
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On the Implementation of a Rotated Chaotic Lorenz

System on FPGA

Hammam Orabi

Dept. of Computer Science and

Engineering

American University of Sharjah

Sharjah, United Arab Emirates
horabi@aus.edu

Fadi Aloul

Dept. of Computer Science and

Engineering

American University of Sharjah

Sharjah, United Arab Emirates

faloul@aus.edu

Mohammed Elnawawy

Dept. of Computer Science and

Engineering

American University of Sharjah

Sharjah, United Arab Emirates
b00049112@aus.edu

Ahmed S. Elwakil

Dept. of Electrical & Computer

Engineering, University of Sharjah

Sharjah, United Arab Emirates

(also with the Dept. of Electrical and

Computer Engineering, University of

Calgary, Canada) elwakil@ieee.org

Assim Sagahyroon

Dept. of Computer Science and

Engineering

American University of Sharjah

Sharjah, United Arab Emirates
asagahyroon@aus.edu

Ahmed G. Radwan

Dept. Engineering Mathematics and

Physics

Cairo University

Cairo, Egypt

agradwan@ieee.org

Abstract— Recent advances in engineering applications of

chaos include multimedia security, disturbance modeling in

power systems and performance enhancement of electronic

circuits among others. This paper discusses the implementation

of a rotated Lorenz chaotic system on a Field Programmable

Gate Array (FPGA). Unlike most published work, we do not rely

on Hardware Description Language (HDL) code generated from

MATLAB/SIMULINK using general code conversion tools like

HDL coder. Instead, we code the system and all of its modules

using the Verilog HDL and highlight the benefits of taking this

approach in allowing for a systematic design procedure that

tends to minimize the complexity of the design, the number of

design errors and simplifies the debugging process. We

anticipate that by using Verilog HDL and not relying on

converters-generated code, we can improve on hardware

resource utilization, synthesis frequency, accuracy, and

throughput. The platform used is the DE2-115 development

board equipped with Altera Cyclone IV FPGA device.

Keywords— Lorenz system, Chaotic systems, FPGA

I. INTRODUCTION

In recent years, Field Programmable Gate Arrays (FPGAs)
have gained ground as feasible design platforms for
prototyping complex digital systems since they prove to
perform at an equivalent level with DSPs and
microprocessors, especially when considering factors such as
flexibility, and true parallelism. FPGAs have been used
successfully in numerous designs with impressive
performance outcomes [1-3].

Continuous-time chaotic systems and their fractional
orders are used in several applications such as
communications and encryption schemes [4-6]. Usually,
analog circuits are used to realize these systems. However, the
reliability of digital systems in general, tempted designers to
implement chaotic systems digitally using FPGAs, then
convert the system’s digital variables to the analog domain
using Digital to Analog Converters.

Examples of FPGA realization of chaotic systems include
the work discussed in [7-9]. Noticeably, in most of the
published work, a combination of MATLAB/Simulink or
MATLAB DSP builder toolbox is used during
implementation. These designs rely on programs such as
HDL coder [10] to convert a MATLAB code or Simulink
design to the equivalent hardware description language

Verilog HDL or VHDL which in turn is used to synthesize the
circuit for FPGA implementations. It is often the case that
these programs will generate code that is far from optimal and
in turn would lead to excessive consumption of FPGA
resources, and sometimes even a delay in the speed with which
an implementation can be executed.

In the work presented here, we propose an implementation
approach of a rotated Lorenz chaotic system on an FPGA.
Based on its specification, a system prototype is developed
directly using Verilog HDL to avoid using MATLAB or
Simulink during design entry; hence, the need for HDL
converters in the development process. Such an approach
would yield an optimized and more efficient implementation
that uses less resources and therefore run faster when
compared to implementations synthesized using a converter-
generated Verilog HDL code. Furthermore, compared to
Simulink/HDL Coder workflow, traditional forms of using
hardware description languages can be highly optimized and
offer a greater degree of control over pipelining, reset and
enable behaviors [11].

