
F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah

Abstract
Many important tasks in circuit design and verification can be per-
formed in practice via reductions to Boolean Satisfiability (SAT), mak-
ing SAT a fundamental EDA problem. However such reductions often
leave out application-specific structure, thus handicapping EDA tools
in their competition with creative engineers. Successful attempts to rep-
resent and utilize additional structure on Boolean variables include re-
cent work on 0-1 Integer Linear Programming (ILP) and on symmetries
in SAT. Those extensions gracefully accommodate well-known ad-
vances in SAT-solving, but their combined use has not been attempted
previously. Our work shows (i) how one can detect and use symmetries
in instances of 0-1 ILP, and (ii) what benefits this may bring.

1. Introduction
Recent impressive speed-ups of solvers for Boolean satisfiability
(SAT) [15] enabled new applications in design automation [1, 10, 16].
Reducing an application to SAT facilitates the reuse of existing effi-
cient computational cores and leads to high-performance EDA tools
with little development effort. However, major concerns about this ap-
proach are the loss and ignorance of high-level information and appli-
cation-specific structure. With this in mind, researchers successfully
extended leading algorithms for SAT-solving to handle more powerful
constraint representations, e.g., 0-1 Integer Linear Programming (ILP)
[1, 5, 6]. Another broad avenue of research leads to pre-processors for
existing solvers and constraint representations, that extract high-level
information and guide the solvers accordingly [3, 4, 7]. Our work ex-
tends existing techniques for detecting and using symmetries in SAT to
the more general 0-1 ILP formulation that includes pseudo-Boolean
(PB) constraints and an optional optimization objective.

In this paper, we contribute a framework for detecting and using
symmetries in instances of 0-1 ILP. When applied to SAT instances
encoded as 0-1 ILPs, our framework works at least as well as those in
[3, 4, 7]. In general, it detects all existing structural permutational sym-
metries, phase shift symmetries, and their compositions. We present
experimental evidence showing that EDA problems expressed in PB
form (i) sometimes have symmetries, and (ii) can be solved faster
within our framework than previously.

The remainder of the paper is organized as follows. Section 2 pre-
sents a brief description of the CNF and PB representations. Section 3
presents the framework for detecting and using symmetries in CNF
formulas. The framework is extended to handle PB formulas in Section
4. We show experimental results in Section 5, and the paper concludes
in Section 6.

2. Preliminaries
A Boolean formula given in conjunctive normal form (CNF) con-
sists of a conjunction of clauses, where each clause is a disjunction of
literals. A literal is either a variable or its complement. A clause is sat-
isfied if at least one of its literals has a value of 1, unsatisfied if all its
literals are 0, and unresolved otherwise. Consequently, a formula is sat-
isfied if all its clauses are satisfied, and unsatisfied if at least one clause
is unsatisfied. The goal of the SAT solver is to identify an assignment
to a set of binary variables that would satisfy the formula or prove that
no such assignment exists (and that the formula is unsatisfiable).

In addition to CNF constraints, a Boolean formula can include PB
constraints which are linear inequalities with integer coefficients1 of
the form:

(1)

where and are literals of Boolean variables2. Using
the relations , , and

 any arbitrary PB constraint can be converted
to the normalized form of (1) consisting of only positive coefficients.
This normalization facilitates more efficient algorithms.

Figure 1(a) illustrates the difference between the CNF and PB en-
codings for the pigeon-hole (hole-2) instance. The instance can be rep-
resented by 6 variables, 9 clauses, and 18 literals when using the CNF
encoding or by 6 variables, 5 PB constraints, and 12 literals when us-
ing the PB encoding. Clearly, PB constraints are more efficient than
CNF clauses in representing counting constraints.

3. Detecting and Using CNF Symmetries
Leading-edge complete SAT solvers [15] implement the basic Davis-
Logemann-Loveland (DLL) algorithm [9] for backtrack search with
various improvements. This algorithm has exponential worst-case
complexity and, despite dramatic improvements for practical inputs,
the runtime of those SAT solvers grows exponentially with the size of
the input on various instances. The work in [3, 4, 7] empirically showed
that the use of symmetry-breaking predicates (i) makes runtime on
those instances polynomial, and (ii) speeds up the solution of some ap-
plication-derived instances. Crawford et al. [7] presented a theoretical
framework for detecting and using permutational symmetries in CNF
formulas. An extension of this framework in [3] showed how to detect
phase-shift symmetries (i.e. symmetries that map variables to their
complements) and their compositions with permutational symmetries.
Asymptotic efficiency of these techniques was improved in [4]. The
general framework is described next.

