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Abstract

Many important tasks in circuit design and verification can be per-
formed in practice viareductionsto Boolean Satisfiability (SAT), mak-
ing SAT afundamental EDA problem. However such reductions often
leave out application-specific structure, thus handicapping EDA tools
intheir competition with creative engineers. Successful attemptsto rep-
resent and utilize additional structure on Boolean variables include re-
cent work on 0-1 Integer Linear Programming (ILP) and on symmetries
in SAT. Those extensions gracefully accommodate well-known ad-
vancesin SAT-solving, but their combined use has not been attempted
previously. Our work shows (i) how one can detect and use symmetries
ininstances of 0-1 ILP, and (ii) what benefits this may bring.

1. Introduction

Recent impressive speed-ups of solvers for Boolean satisfiability
(SAT) [15] enabled new applications in design automation [1, 10, 16].
Reducing an application to SAT facilitates the reuse of existing effi-
cient computational cores and leads to high-performance EDA tools
with little development effort. However, major concerns about this ap-
proach are the loss and ignorance of high-level information and appli-
cation-specific structure. With this in mind, researchers successfully
extended leading algorithms for SAT-solving to handle more powerful
constraint representations, e.g., 0-1 Integer Linear Programming (ILP)
[1, 5, 6]. Another broad avenue of research |eads to pre-processors for
existing solvers and constraint representations, that extract high-level
information and guide the solvers accordingly [3, 4, 7]. Our work ex-
tends existing techniques for detecting and using symmetriesin SAT to
the more general 0-1 ILP formulation that includes pseudo-Boolean
(PB) constraints and an optional optimization objective.

In this paper, we contribute a framework for detecting and using
symmetries in instances of 0-1 ILP. When applied to SAT instances
encoded as 0-1 ILPs, our framework works at least as well as those in
[3,4,7]. Ingeneral, it detects all existing structural permutational sym-
metries, phase shift symmetries, and their compositions. We present
experimental evidence showing that EDA problems expressed in PB
form (i) sometimes have symmetries, and (ii) can be solved faster
within our framework than previously.

The remainder of the paper is organized as follows. Section 2 pre-
sents a brief description of the CNF and PB representations. Section 3
presents the framework for detecting and using symmetries in CNF
formulas. The framework is extended to handle PB formulasin Section
4. We show experimental resultsin Section 5, and the paper concludes
in Section 6.

2. Preliminaries

A Boolean formula ¢ given in conjunctive normal form (CNF) con-
sists of a conjunction of clauses, where each clause is a disunction of
literals. A literal is either avariable or its complement. A clauseis sat-
isfied if at least one of its literals has avalue of 1, unsatisfied if al its
literalsare 0, and unresolved otherwise. Consequently, aformulais sat-
isfiedif all its clauses are satisfied, and unsatisfied if at |east one clause
isunsatisfied. The goal of the SAT solver is to identify an assignment
to a set of binary variables that would satisfy the formula or prove that
no such assignment exists (and that the formulais unsatisfiable).
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Figure 1. Two possible encodings of the unsatisfiable pigeon-hole
instance consisting of 2 holes and 3 pigeons using CNF and PB
constraints. Pij denotespigeon i in holej

In addition to CNF constraints, a Boolean formula can include PB
constraints which are linear inequalities with integer coefficients! of
the form:

aXq + X+ ...+ A X, b Q)

where a;, b gZ* and X; are literals of Boolean variables?. Using
the relations x, = (1-%), (Ax=b)< (Ax<b)(Axzb), and
(Ax>b) < (-Ax<-b) any arbitrary PB constraint can be converted
to the normalized form of (1) consisting of only positive coefficients.
This normalization facilitates more efficient algorithms.

Figure 1(a) illustrates the difference between the CNF and PB en-
codings for the pigeon-hole (hole-2) instance. The instance can be rep-
resented by 6 variables, 9 clauses, and 18 literals when using the CNF
encoding or by 6 variables, 5 PB constraints, and 12 literals when us-
ing the PB encoding. Clearly, PB constraints are more efficient than
CNF clauses in representing counting constraints.