II. BACKGROUND

In [12], it was shown that it is possible to rotate chaotic

attractors and that the dynamics do not change as a result of

this rotation because the eigenvalues at all equilibrium points

remain unchanged. The authors considered first the original

Lorenz system of differential equations given by:

𝑥′ = 𝑎 (𝑦 − 𝑥)
𝑦′ = (𝑏 − 𝑧) 𝑥 − 𝑦

𝑧′ = 𝑥𝑦 − 𝑐𝑧
(1)

where (a, b, c) are user-specified parameters. Using an Euler
discretization technique, this system can be described by:

𝑥𝑖+1 = 𝑥𝑖 + ℎ ∗ 𝑎 (𝑦𝑖 − 𝑥𝑖)

𝑦𝑖+1 = 𝑦𝑖 + ℎ ((𝑏 − 𝑧𝑖) 𝑥𝑖 − 𝑦𝑖)

𝑧𝑖+1 = 𝑧𝑖 + ℎ (𝑥𝑖 ∗ 𝑦𝑖 − 𝑐 ∗ 𝑧𝑖)
(2)

where h is a constant step.
 This model forms the basis for building the rotated
attractor that is comprehensively discussed in [12] and is
described by the equation set below:

Fadi
Typewritten Text
 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, November 2019.

Fadi
Typewritten Text

𝑢𝑖+1 = 𝑢𝑖 + ℎ (𝑎 cos 𝜃 (𝑇2 − 𝑇1)
− 𝑠𝑖𝑛𝜃 ((𝑏 − 𝑤𝑖) 𝑇1 − 𝑇2))

𝑣𝑖+1 = 𝑣𝑖 + ℎ (𝑎 sin 𝜃 (𝑇2 − 𝑇1)
+ 𝑐𝑜𝑠𝜃 ((𝑏 − 𝑤𝑖) 𝑇1 − 𝑇2))

𝑤𝑖+1 = 𝑤𝑖 + ℎ (𝑇1 ∗ 𝑇2 − 𝑐 ∗ 𝑤𝑖)

(4)

where u, v and w are the rotated state variables while T1and
T2 are related to the rotation angle in two-dimensions by:

𝑇1 = 𝑐𝑜𝑠𝜃 ∗ 𝑢𝑖 + 𝑠𝑖𝑛𝜃 ∗ 𝑣𝑖

𝑇2 = 𝑠𝑖𝑛𝜃 ∗ 𝑢𝑖 + 𝑐𝑜𝑠𝜃 ∗ 𝑣𝑖
(5)

To code the system in Verilog our basis was the equation
given in (2) (switched) and (4) (rotated version).

III. MATLAB PROTOTYPING

Using MATLAB, we built and simulated a model of the
system described by equation (4) above. The Chaotic system
in [12] was implemented for a finite number of rotation angles,
namely, 0, −45, and −90 degrees. The rotation angles 0 and
−90 were chosen on purpose to simplify the work needed in
writing the Verilog modules to develop their sine and cosine
values. This is because sin(0) = cos(−90) = 0 which implies
that a sizable segment of the equation will cancel out, and
hence we can simplify the system accordingly by avoiding
expensive multiplication operations. However, and to
illustrate the design complexity, the angle −45 was chosen to
demonstrate the results when rotation angles other than 0
or−90 are needed. The values of the coefficients a, b, and c
were set to be 10, 28, and 8/3, respectively in all experiments.
For illustration, the realized Euler equations in the case of -45
degrees rotation are

 T1 = 0.707 (ui − vi) (8.a)
 T2 = 0.707 (vi + ui) (8.b)
ui+1 = ui + 0.071 (T2 − T1) +0.007 (T1 (28 − wi) − T2)(8.c)

vi+1 = vi + 0.007 (T1 (28 − wi) − T2) −

 0.071 (T2 − T1) (8.d)

 wi+1 = wi + 0.01 (T1T2 −
8

3
wi) (8.e)

Eventually, FPGA experimental results are compared to
results from MATLAB for verification.

