represented as 
(1.6.7) in (1.m.n) notation. 

Figure 6 shows how the top-level module of our design, 
interfaces with the DAC unit. 

Lorenz_TLM DAC5672
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Fig. 3. Top level module connection with the DAC unit 

B. Testing and Results 

In often cases, the design works fine on simulation but 
behaves differently on hardware. Hence, there arises a need to 
debug, and monitor buses and signals on FPGA. This task is 
primarily accomplished by using a logic analyzer. In this 
work, we tested our design using Tektronix LA6401 logic 
analyzer and the projections were plotted on Tektronix 
TDS2002C digital oscilloscope. Figure 7 shows the 
connection between the FPGA and the Logic Analyzer.  

  

Fig. 4. Logic analyzer setup 

The final setup of our implementation including the DE2-
115 board, the DAC card, and the oscilloscope is shown in 
Fig. 8. The resource utilization of the implementation is 
summarized in Table 1. Table 2 lists the mean absolute error 
(MAE) between the results captured from the logic analyzer 
and the corresponding values from MATLAB for the first 
5000 iterations. 

 

 

Fig. 5. Testing using the digital oscilloscope 

Figure 9 shows the captured plots from the digital 
oscilloscope’s display for the u-v projection of the different 
rotation angles using both the manual mode and the automatic 
mode.  

 

Fig. 6. Oscilloscope pictures of the rotated plots 

TABLE I.  RESOURCE UTILIZATION 

Resources Our design 

Logic Elements  3543/114480 (3%) 

Combinational Functions  3490 

Registers  736 

Embedded multiplier (9-bit) 48/532 (9%) 

Pins  41/529 (8%) 

PLL 1 

Frequency 15 MHz  

 

TABLE II.  MAE FOR THE DIFFERENT ROTATIONS 

Degree MAEu MAEv MAEw 

0 0.0717 0.0695 0.0624 

−45 0.0617 0.0571 0.0540 

−90 0.0407 0.0435 0.0366 

VI. CONCLUSION 

In this paper, we discussed an FPGA-based 

implementation of a rotated Lorenz chaotic attractor. The 

implemented attractor can rotate the system using three 

rotation angles 0, −π/4, and −π/2. We detailed the hardware 



design process spanning the initial prototyping phase passing 

through the functional and timing simulation of the 

implemented system and ultimately displaying the obtained 

outputs on a digital oscilloscope display. We developed the 

modules using the traditional design entry method using the 

Verilog Hardware Description Language (HDL) instead of 

HDL code generation tools like MATLAB’s HDL coder. 

This enables us to optimize the FPGA resource utilization, 

enhance the overall performance of the generated code and 

write a simple and modularized HDL code. The designed 

Lorenz system was implemented on the DE2-115 

development board. In testing the designed system, a logic 

analyzer and a digital oscilloscope were used in order to 

verify the outcome of the designed hardware compared to the 

MATLAB simulation. The designed system is capable of 

running at 15MHZ. Future enhancements of the system 

include the possibility of implementing any arbitrary rotation 

angle, and further optimizing the Lorenz attractor to run at a 

much higher frequency. 

 

REFERENCES 

[1] C. Y. Wu, C. Y. Liao, D. Lee, Y. S. Cheng, C. H. Huang, J. Chen, K. 
H. Hu, and K. T. Hsu, “An FPGA-Based Quench Detector and Data 
Acquisition System for Superconducting Insertion Devices,” IEEE 
Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1–5, 
2018. 

[2] C. H. Yang, H. C. Wu, and S. F. Su, “Implementation of Encryption 
Algorithm and Wireless Image Transmission System on FPGA,” IEEE 
Access, vol. 7, pp. 50513–50523, 2019. 

[3] X. Cai, M. Zhou, T. Xia, W. H. Fong, W. T. Lee, and X. Huang, “Low-
Power SDR Design on an FPGA for Intersatellite 
Communications,” IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, vol. 26, no. 11, pp. 2419–2430, 2018. 

[4] G. Kaddoum, “Wireless Chaos-Based Communication Systems: A 
Comprehensive Survey,” IEEE Access, vol. 4, pp. 2621–2648, 2016. 

[5] L. Kocarev and S. Lian, “Chaos-Based Cryptography,” Studies in 
Computational Intelligence, vol. 354, 2011. 

[6] F. C. M. Lau and C. K. Tse, “Techniques for Non-Coherent Detection 
in Chaos-Based Digital Communication Systems,” Chaos-Based 
Digital Communication Systems Signals and Communication 
Technology, pp. 205–217, 2003. 

[7] D. K. Shah, R. B. Chaurasiya, V. A. Vyawahare, K. Pichhode, and M. 
D. Patil, “FPGA implementation of fractional-order chaotic 
systems,” AEU - International Journal of Electronics and 
Communications, vol. 78, pp. 245–257, 2017. 

[8] S. Sadoudi, M. S. Azzaz, M. Djeddou, and M. Benssalah, “An FPGA 
Real-time Implementation of the Chen's Chaotic System for Securing 
Chaotic Communications,” pp. 467–474, 2009. 

[9] Q. Ding, J. Pang, J. Fang, and X. Peng, “Designing of chaotic system 
output sequence circuit based on FPGA and its applications in network 
encryption card,” International Journal of Innovative Computing, 
Information and Control, vol. 3, no. 2, pp. 449–456, Apr. 2007. 

[10]  “HDL Coder,” MATLAB & Simulink. [Online]. Available: 
https://www.mathworks.com/products/hdl-coder.html. [Accessed: 04-
Aug-2019]. 

[11] [V. Y. Sarge, “Evaluating Simulink HDL coder as a framework for 
flexible and modular hardware description,” thesis, 2018. 

[12] W. Sayed, A. Radwan, M. Elnawawy, H. Orabi, A. Sagahyroon, F. 
Aloul, A. Elwakil, H. Fahmy, and A. Elsedeek, “Two-Dimensional 
Rotation of Chaotic Attractors: Demonstrative Examples and FPGA 
Realization” Journal Circuits, Systems, and Signal Processing (CSSP), 
April, 2019; Springer 

[13] Vahid, Frank. Digital Design with RTL Design, Verilog and VHDL. 
John Wiley & Sons, 2010. 

[14] Timing Analyzer Resource Center, 10-Apr-2019. [Online]. Available: 
https://www.intel.com/content/www/us/en/programmable/support/sup
port-resources/design-examples/design-software/timinganalyzer/sof-
qts-timinganalyzer.html. [Accessed: 04-Aug-2019]. 

[15] Cyclone II Device Handbook, Volume 1, Altera. [Online]. Available: 
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/li
terature/hb/cyc2/cyc2_cii5v1.pdf 

[16] Texas Instruments. [Online]. Available: 
http://www.ti.com/product/DAC5672. [Accessed: 04-Aug-2019]. 

[17] https://www.terasic.com.tw

 