3. Detecting and Using CNF Symmetries

L eading-edge complete SAT solvers [15] implement the basic Davis-
Logemann-Loveland (DLL) agorithm [9] for backtrack search with
various improvements. This algorithm has exponential worst-case
complexity and, despite dramatic improvements for practical inputs,
the runtime of those SAT solvers grows exponentially with the size of
theinput on variousinstances. Thework in[3, 4, 7] empirically showed
that the use of symmetry-breaking predicates (i) makes runtime on
those instances polynomial, and (ii) speeds up the solution of some ap-
plication-derived instances. Crawford et al. [7] presented a theoretical
framework for detecting and using permutational symmetries in CNF
formulas. An extension of this framework in [3] showed how to detect
phase-shift symmetries (i.e. symmetries that map variables to their
complements) and their compositions with permutational symmetries.
Asymptotic efficiency of these techniques was improved in [4]. The
general framework is described next.

1. Floating-point coefficients are also easily handled [1].
2. Any CNF clause can be viewed as a PB constraint, e.g. clause
(avbvec) isequivalentto (a+b+c>1).
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3.1 Detecting symmetriesvia graph automor phism

Givena graph, a symaty (dso cdled a automorphism) is a permuta-
tion of its verices tlatmaps edges tedgesFor a directedyraph, edge
orientaions must be mantained. The wllection of symnetries of a
graphis closed under compitien and is kiown as theautomorphism
group of thegraph Theproblemof findingall symmetries of thgraph
is known as thegraph automorphism problem. Efficient tools for de-
tecting graph automphism havebeen degloped, such as NAUTY
[14] and SAUCY [8].

Structural symmetriesin CNF famulascan bedeected via areduc-
tion to graphautomorphisni13]. A CNF fomula is represented as
undirected graptwith coloredvertices such tht the atomaphism
group ofthe graph issomaphic tothe symmetry grqu of the CNF
formula. The two grops must shre a one-to-one caspondence and
also be isomorphic to enable the nfgroup gerrators as explained in
the Sectia 3.2.

Assuming a CNFormula with V verticesand C clauss (sngle-
literd clauses are renoved by preprocessing the CNFformula), agraph
is constructed a®llows:

« A sngle verex repesnt each clause(clause verices.

« Each variable is represedteby two vertices: positive and

negdive literds (literd verices).

@(Xq, Xo, X3) =
Cpi(Xg + Xy +Xg)
Cyi(Xy+Xg)

P11(2X) + X5+ X532 2)
Poi(Xy + 2%y + X3 2 2)

Figure 2. Example showing the graph representing formula o .
Different vertex shapes correspondsto different vertex colors.

than he entire st of synmetriesis suffi cient to yield significant rurt-
ime and memoryeductions.

4. Detecting and Using PB Symmetries

Similar to thetecmiques from3] (summarized in Section 3)ve build

a graph whose automorphism group is isqvhar to the goup of PB

symmetries. Ayraph automorphismrogam wouldprodice generators

» Edges ae addedconnedng a clause vertex to its respective of the automorism group, with we reapply to theoriginal PB in-
literd vertces(incidenc edyeg stanceThe isomophism ofthe twosymmetry group is requiredo im-

- Edges are added betweeppasiteliterals (Boolea consistency plicitly manipulatehese groups in tssof generatorsWhile ourgraph
edges) constructim is noel, detetedsymmetries cabe used by meaof tre

» Clause verices arepanted with color 1 and dlliteral vertices known symmery-breaking predicates(SBP)ior SAT [4] becausehose

(positiveandnegative) with colog. are abogpplicable to 0-1 ILPs.

As the runtimeof gragh auomarphism tools usuallyncreases with 4.1 Graph construction for PB for mulas

growing number of vertices, eachrizly clause cabe represented with Gjven a formula withV valiales, C clauses, an® PB constraints,
a singleedge betweethetwo literal vertices rather than a veréx and  \ve puild a grap as follows:

two edges. This optimizian ca, in some @ses, result in spurious
graph automorphisms [3fortunatelythis is uncommonin CNF apgi-
cations, angpuious gaphsymmeties aresasy to tesfor [3].

3.2 Using symmetries

Symmetries induce an equivalenctatien on the set of truth assign-
ments ofthe CNF fomula, aml evey equivalence cks (orbit)contains
eithersatisfing assignments dnor unsatisfying assignments only [7].
Therefoe SAT-solving can &spedup, without afecting correctness,
by consideringonly a few repesematives (& least ong from e&h
equivalence class. Thiorstraint canbe convenientlyrepresented by
conjoining adlitional clases(symmety-breakirg predicates - SBPs) to
the original CNF forrmula. One paticular family of represetatives are
lexicogragphically smdlest assgnment in each equivalence class(lex-
leades). Crawford et al[7] introduced an SBP consfition whose
CNF represatation is quadréic in the umber of problem variables.
Their canstruction assumesgiven variable orderirg; <x,<... X,
and prodaes a permutation predicdfP) for eaclpermutational sym-
metry in thegroup of symnetries as folbws:

PP(m) = -~ { ) (xj = xj“)} = (X <xT) 2)
1<i<nll<j<i-1
where xT is theimage 6 variable x; under permutation .