IV. IMPLEMENTATION

For comparison purposes, we first used MATLAB HDL
coder to generate the Verilog code that describes the Lorenz
attractor. As expected, the generated code was obscure and
hard to optimize. Hence, a Verilog code that describes the
system was developed from scratch. To further optimize this
code, we opted for replacing the trigonometric operations by
simple constant multiplications, that can be implemented
using adders and shift operations. The design flow to
implement the rotated chaotic system on FPGA is illustrated
in Fig. 1. Following the design entry, one can verify the
functionality of the design at different points, for example
behavioral simulation before synthesis and gate level after
synthesis. The implementation steps include translation or
merging of input netlists and design constraints, mapping
allocates the logic to the different FPGA components, and
place and route which places and routes the design per the

timing constraints. A clear advantage of this flow is the
designer’s ability to review reports generated at different
phases of the implementation such as Map report or Place and
Route report and subsequently further improve the design by
changing for example source file code or the constraints.
Hence, a clear advantage when compared to using
MATLAB/SIMULINK is being able to smoothly iterate
through several design trials till the most efficient design is
reached.

Fig. 1. Flowchart of the development process

A. Verilog HDL Modelling

Three different Verilog modules were developed, one for
each rotation angle. Figure. 2 shows a high-level view of the
module designed for the −π/2 rotation angle. The core
computational units Lorenz0, Lorenz45 and Lorenz90, are all
pure combinational circuits, which are responsible for
generating the next values of the three state variables ui+1, vi+1,
and wi+1 given the previous values ui, vi, and wi. The only
sequential part in these modules is the register file in the
feedback loop. This enables the new outputs corresponding of
each set of inputs to develop in one clock cycle only with
acceptable latency. Therefore, the outputs of the Lorenz
modules are synchronized, and the results can develop and be
captured in a predictable manner. At reset, all register files
reset to the initial conditions of u, v, and w.

Lorenz_90

ui+1_90

vi+1_90

wi+1_90

clk

ui_90

vi_90

wi_90

Fig. 2. Rotated Lorenz chaotic system with rotation angle = −π/2

The three modules are then encapsulated in a higher-level
module that consists of a state machine to control the number
of iterations of the system. In other words, the state machine
limits the number of Euler steps performed towards estimating
the solution of the main differential equations. Moreover, the
encapsulation module contains multiplexers and selection
logic modules to select between the rotated systems’ output
signals to be passed to the DAC, and eventually being
displayed on the oscilloscope. To further clarify the operation
of the selection logic, our Lorenz system can produce nine
signals in total, u, v, and w of the three rotation angles.
Therefore, the selection logic was necessary in order to
specify which two signals are passed at a time to the DAC to
be visualized on the oscilloscope as an X-Y two-dimensional
plot. This selection logic control module has two modes of
operation, the manual mode and the automatic mode. The
manual mode enables the user to select only one of the three
rotation angles and the two dimensions to be displayed on the
scope of that rotation angle. Therefore, the resulting plot of the
manual mode is either the u-v projection, u-w projection, or
the v-w projection of the specified rotation angle. Whereas, the
automatic mode enables the user to select two rotation angles
and only one of the three projections. Consequently, the
automatic mode enables the alternation between the two
rotation angles at 30 frames per second refresh rate such that
the same projection is displayed at two different rotation
angles on the oscilloscope screen at the same time.

In summary, the selection logic shown in Fig. 3 can route
the following pairs to the two DAC outputs (Sig_A, Sig_B)
based on the user’s input:

 (u_i,v_i), (u_i,w_i), or (v_i,w_i); ∀ i ∈[0,−π/4,−π/2], or

 an alternation between (u_i,v_i), and (u_j,v_j), ∀ i,j ∈
[0,−π/4,−π/2], @30Hz, or

 an alternation between (u_i,w_i), and (u_j,w_j), ∀ i,j ∈
[0,−π/4,−π/2], @30Hz, or

 an alternation between (v_i,w_i), and (v_j,w_j), ∀ i,j ∈
[0,−π/4,−π/2], @30Hz.