M

1. Floating-point coefficients are also easily handled [1].
2. Any CNF clause can be viewed as a PB constraint, e.g. clause

 is equivalent to .

Figure 1. Two possible encodings of the unsatisfiable pigeon-hole
instance consisting of 2 holes and 3 pigeons using CNF and PB
constraints. denotes pigeon in hole Pij i j

Constraint
Each pigeon
must be in at
least one hole

Each hole can hold at most
one pigeon

CNF-only
Encoding

Alternative
PB

Encoding

P11 P12�� �

P21 P22�� �

P31 P32�� �

P11 P21�� � P11 P31�� �

P21 P31�� � P12 P22�� �

P12 P32�� � P22 P32�� �

P11 P12+ 1t� �

P21 P22+ 1t� �

P31 P32+ 1t� �

P11 P21 P31+ + 1d� �

P12 P22 P32+ + 1d� �

a1x1 a2x2 } anxn+ + + bd

ai b Z+�� xi

a b c� �� � a b c+ + 1t� �

xi 1 xi–� �= Ax b=� � Ax bd� � Ax bt� ��

Ax bt� � Ax– b–d� ��

ShatterPB: Symmetry-Breaking for Pseudo-Boolean Formulas
Fadi A. Aloulb, Arathi Ramania, Igor L. Markova, Karem A. Sakallaha

{faloul, ramania, imarkov, karem}@umich.edu
aDepartment of EECS, University of Michigan, Ann Arbor, USA

bSchool of Computer Engineering, American University in Dubai, UAE

0-7803-8175-0/04/$17.00c©2004 IEEE. 1

ASP-DAC 2004 Proceedings (10C-5)

3.1 Detecting symmetries via graph automorphism

Given a graph, a symmetry (also called an automorphism) is a permuta-
tion of its vertices that maps edges to edges. For a directed graph, edge
orientations must be maintained. The collection of symmetries of a
graph is closed under composition and is known as the automorphism
group of the graph. The problem of finding all symmetries of the graph
is known as the graph automorphism problem. Efficient tools for de-
tecting graph automorphism have been developed, such as NAUTY
[14] and SAUCY [8].

Structural symmetries in CNF formulas can be detected via a reduc-
tion to graph automorphism [13]. A CNF formula is represented as an
undirected graph with colored vertices such that the automorphism
group of the graph is isomorphic to the symmetry group of the CNF
formula. The two groups must share a one-to-one correspondence and
also be isomorphic to enable the use of group generators as explained in
the Section 3.2.

Assuming a CNF formula with vertices and clauses (single-
literal clauses are removed by preprocessing the CNF formula), a graph
is constructed as follows:

• A single vertex represents each clause (clause vertices).
• Each variable is represented by two vertices: positive and

negative literals (literal vertices).
• Edges are added connecting a clause vertex to its respective

literal vertices (incidence edges).
• Edges are added between opposite literals (Boolean consistency

edges).
• Clause vertices are painted with color 1 and all li teral vertices

(positive and negative) with color 2.
As the runtime of graph automorphism tools usually increases with

growing number of vertices, each binary clause can be represented with
a single edge between the two literal vertices rather than a vertex and
two edges. This optimization can, in some cases, result in spurious
graph automorphisms [3]. Fortunately, this is uncommon in CNF appli-
cations, and spurious graph symmetries are easy to test for [3].