Aloul etal. [4] described dogicdly equivalent, bumoreefficient
tauology-free SBP constiction, whose size isnear, raher than qua-
dratic, in the number of problemariales. In pratice smaller SBPs
may decrease seartime. Strongenpirical evidere in[4] showsthat
full symmetry beaking is unnecessary arbat partial symmetry
breakingis often more effectivebecause the numbef symmetries
can be ery large.In particular, theauthors showed that applying sym-
metry-breakng to the generatotof the grop of symmetries rather

* Variablesaretreaed exadly the sameasin the CNF cese.

* Any nonPB (ure CNF) clauses are also treatest jike in the
CNF case.

» Clause vetices argpanted in cobr 1; literd verticesin color 2.

* Literalsin aPBconstrant P; are organized asfollows

— Theliterds in P, aresortel by coefficientvaue, andliterds
with the same coefficient aggoupedtogether Thus, ifthele
are M different coefficients inP,, we hae M disjoint
growps of literals,Lq, ..., L.

— For each group ofiterals, L. , with the same coefficieng
single vertexX; ; (coeficient vetex) is crededto represnt
the coeficient value. Edes ae then added to conneitiis
vertexto each literal vertex in thgroup.

— A different coloris used fa each distinct coefficient value
enounered in the formubl. This means tha coefficient
vertices tha representthe same coefficient vdue in different
constaints ae colored he same

* Each PB constrair®; isitselfrepesentedy a simgle vertexy;
(PB constraint vertexrdges are added torueectY; to each of
the codficient vertices, Xi,1> '”7Xi,M tha represait its M
distinct coefficients.

* The verticeSYl, YP are colorecdccording to th constraint’s
right-handside (RHS) valué . Every urique valueb impliesa
new cdor, and verticesepreenting different constraints with
the sane RHS value arecolored thesame.

3. Gereratars repreent aset of symmetieswhose product generates
thecomplete st of symmetries. Arirredundantset ofgenerators for
a groupwith N> 1 symmetries consists af mog log,N symme:
tries [11].



Table 1. Search runtimes of PB formulas with and
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without SBPs (for generators only) using PBS.

Alternative PB encoding CNF-only encoding

Instance |9/ Instance size Symmetry Statistics [[ PBStime Instance size Symmetry statistics PBStime