B. The Fixed Point Architecture

Throughout the entire design, 64-bit signed fixed-point
arithmetic was exclusively implemented. All internal signals
and wires were denoted according to (1.m.n) convention
where m is the number of bits for the integer part of the
number, and n is the number of bits dedicated for the fraction
part. Of course, 1+m+n = 64. The number of bits allocated for

m and n, was decided according to the maximum expected
values of u, v, and w, throughout the entire run duration.

To further optimize the design, increase its efficiency, and
save on FPGA resources, all multiplications by single constant
numbers were reduced to shift operations using the
approximation algorithm described in [13]. For example,
multiplying by 0.01 is approximately equivalent to
multiplying by 41/4096; which is equal to (32 + 8 + 1)/4096
or (25 + 23 + 20)/212. Therefore, instead of using the slow and
resource consuming multiplication module, the addition needs
two simple binary adders only, while the shift operation does
not consume logic, since we have used fixed point notation.
Figure 4 shows the data flow graph of the Lorenz90 module
after replacing single constant multiplications with additions
and shift operations.

The internal architectures of Lorenz0 and Lorenz45 look
very similar to that of Lorenz90. The dotted lines indicate
slicing registers that segregate the inputs from the outputs.
Fixed point notation was used instead of floating point since
it requires simpler mathematical modules, and is easier in
terms of synchronization between the developed results.

Lorenz_00
_top

CU
Lorenz_45

_top

Lorenz_90
_top

Selection_Logic

Sig_A

Sig_B

To the
ADC

PLL

DAC_clk

Fig. 3. The top-level module depicting the Lorenz blocks and output

selection logic

Moreover, floating point operations usually require more
than one clock cycle to develop their results, whereas, fixed
point computations are usually performed within a single
clock cycle. Nevertheless, one of its drawbacks is the fact that
it requires careful consideration of the alignment of the
location of the binary points in the operands of any operation.
For example, this crucial matter is depicted in the Lorenz0
module where a subtraction operation between two numbers:
(1.22.41) and (1.16.49) results in a fixed point number of
(1.23.40). As a result, the two operands need to be
arithmetically right shifted by 1 bit and 7 bits, respectively.

C. Timing Analysis

Timing analysis of the designed hardware was performed
using Timing Quest Timing Analyzer tool in Intel Quartus
Prime software [14]. Upon analyzing the behavior of the
developed hardware, the input and output constraints of the
Lorenz modules were set to a minimum delay of 2ns and a
maximum delay of 3ns. After running the timing analysis, the
timing analyzer indicated that the maximum allowed
frequency to operate the Lorenz modules without violating
any timing constraints is 15MHz. A Phase Locked Loop
(PLL) was used to generate two different clock signals; the
main clock signal runs at 15MHz to synchronize the operation
of all the Lorenz modules with the DAC, and a 30Hz clock
signal to work as a refresh rate for the oscilloscope display.

V. FPGA PROTOTYPE

The platform used is the DE2-115 development board
equipped with Altera Cyclone IV EP4CE115 FPGA device
[15]. This platform provides plentiful of IO peripherals,

including sliding switches, push buttons, general purpose IO
bank, and a High Speed Mezzanine Card (HSMC) connector.
These peripherals were used to handle the system’s inputs and
outputs, for debugging purposes, and to connect the system’s
digital output to the external Digital to Analog Converter for
plotting it on the oscilloscope. A single unit of Texas
Instruments high-speed Digital to Analog Converter (TI
DAC5672) [16] mounted on Altera’s Data Conversion HSMC
card. This DAC unit can connect to the DE2-115 board using
the HSMC connector [17]. Data is transferred from the
motherboard to the daughter board in parallel, hence,
eliminating the need of using serial transfer protocols, which
in turn speeds up the process of digital to analog conversion
and hence speeds up the overall execution of the system. The
data conversion card connects to the DE2 development board
using the HSMC interface as seen in Fig. 5.