3.2 Using symmetries
Symmetries induce an equivalence relation on the set of truth assign-
ments of the CNF formula, and every equivalence class (orbit) contains
either satisfying assignments only or unsatisfying assignments only [7].
Therefore SAT-solving can be sped up, without affecting correctness,
by considering only a few representatives (at least one) from each
equivalence class. This constraint can be conveniently represented by
conjoining additional clauses (symmetry-breaking predicates - SBPs) to
the original CNF formula. One particular family of representatives are
lexicographically smallest assignments in each equivalence class (lex-
leaders). Crawford et al. [7] introduced an SBP construction whose
CNF representation is quadratic in the number of problem variables.
Their construction assumes a given variable ordering
and produces a permutation predicate (PP) for each permutational sym-
metry in the group of symmetries as follows:

(2)

where is the image of variable under permutation .
Aloul et al. [4] described a logically equivalent, but more efficient

tautology-free SBP construction, whose size is linear, rather than qua-
dratic, in the number of problem variables. In practice smaller SBPs
may decrease search time. Strong empirical evidence in [4] shows that
full symmetry breaking is unnecessary and that partial symmetry
breaking is often more effective, because the number of symmetries
can be very large. In particular, the authors showed that applying sym-
metry-breaking to the generators3 of the group of symmetries rather

than the entire set of symmetries is suffi cient to yield significant runt-
ime and memory reductions.

4. Detecting and Using PB Symmetries
Similar to the techniques from [3] (summarized in Section 3), we build
a graph whose automorphism group is isomorphic to the group of PB
symmetries. A graph automorphism program would produce generators
of the automorphism group, which we reapply to the original PB in-
stance. The isomorphism of the two symmetry groups is required to im-
plicitly manipulate these groups in terms of generators. While our graph
construction is novel, detected symmetries can be used by means of the
known symmetry-breaking predicates (SBP) for SAT [4] because those
are also applicable to 0-1 ILPs.

4.1 Graph construction for PB formulas

Given a formula with variables, clauses, and PB constraints,
we build a graph as follows:

• Variables are treated exactly the same as in the CNF case.
• Any non-PB (pure CNF) clauses are also treated just like in the

CNF case.
• Clause vertices are painted in color 1; literal vertices in color 2.
• Literals in a PB constraint are organized as follows:

– The literals in are sorted by coefficient value, and li terals
with the same coefficient are grouped together. Thus, if there
are different coefficients in , we have disjoint
groups of literals, .

– For each group of literals, , with the same coefficient, a
single vertex (coefficient vertex) is created to represent
the coefficient value. Edges are then added to connect this
vertex to each literal vertex in the group.

– A different color is used for each distinct coefficient value
encountered in the formula. This means that coefficient
vertices that represent the same coefficient value in different
constraints are colored the same.

• Each PB constraint is itself represented by a single vertex
(PB constraint vertex). Edges are added to connect to each of
the coeffi cient vertices, that represent its
distinct coefficients.

• The vertices are colored according to the constraint’s
right-hand side (RHS) value . Every unique value implies a
new color, and vertices representing different constraints with
the same RHS value are colored the same.

V C

x1 x2 } xn� ��

PP S� � xj xj
S

=� �

1 j i 1–d d

� xi xi
Sd� �o

1 i nd d

�=

xi
S xi S

3. Generators represent a set of symmetries whose product generates
the complete set of symmetries. An irredundant set of generators for
a group with symmetries consists of at most symme-
tries [11].

N 1! N2log

V C P

Pi
Pi

M Pi M
L1 } Lm� �

Lj
Xi j�

Pi Yi
Yi

Xi 1� } Xi M�� � M

Y1 } YP� �

b b

Figure 2. Example showing the graph representing formula .
Different vertex shapes corresponds to different vertex colors.

M

M x1 x2 x3� �� � =

C1: x1 x2 x3+ +� ��

C2: x2 x3+� ��

P1: 2x1 x2 x3 2t+ +� ��

P2: x1 2x2 x3 2t+ +� �

C1

Y1Y2

X1 2�

X1 1�X2 1� X2 2�

x1 x1 x3x2x2 x3

2

F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah

Figure2 shows a graph that represents a formula with both CNF
clauses and PB constraints. CNF clauses are represented as in Section
3, but PB constraints have different coefficients and require special
treatment as explained above. Vertices and represent the
coefficient value of 1 and are shown as upward triangles (for color),
while and represent the coefficient value of 2 and are
shown as downward triangles (a different color). The two PB constraint
vertices, and , have the same color/shape since the two PB con-
straints have equal RHS values. Additional information, including the
proof of correctness, can be found in [2].