name U Orig SBP SAUCY # # Orig w/ Orig SBP SAUCY # # Orig w/

\ C PB| V C time Sym Gen SBP|| V C \ C time Sym | Gen SBP

hole7 U|[ 56 8 7197 362| 001 20E+08 1I3][ 011 O |[ 56 204 [ 97 362 | 001 20E+08 13 0.2 0
hole8 u|| 72 9 8 | 127 478 || 001 15E+10 15| 064 O || 72 297 [127 478 || 0.01 15E+10 15 || 42 0
hole9 Ul 90 10 9 (161 610| 001 13E+12 17 | 735 O || 90 415 |161 610 || 0.01 1.3E+12 17 || 111 O
holel0 U110 11 10(199 758 | 001 15E+14 19 || 663 O ||110 561 [199 758 || 001 15E+14 19 || 850 O
holell U132 12 1211|241 922 || 001 19E+16 21 || 431 0 |[132 738 (241 922 || 0.02 1.9e+16 21 |[>1000 0.01
fpgal0_8 S|[120 88 18[256 980 || 002 67E+I1 22| 349 0 |[1I20 448 [256 980 || 0.01 6.7E+11 22 ][ 132 O
fpgal0_9 S|[135 99 119|223 846 || 002 15E+13 23 |[>1000 O |{135 549 |[223 846 || 002 15E+13 23 || 475 O
fpgal3d 10 |S||{ 195 140 23|334 1280| 006 19E+17 28 (|>1000 0.01|| 195 905 |334 128 || 0.04 1.9E+17 28 (|>1000 0.02
fpgal3d 11 S|| 215 154 24|371 1424 006 13E+19 30 |[>1000 0.03|| 215 1070 |371 1424| 0.05 1.3E+19 30 ||>1000 0.02
fpgal3 12 |S||{ 234 168 25|406 1560| 0.08 9.0E+20 32 (|>1000 0.05|| 234 1242 | 406 1560|| 0.07 9.0E+20 32 (|>1000 0.02
chnl10_11 U|[220 22 20|508 1%4|| 005 42E+28 39 65 0 |[220 1122 [508 194 || 0.04 4.2E+28 39 || 628 O
chnl10_12 |U|[ 240 24 20|556 2142 006 60E+30 41 93 0 || 240 1344 [556 2142 0.05 6.0E+30 41 |[>1000 O
chnl10_13 |U|[260 26 20|604 2330 007 10E+33 43 || 112 O (/260 1586 |604 2330|| 005 1.0E+33 43 ||>1000 O
chnl11_12 Ul 264 24 22|614 2370|| 007 73E+32 43 || 719 0 || 264 1476 (614 237|| 0.06 7.3E+32 43 [[>1000 O
chnl1l 13 |U|[286 26 22|667 2578 009 12E+35 45| 743 O (/286 1742 |667 257| 0.07 1.2E+35 45 ||[>1000 O
chnlll 14 |U|[{ 308 28 22|720 2786| 0.10 24E+37 47 ||>1000 O || 308 2030 [720 27%|| 0.08 2.4E+37 47 |[>1000 O
grout-33-1 [S|[216 572 12 24 92 0.01 4 2 ][ 004 0 |[216 37292] 24 92 211 4 2 0.07 005
grout-3.3-2 |S|{264 700 12| 60 230 || 0.01 48 5 1]/ 012 0 |[264 88480| 60 230 || 18.15 48 5 021 o1
grout-3.3-3 |S|{240 636 12| 60 230 || 0.01 32 5 || 005 0 |[240 58776| 60 230 || 10.34 32 5 011 0.05
grout-3.3-4 |S|({228 604 12| 36 138 | 0.01 12 3 || 004 0 |[228 47116 | 36 138 || 3.04 12 3 0.28 0.05
grout-3.3-5 |S|{240 634 12| 48 184 || 0.02 16 4 11 001 O ||240 58774| 48 184 7.8 16 4 009 0.1
grout-33u-1 [U|[ 624 1850 24| 72 282 || 007 8 3 102 0.58| 624 360650 72 282 224 8 3 |[>1000 103
grout-3.3u-2 |U|| 672 1988 24| 144 564 || 011 96 6 353 2.14|| 672 493388144 564 686 96 6 302 112
grout-3.3u-3 |U|| 624 1844 24| 96 376 || 0.07 16 4 420 3.00|| 624 360644 96 376 291 16 4 500 11
grout-3.3u-4 |U|| 672 1994 24|216 846 || 0.17 1152 9 || 9.88 0.33|| 672 493394| n/a n/a || >1000 na n/a || 203 n/a
grout-3.3u-5 |U|| 648 1924 24|264 1034 020 6912 11 || 147 0.05( 648 423124| n/a n/a || >1000 na n/a || 403 nla
otal - |[7365 13595 460[7104 27356][ 141  2.4E37 530][>8487 6.19][7365 2.4M [>6K >25K|[>3243 >2.4E37 >5I0|[>12K >116

Figure2 shows a graph #t represents a forrrula with both CNF
clauses and PB congaints CNF chuses ae repregnked asin Section
3, but PBconstraints havelifferent coefficiens and require special
treatment as explained above.rites Xl, and Xz’ 1 representhe
coefficient value of Jand areshown as upward triangles (for color),
while X; , amd X, , repreent the oefficient value of 2 and are
shownas downwardriangles (adifferent color). The two PB constraint
vertices,Yl and Y5, have the sameplor/shapesince te two PBcon-
straints have equal RHS valuegddiional information, inclding the
proof of correctness, cape found in [2].

4.2 Handling an optimization function

To acommodéde an optmization objedive in 0-1 ILP instances, one
hasto intersed the symmetriesof the FB condraints (which we dready
can detect) with the symmetriesof the objective. Rathahan find those
two growps sepaately andcomputethe intersection explicitly, wemod-
ify our original graph constructiaio producehe intersectin instantly.