Fig. 5. DE2-115 equipped with the Terasic Data Conversion HSMC Card

Fig. 4. The internal architecture of Lorenz90 module, showing the arrangement of adders, multipliers and shift operations

ui_90 vi_90

<<1

<<4

<<5

ui+1_90

wi_90 ui_90

-28

vi+1_90

<<5

<<3

>>8

>>12

<<5<<9 <<7 <<3

ui_90vi_90 wi_90

>>8

<<5

<<3

>>12

wi+1_90

A. Digital to Analog Conversion

TI DAC5672 is a monolithic, dual channel, 14-bit, high
speed Digital-to-Analog converter with on-chip voltage
reference. The MATLAB simulation indicated that the
maximum and minimum values of the u, v, and w outputs are
expected to lie within 6 binary bits. Therefore, the fixed point
structure of the delivered output signals was represented as
(1.6.7) in (1.m.n) notation.

Figure 6 shows how the top-level module of our design,
interfaces with the DAC unit.

Lorenz_TLM DAC5672

DA[12:0]

DA[13]

DB[12:0]

DB[13]

Clk_A_N

Clk_A_P

Clk_B_N

Clk_B_P

Sig_A[13:0]

Sig_B[13:0]

DAC_Clock

Fig. 3. Top level module connection with the DAC unit

B. Testing and Results

In often cases, the design works fine on simulation but
behaves differently on hardware. Hence, there arises a need to
debug, and monitor buses and signals on FPGA. This task is
primarily accomplished by using a logic analyzer. In this
work, we tested our design using Tektronix LA6401 logic
analyzer and the projections were plotted on Tektronix
TDS2002C digital oscilloscope. Figure 7 shows the
connection between the FPGA and the Logic Analyzer.

Fig. 4. Logic analyzer setup

The final setup of our implementation including the DE2-
115 board, the DAC card, and the oscilloscope is shown in
Fig. 8. The resource utilization of the implementation is
summarized in Table 1. Table 2 lists the mean absolute error
(MAE) between the results captured from the logic analyzer
and the corresponding values from MATLAB for the first
5000 iterations.

Fig. 5. Testing using the digital oscilloscope

Figure 9 shows the captured plots from the digital
oscilloscope’s display for the u-v projection of the different
rotation angles using both the manual mode and the automatic
mode.

Fig. 6. Oscilloscope pictures of the rotated plots

TABLE I. RESOURCE UTILIZATION

Resources Our design

Logic Elements 3543/114480 (3%)

Combinational Functions 3490

Registers 736

Embedded multiplier (9-bit) 48/532 (9%)

Pins 41/529 (8%)

PLL 1

Frequency 15 MHz

TABLE II. MAE FOR THE DIFFERENT ROTATIONS

Degree MAEu MAEv MAEw

0 0.0717 0.0695 0.0624

−45 0.0617 0.0571 0.0540

−90 0.0407 0.0435 0.0366

VI. CONCLUSION

In this paper, we discussed an FPGA-based

implementation of a rotated Lorenz chaotic attractor. The

implemented attractor can rotate the system using three

rotation angles 0, −π/4, and −π/2. We detailed the hardware

design process spanning the initial prototyping phase passing

through the functional and timing simulation of the

implemented system and ultimately displaying the obtained

outputs on a digital oscilloscope display. We developed the

modules using the traditional design entry method using the

Verilog Hardware Description Language (HDL) instead of

HDL code generation tools like MATLAB’s HDL coder.