4.2 Handling an optimization function
To accommodate an optimization objective in 0-1 ILP instances, one
has to intersect the symmetries of the PB constraints (which we already
can detect) with the symmetries of the objective. Rather than find those
two groups separately and compute the intersection explicitly, we mod-
ify our original graph construction to produce the intersection instantly.

The objective function is represented by a new vertex of a unique
color (Note that whether we are dealing with a maximization or a min-
imization objective does not affect symmetries, hence this information
is ignored) and coefficient vertices in the same way as PB constraints
are represented. The function vertex connects to its coeffic ient vertices,
which connect to literals appearing in the objective function with re-
spective coeffic ients. This construction prohibits all PB symmetries
that modify the objective function.

When symmetries are detected for PB constraints, their use through
known SBPs for SAT symmetries is justified by the fact that we are still
dealing with a constraint satisfaction problem on Boolean variables.
However, additional reasoning is required to substantiate the use of the
same SBPs in an optimization problem. The intuition here is that by
breaking symmetries, one can speed up search without affecting the op-
timal cost in the optimization problem. We now show that adding SBPs
preserves at least one optimal solution, and thus the optimal cost.

SBPs must pick at least one representative from every equivalence
class under symmetry. If one truth assignment in such an orbit satisfies
all PB constraints, then so do all assignments in the orbit. All satisfying
assignments in an orbit must have the same cost because they are sym-
metric. Given an optimization problem, there must be at least one solu-
tion with the optimal cost. By the arguments above, SBPs will preserve
at least one solution from the same orbit, and that solution must have
the same cost. Thus, the optimal cost is preserved.

5. Experimental Results
Below we empirically evaluate symmetry-breaking in 0-1 ILP. We use
an Intel Pentium IV 2.8 GHz machine with 1 GB of RAM running
Linux. All time-outs are 1000 seconds. Our benchmarks include in-
stances from the pigeon-hole [10] (hole), global routing (grout) [1], and
FPGA routing (fpga, chnl) [18] sets. We use the PB SAT solver PBS [1]
(with settings “-D 1 -z”) which incorporates modern techniques for
CNF-SAT implemented in Chaff [15] and also handles PB constraints.
We use the new graph automorphism tool SAUCY [8] which is empir-
ically f aster than NAUTY [14] on all our benchmarks. Symmetry-
breaking predicates from [4] are applied to generators of the symmetry
groups found by SAUCY.

Table1 lists symmetry detection runtimes, the number of symme-
tries, and symmetry generators. The size of the original formula and the
SBP, in terms of the number of variables, clauses, and PB constraints,
are shown too. The table also compares runtimes for solving original
instances and instances augmented with SBPs. We also report on a
CNF-only formulation derived by converting the PB constraints using
the exponential transformation described in [1]. S/U indicates if the for-
mula is satisfiable or unsatisfiable. We observe the following:

• All our instances have structural symmetries, but none of those
are phase-shift symmetries.

• The hole and FPGA routing instances contain large numbers of
symmetries, which are compactly represented using irredundant
sets of no more than 50 generators.

X1 1� X2 1�

X1 2� X2 2�

Y1 Y2

Table 1. Search runtimes of PB formulas with and without SBPs (for generators only) using PBS.
Alternative PB encoding CNF-only encoding

Instance
name

S/
U

Instance size Symmetry statistics PBS time Instance size Symmetry statistics PBS time
Orig SBP SAUCY

time
#

Sym
#

Gen Orig w/
SBP

Orig SBP SAUCY
time

#
Sym

#
Gen Orig w/

SBPV C PB V C V C V C

hole7 U 56 8 7 97 362 0.01 2.0E+08 13 0.11 0 56 204 97 362 0.01 2.0E+08 13 0.2 0
hole8 U 72 9 8 127 478 0.01 1.5E+10 15 0.64 0 72 297 127 478 0.01 1.5E+10 15 4.2 0
hole9 U 90 10 9 161 610 0.01 1.3E+12 17 7.35 0 90 415 161 610 0.01 1.3E+12 17 111 0
hole10 U 110 11 10 199 758 0.01 1.5E+14 19 66.3 0 110 561 199 758 0.01 1.5E+14 19 850 0
hole11 U 132 12 11 241 922 0.01 1.9E+16 21 431 0 132 738 241 922 0.02 1.9E+16 21 >1000 0.01