The objective function isrepreented by a newertex of a unique
color (Note that wheher weare deling with a meximization or a nin-
imization objective does not affectrsyretries, hene this information
is ignored) and coeffient verticesn the same way aBB constraints
arerepresented. The functizertex ®nreds  its codficient vertices,
which cannect to literalsappearingn the objectivefunction with re-
speetive codficients. This @nstrudion prohibits dl PB symneties
that modify theobjective function.

When symmetries adetected foPB constraints, their usbrough
known SBPs for SAT symmetries is jifigd by the fact that we are still
deding with a mnstrant saisfaction problem onBooleanvariables.
However, additional reasong is required to siantiate the use dhe
sane SBPs in a optimization problem. The intuition hereis tha by
breaking symmetriespe can speed ugearch withouaffecting tle op-
timal costin the opimization protbem. Wenow stow that addingSBPs
presevesat least oneoptimal solution, and thus theptimalcost.

SBPsmug pick at leag onerepresentative frm every equivalence
class under symmetry. If one thuassjnment in such aarbit satisfies
all PB constraints, the sodo all assignnents inthe orbit All satisfying
assignmants in anorbit must havethe sane cost beause thg aresym
metric. Givenan optimizaton problem, there musieat leas onesolu-
tion with theoptimal cost. Bythearguments above, SBPs willgsene
at least one sdution from thesane orbit, ard that soluton must hag
thesame cost. Thughe opimal castis preserved

5. Experimental Results

Below we empirically evaluatgymmetry-breakng in 0-1 ILP. We use
an Intd Pertium IV 2.8 GHz mechine with 1 GB of RAM runtng
Linux. All time-outs ae 1000seconds. Oubenchmarks include-
stancedrom the pigeon-hole [10]pl€), global routinggrout) [1], and
FPGA routing(fpga, chnl) [18] sas. Weuse the PB SATsolver PBY1]
(with setings “-D 1 -z”) which incorporates moen techniques for
CNF-SAT implemeted inChaff [15] and also handles PB constraint
We usethe new graplauomarphismtool SAUCY [8] which is empir-
icadly faste than NAUTY [14] on all our benchrarks. Symmetry-
breaking preitates from [4] ar@ppled to generators of treymmetry
groups foundcby SAUCY.

Table 1 lists symmetry detection muntimes, the number afymme-
tries, andsymmety generatcs. The sie of the originalformula and tk
SBP, interms of thenumber of varables, clauss, and PB constraints,
areshown too. Theable alsoccomparesruntimes for solving original
instances and mnstances augnentd with SBPs. We also repbon a
CNF-only formulationdetived by conveing the PB constraintasing
the exponetial transformatn described in [1]SU indicates if the for-
mula is satsfiable or unsatfiable. Weobserve théollowing:

e All our instances havaructural synmetries,but none ofthose

are phase-shifymmaéries

* Thehole and FPGA routing instanseontain large numbers o

symmetries, which are coragtly represented usingredundant
sets of no moréhan 50 generators.
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e SAUCY deectsall symnetriesin each instanein afracion of a
secondfor PB formulas. Formalk expressed in CNF-only form
yield larger grapns on whichSAUCY runs muclslower.

» The adiition of SBPs using the construction defined in [4]
significantlyreduces ta SAT serch runime.

e Except forthe grout-3.3u-2 and grout-3.3u-3instances, al PB
formulas ae solvel in <1s wih thar SBPsNotetha the nunber
of symnetries ad gererators is smh in the grout-3.3u2 and
grout-3.3u-3instanes and sgesults in smallespeed-ups.

« Typically SAT search runtimefor CNFonly instanes exceed
those for PB ingtances. An exception is the instance grout-33u-
3 which issolved in 1.1sec with S®Bs addedo the CNF-only
formula, compred to 3secondsdr the PB fomula. Wefound
thatthis is a sideeffed of the VSIDS decision heuristic [15] used
in PBS which prefers fregently-occuring variables. Indeedhe
conversion to CNF replaces a sia@B constraint with multlp
CNFclauses, making some variebmore frequentin any case,
the synmery detction runtime in the CNF-only caseis 291
secondversus0.07seconds in thEB case.

¢ Runtimes 6 SAT-searctand synmetry-findingdo not corelate.