This enables us to optimize the FPGA resource utilization,

enhance the overall performance of the generated code and

write a simple and modularized HDL code. The designed

Lorenz system was implemented on the DE2-115

development board. In testing the designed system, a logic

analyzer and a digital oscilloscope were used in order to

verify the outcome of the designed hardware compared to the

MATLAB simulation. The designed system is capable of

running at 15MHZ. Future enhancements of the system

include the possibility of implementing any arbitrary rotation

angle, and further optimizing the Lorenz attractor to run at a

much higher frequency.

REFERENCES

[1] C. Y. Wu, C. Y. Liao, D. Lee, Y. S. Cheng, C. H. Huang, J. Chen, K.
H. Hu, and K. T. Hsu, “An FPGA-Based Quench Detector and Data
Acquisition System for Superconducting Insertion Devices,” IEEE
Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1–5,
2018.

[2] C. H. Yang, H. C. Wu, and S. F. Su, “Implementation of Encryption
Algorithm and Wireless Image Transmission System on FPGA,” IEEE
Access, vol. 7, pp. 50513–50523, 2019.

[3] X. Cai, M. Zhou, T. Xia, W. H. Fong, W. T. Lee, and X. Huang, “Low-
Power SDR Design on an FPGA for Intersatellite
Communications,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 11, pp. 2419–2430, 2018.

[4] G. Kaddoum, “Wireless Chaos-Based Communication Systems: A
Comprehensive Survey,” IEEE Access, vol. 4, pp. 2621–2648, 2016.

[5] L. Kocarev and S. Lian, “Chaos-Based Cryptography,” Studies in
Computational Intelligence, vol. 354, 2011.

[6] F. C. M. Lau and C. K. Tse, “Techniques for Non-Coherent Detection
in Chaos-Based Digital Communication Systems,” Chaos-Based
Digital Communication Systems Signals and Communication
Technology, pp. 205–217, 2003.

[7] D. K. Shah, R. B. Chaurasiya, V. A. Vyawahare, K. Pichhode, and M.
D. Patil, “FPGA implementation of fractional-order chaotic
systems,” AEU - International Journal of Electronics and
Communications, vol. 78, pp. 245–257, 2017.

[8] S. Sadoudi, M. S. Azzaz, M. Djeddou, and M. Benssalah, “An FPGA
Real-time Implementation of the Chen's Chaotic System for Securing
Chaotic Communications,” pp. 467–474, 2009.

[9] Q. Ding, J. Pang, J. Fang, and X. Peng, “Designing of chaotic system
output sequence circuit based on FPGA and its applications in network
encryption card,” International Journal of Innovative Computing,
Information and Control, vol. 3, no. 2, pp. 449–456, Apr. 2007.

[10] “HDL Coder,” MATLAB & Simulink. [Online]. Available:
https://www.mathworks.com/products/hdl-coder.html. [Accessed: 04-
Aug-2019].

[11] [V. Y. Sarge, “Evaluating Simulink HDL coder as a framework for
flexible and modular hardware description,” thesis, 2018.

[12] W. Sayed, A. Radwan, M. Elnawawy, H. Orabi, A. Sagahyroon, F.
Aloul, A. Elwakil, H. Fahmy, and A. Elsedeek, “Two-Dimensional
Rotation of Chaotic Attractors: Demonstrative Examples and FPGA
Realization” Journal Circuits, Systems, and Signal Processing (CSSP),
April, 2019; Springer

[13] Vahid, Frank. Digital Design with RTL Design, Verilog and VHDL.
John Wiley & Sons, 2010.

[14] Timing Analyzer Resource Center, 10-Apr-2019. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/support/sup
port-resources/design-examples/design-software/timinganalyzer/sof-
qts-timinganalyzer.html. [Accessed: 04-Aug-2019].

[15] Cyclone II Device Handbook, Volume 1, Altera. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/li
terature/hb/cyc2/cyc2_cii5v1.pdf

[16] Texas Instruments. [Online]. Available:
http://www.ti.com/product/DAC5672. [Accessed: 04-Aug-2019].

[17] https://www.terasic.com.tw