fpga10_8 S 120 88 18 256 980 0.02 6.7E+11 22 349 0 120 448 256 980 0.01 6.7E+11 22 13.2 0
fpga10_9 S 135 99 19 223 846 0.02 1.5E+13 23 >1000 0 135 549 223 846 0.02 1.5E+13 23 475 0
fpga13_10 S 195 140 23 334 1280 0.06 1.9E+17 28 >1000 0.01 195 905 334 1280 0.04 1.9E+17 28 >1000 0.02
fpga13_11 S 215 154 24 371 1424 0.06 1.3E+19 30 >1000 0.03 215 1070 371 1424 0.05 1.3E+19 30 >1000 0.02
fpga13_12 S 234 168 25 406 1560 0.08 9.0E+20 32 >1000 0.05 234 1242 406 1560 0.07 9.0E+20 32 >1000 0.02
chnl10_11 U 220 22 20 508 1954 0.05 4.2E+28 39 65 0 220 1122 508 1954 0.04 4.2E+28 39 628 0
chnl10_12 U 240 24 20 556 2142 0.06 6.0E+30 41 93 0 240 1344 556 2142 0.05 6.0E+30 41 >1000 0
chnl10_13 U 260 26 20 604 2330 0.07 1.0E+33 43 112 0 260 1586 604 2330 0.05 1.0E+33 43 >1000 0
chnl11_12 U 264 24 22 614 2370 0.07 7.3E+32 43 719 0 264 1476 614 2370 0.06 7.3E+32 43 >1000 0
chnl11_13 U 286 26 22 667 2578 0.09 1.2E+35 45 743 0 286 1742 667 2578 0.07 1.2E+35 45 >1000 0
chnl11_14 U 308 28 22 720 2786 0.10 2.4E+37 47 >1000 0 308 2030 720 2786 0.08 2.4E+37 47 >1000 0

grout-3.3-1 S 216 572 12 24 92 0.01 4 2 0.04 0 216 37292 24 92 2.11 4 2 0.07 0.05
grout-3.3-2 S 264 700 12 60 230 0.01 48 5 0.12 0 264 88480 60 230 18.15 48 5 0.21 0.11
grout-3.3-3 S 240 636 12 60 230 0.01 32 5 0.05 0 240 58776 60 230 10.34 32 5 0.11 0.05
grout-3.3-4 S 228 604 12 36 138 0.01 12 3 0.04 0 228 47116 36 138 3.04 12 3 0.28 0.05
grout-3.3-5 S 240 634 12 48 184 0.02 16 4 0.01 0 240 58774 48 184 7.8 16 4 0.09 0.1
grout-3.3u-1 U 624 1850 24 72 282 0.07 8 3 102 0.58 624 360650 72 282 224 8 3 >1000 103
grout-3.3u-2 U 672 1988 24 144 564 0.11 96 6 353 2.14 672 493388 144 564 686 96 6 30.2 11.2
grout-3.3u-3 U 624 1844 24 96 376 0.07 16 4 420 3.00 624 360644 96 376 291 16 4 5.00 1.1
grout-3.3u-4 U 672 1994 24 216 846 0.17 1152 9 9.88 0.33 672 493394 n/a n/a >1000 n/a n/a 2.03 n/a
grout-3.3u-5 U 648 1924 24 264 1034 0.20 6912 11 14.7 0.05 648 423124 n/a n/a >1000 n/a n/a 4.03 n/a

Total - 7365 13595 460 7104 27356 1.41 2.4E37 530 >8487 6.19 7365 2.4M >6K >25K >3243 >2.4E37 >510 >12K >116

3

ASP-DAC 2004 Proceedings (10C-5)

• SAUCY detects all symmetries in each instance in a fraction of a
second for PB formulas. Formulas expressed in CNF-only form
yield larger graphs on which SAUCY runs much slower.

• The addition of SBPs using the construction defined in [4]
significantly reduces the SAT search runtime.