PB constraints can be exgssedas pureCNF constraint§and vice
versa) but symmetriearenot necessarilyreived during re-expres-
sion. One such conversion does add variales, but adds exmen-
tially many dauses [1]. While it preserve al symmetries, symmetry
detection ratimes signifcantly increase as seen fromTable 1. An al-
temate linear-overhead cweearsionused in [1]for global roding uses
additionalvariables to simute “counting” constraits. It avoidexpo-
nential overheadbut obsctes orignal symmetries because it uses
adderandcomparatorcircuitsto enfoce couning constraints. The di-
redional nature of thecomparaor isincompdible with symnetry.

In alternateexperiments we pace PBS by the bet commercial
ILP solver CPLEX [2] (version 70) and faind that symmetry-break-
ing slows dwn CPLEX. Wecanna currently explainthis becausénhe
specific algorithms used by CPLEate not described publicly. It is
known that symmetry-brealg slowsdown stochastic sea for Bool-
ean Satisfiabilityf17], e.g., theheuistic sover WalkSAT [19]. Yet, al
major complete SAT solveraresped-up bysymmetry-eaking [3].

To evaluate symmetry-breialg in Booleanoptimization poblems,
wetested Max-SAT instarces fromFPGA routing and # optimization
versionof the pigeon-hole problem extition to Ma-ONEs instances
from the FPGA rauting andn-queens set. Max-SAT @lems seela
variable assgnmentto maimizes the numbenof satisfied CNFelauses,
and Max-ONE instaces se& to maximize the nurber of vaiables sé
to 1in a satfiade instace. The Max-SAT and Max-ONEs instees
werecorstructed following [1]. Theesults ofrelevantexperiments are
given in Table2 and Tables, respetively. The tables showsymmetry
detection runtimes, numbef symmetries, andymmetrygenerators.
Runtimes for solving original instances versus instancasgmented
with SBRs are also $own. “ Unsat” in Table 2 indicates the minimum
(i.e. optimal)number oforiginal unsaisfiable clauss.“ MaxOnes' in
Table3 gives the ptimal numter of 1sin a satisfyingassignment. Our
instances contain a large numbersgimetries, and ae ©lved much
fasterwhen ymmetry-breaking is used.

6. Conclusions

Our work seeks to capterandexplat structure in Booleaproblems.
We describe how tqre-pracess 0-1L P instances to déed symnetries

anduse tlem tospeedup searctard optimization. Empiricallywe ob-

tain a speedupfseveral orders ahagnitude orsomeapplication-de-

rived instances, e.g., FPGA raugi We show that rexpressing PB
constrantsin termsof CNF may lead to the loss d symmetry informa-

tion or cause aubstantial increase problem size. Ongoing wodeals
with (i) improvedgraph constructins, ad (i) EDA applications.

Table 2. Results of the Max-SAT experiment

Unsat instance Symmetry statistics PBStime

Name \ C

SAUCY 7 7 ——WI
time sym  Gen| OMi9 gBp

chnl7.9 [126 52
chnl8 9 |144 594
chnl8_10 |160 740
chnl9_10 |180 830
chnl9_11 |198 1012

047 6.7E+18 29 [>I1000 0.37
0.56 43E+20 31 35 043
! 43E+22 33 | >1000 0.95
1.10 35E+24 35| 438 0.37
2.01 4.2E+26 37 | >1000 10.8

hole7 56 204 004 (7)(®) 13 | 032 00L
holes 72 297 009  (8)9) 15| 751 001
hole9 90 415 019 (90 17| 76 003

hole1l0 110 561
holell 132 73

036  (100)(11) 19 |>1000 0.02
066 (11)(12!) 21 |>1000 0.06

[ENENEN NN N NN 2V 1
[N
o
@

Table 3. Results of the Max-ONE experiment

Satisfiable instance 3 Symmetry dtatistics PBStime
Q | saucy # # owl
Name [V  C 8| tme  sym  Gen Orig  op
fpga8_7 84 273 [14] 001  4.2E+08 17 [>1000 0.01
fpgad_7 95 317 14| 001  21E+09 18 |>1000 0.01
fpga9_8 108 396 |16| 0.01 6.7E+10 20 | >1000 0.01
fpgal0_8 120 448 |16| 001  67E+11 22 [>1000 0.01
5-queens 125 6460( 5 0.02 8(5N 6 181 004
6-queens 216 16320| 6 0.03 8(6") 7 |>1000 0.64
7-queens 343 3538| 7 | 0.09 8(7!) 8 |>1000 9.87
8-queens 512 69776 8 | 0.27 8(8") 9 |>1000 214
Acknowledgments. This work was fundeh part by NSF ITR Grant
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