• Except for the grout-3.3u-2 and grout-3.3u-3 instances, all PB
formulas are solved in <1s with their SBPs. Note that the number
of symmetries and generators is small in the grout-3.3u-2 and
grout-3.3u-3 instances and so results in smaller speed-ups.

• Typically SAT search runtimes for CNF-only instances exceed
those for PB instances. An exception is the instance grout-3.3u-
3 which is solved in 1.1 sec with SBPs added to the CNF-only
formula, compared to 3 seconds for the PB formula. We found
that this is a side-effect of the VSIDS decision heuristic [15] used
in PBS which prefers frequently-occurring variables. Indeed, the
conversion to CNF replaces a single PB constraint with multiple
CNF clauses, making some variables more frequent. In any case,
the symmetry detection runtime in the CNF-only case is 291
seconds versus 0.07 seconds in the PB case.

• Runtimes of SAT-search and symmetry-finding do not correlate.
PB constraints can be expressed as pure CNF constraints (and vice

versa), but symmetries are not necessarily preserved during re-expres-
sion. One such conversion does not add variables, but adds exponen-
tially many clauses [1]. While it preserves all symmetries, symmetry
detection runtimes significantly increase, as seen from Table1. An al-
ternate linear-overhead conversion used in [1] for global routing uses
additional variables to simulate “counting” constraints. It avoids expo-
nential overhead, but obscures original symmetries because it uses
adder and comparator circuits to enforce counting constraints. The di-
rectional nature of the comparator is incompatible with symmetry.

In alternate experiments we replace PBS by the best commercial
ILP solver CPLEX [12] (version 7.0) and found that symmetry-break-
ing slows down CPLEX. We cannot currently explain this because the
specific algorithms used by CPLEX are not described publicly. It is
known that symmetry-breaking slows down stochastic search for Bool-
ean Satisfiability [17], e.g., the heuristic solver WalkSAT [19]. Yet, all
major complete SAT solvers are sped-up by symmetry-breaking [3].

To evaluate symmetry-breaking in Boolean optimization problems,
we tested Max-SAT instances from FPGA routing and the optimization
version of the pigeon-hole problem in addition to Max-ONEs instances
from the FPGA routing and n-queens set. Max-SAT problems seek a
variable assignment to maximizes the number of satisfied CNF clauses,
and Max-ONE instances seek to maximize the number of variables set
to 1 in a satisfiable instance. The Max-SAT and Max-ONEs instances
were constructed following [1]. The results of relevant experiments are
given in Table2 and Table3, respectively. The tables show symmetry
detection runtimes, number of symmetries, and symmetry generators.
Runtimes for solving original instances versus instances augmented
with SBPs are also shown. “ ” in Table2 indicates the minimum
(i.e. optimal) number of original unsatisfiable clauses. “ ” in
Table3 gives the optimal number of 1s in a satisfying assignment. Our
instances contain a large number of symmetries, and are solved much
faster when symmetry-breaking is used.

6. Conclusions
Our work seeks to capture and exploit structure in Boolean problems.
We describe how to pre-process 0-1 ILP instances to detect symmetries
and use them to speed up search and optimization. Empirically, we ob-
tain a speedup of several orders of magnitude on some application-de-
rived instances, e.g., FPGA routing. We show that re-expressing PB
constraints in terms of CNF may lead to the loss of symmetry informa-
tion or cause a substantial increase in problem size. Ongoing work deals
with (i) improved graph constructions, and (ii) EDA applications.

Acknowledgments. This work was funded in part by NSF ITR Grant
#0205288.

7. References
[1] F. Aloul, A. Ramani, I. L. Markov, and K. Sakallah, “Generic ILP versus

Specialized 0-1 ILP,” in Proc. ICCAD, 450-457, 2002.
[2] F. Aloul, A. Ramani, I. L. Markov, and K. Sakallah, “Symmetry-Breaking

for Pseudo-Boolean Formulas,” in SymCon, 1-12, 2003.
[3] F. Aloul, A. Ramani, I. L. Markov, and K. Sakallah, “Solving Dif ficult

Instances of Boolean Satisfiability in the Presence of Symmetries,” to
appear in IEEE Trans. on Computer Aided Design, September 2003.

[4] F. Aloul, I. L. Markov, and K. Sakallah, “Shatter: Efficient Symmetry-
Breaking for Boolean Satisfiability,” in Proc. DAC, 836-839, 2003.

[5] P. Barth, “A Davis-Putnam based Enumeration Algorithm for Linear
Pseudo-Boolean Optimization,” Technical Report MPI-I-95-2-003, Max-
Planck-Institut Für Informatik, 1995.

[6] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Constraint Solver,”
in Proc. DAC, 830-835, 2003.

[7] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-breaking
predicates for search problems,” in Proc. of the Intl. Conference Princi-
ples of Knowledge Representation and Reasoning, 148-159, 1996.

[8] P. Darga, “SAUCY: Graph Automorphism Tool,” http://
www.eecs.umich.edu/~pdarga/pub/auto/saucy.html

[9] M. Davis, G. Logemann, and D. Loveland, “A M achine Program for The-
orem Proving,” in Comm. of the ACM, 5(7), 394-397, 1962.

[10] DIMACS Challenge benchmarks,
ftp://Dimacs.rutgers.EDU/pub/challenge/sat/benchmarks/cnf

[11] M. Hall Jr., “The Theory of Groups”, McMillan, 1959.
[12] ILOG CPLEX, http://www.ilog.com/products/cplex.
[13] B. McKay, “Practical Graph Isomorphism,” in Congressus Numerantium,

vol. 30, 45-87, 1981.
[14] B. McKay, “NAU TY User’s Guide, Version 1.5,” Technical Report TR-

CS-90-02, Dep. of Computer Science, Australian Nat. Univ., 1990.
[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:

Engineering an Efficient SAT Solver,” in Proc. DAC, 530-535, 2001.
[16] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of

Two Boolean Formulations of FPGA Detailed Routing Constraints,” in
Proc. of Intl. Symp. on Physical Design (ISPD), 222-227, 2001.

[17] S. Preswitch, “Supersymmetric Modelling for Local Search”, in Intl.
Workshop on Symmetry on Constraint Satisfaction Problems, 2002.

[18] SAT Competition 2002, http://www.satcomp.org
[19] B. Selman, H. Kautz, and B. Cohen. “Noise strategies for local search,” in

Proc. AAAI, 337-343, 1994.

Unsat
MaxOnes

Table 2. Results of the Max-SAT experiment
Unsat instance

#U
ns

at Symmetry statistics PBS time

Name V C SAUCY
time

#
Sym

#
Gen Orig w/

SBP
chnl7_9 126 522 4 0.47 6.7E+18 29 >1000 0.37
chnl8_9 144 594 2 0.56 4.3E+20 31 35 0.43
chnl8_10 160 740 4 1.03 4.3E+22 33 >1000 0.95
chnl9_10 180 830 2 1.10 3.5E+24 35 438 0.37
chnl9_11 198 1012 4 2.01 4.2E+26 37 >1000 10.8
hole7 56 204 1 0.04 (7!)(8!) 13 0.32 0.01
hole8 72 297 1 0.09 (8!)(9!) 15 7.51 0.01
hole9 90 415 1 0.19 (9!)(10!) 17 76 0.03
hole10 110 561 1 0.36 (10!)(11!) 19 >1000 0.02
hole11 132 738 1 0.66 (11!)(12!) 21 >1000 0.06

Table 3. Results of the Max-ONE experiment
Satisfiable instance

M
a

xO
n

e
s Symmetry statistics PBS time

Name V C SAUCY
time

#
Sym

#
Gen Orig w/

SBP

fpga8_7 84 273 14 0.01 4.2E+08 17 >1000 0.01
fpga9_7 95 317 14 0.01 2.1E+09 18 >1000 0.01
fpga9_8 108 396 16 0.01 6.7E+10 20 >1000 0.01
fpga10_8 120 448 16 0.01 6.7E+11 22 >1000 0.01
5-queens 125 6460 5 0.02 8(5!) 6 18.1 0.04
6-queens 216 16320 6 0.03 8(6!) 7 >1000 0.64
7-queens 343 35588 7 0.09 8(7!) 8 >1000 9.87
8-queens 512 69776 8 0.27 8(8!) 9 >1000 214

4

