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Abstract to more compact problem encodings and faster problem-
olving. Work on PB constraints has been extended to
Rplean optimization through 0-1 Integer Linear Program-
ing (ILP). This may be attractive in formal verification
gcause some counter-examples are much more useful for
to checkingsatisfiability of certain conditions. However, ebugg"?g- For example, fqr a circuit containing a binary
there is also frequently a need to expresgreferencefor counter, it may be useful to find counter—gxamples or bugs at
he smallest value of the counter (since it presumably takes

certain solutions. Extending SAT-solving to Boolean o . )
g g pj er cycles to reach such a state). We can design an objec-

mization allows the use of objective functions to describe. . .
desirable solution. Although recent work in 0-1 Integer Lifive function that encourages counter-examples with smaller
integers in the binary counter, with weights in the objective

ear Programming (ILP) offers extensions that can optimiz#ﬂ ) . e
linear objective function, this is often achieved by solving gnctlon reflecting preferences for certain bits — the lower the

series of SAT or ILP decision problems. Our work articulat&‘ée'ghts’ fch.e lower the preference. Thus, by assigning nega-
ive coefficients to all bits in the counter value, we can bias

some pitfalls of this approach. An objective function ma?{ bt q I |  th tor. Such b
complicate the use of any symmetry that might be presen search toward smafier values ot the counter. such an ob-
gtive function, arithmetic-min, behaves in much the same

the given constraints, even when the constraints are unsatis X . . .
able and the objective function is irrelevant. We propose sd(RY as the MinLex SBPs discussed in the Appendix.

eral new techniques that treat objective functions diﬁeremlyExisting 0-1 ILP solvers PBS [2] and Galena [5] handle a
from CNF/PB constraints and accelerate Boolean optimi jen objective functiorf (-) by re-solving all PB/SAT con-

tion in many practica_l cases. \We alsg ‘?'eV?'Op an adapllye,inis with the added constraift) < C for varying values
ﬂ(.)w that analyzes a given I_300Iean 9pt|m|zat|9n problem a ij and without optimization. IfC is progressively low-
picks the symmetry-breaking technique that is best suite T’gd, the solver may retain its database of learned clauses.

the problem characteristics. Empirically, we show that fQ\r competitive approach involves a form of binary search

non-trivial objective functions that destroy constraint SYMi3, minf(-). We point out that objective functions should

metrie;, the benefit of stqtic symmetry-breaking is Ios_t br'rBt be handled simply by treating them as additional PB
dynamic symmetry-breaking accelerates prObIem'SOIV'ngc'@nstraints in the context of structure-aware SAT/ILP solv-

many cases. We also introduce a new objective function, lrr?g To this end we consider symmetry — a practical and ex-

calized Bit Selection (LBS), that can be used to Specifypi’oitable type of structure found in some application-derived

preference for bit values in formal verification applicationsSAT/ILP instances. Earlier work [6, 1] has shown that de-
: tecting and breaking symmetries in SAT instances acceler-
1 Introduction ates problem solving. This has recently been extended to
Recent well-documented breakthroughs in backtrack seadeh ILP in [4]. Importantly, high-performance techniques
for Boolean Satisfiability (SAT) have led to the developmefdr symmetry-breaking in SAT and ILP argtatic — all
of sophisticated exact SAT solvers such as Grasp, Cheffrk is done duringore-processing This is convenient be-
and BerkMin [12, 10, 9]. These developments strengitause no solver modifications are required. It also facilitates
ened traditional SAT applications, such as equivalence cheB&olean constraint propagation and conflict-driven learning
ing, ATPG and bounded model checking, and facilitated nevith respect to symmetry-breaking clauses. However, static
ones, including FPGA routing [11] and microprocessor vegymmetry-breaking is not fully suitable for Boolean opti-
fication [13]. Progress in SAT has been recently translat®ization and is outright incompatible with incremental sat-
to more general problem encodings using pseudo-Boolédiability. An objective function or new clauses added in
(PB) constraints [2, 5], which are linear inequalities with @he future may destroy existing symmetries in the original
1 variables and arbitrary coefficients. They are particulalBNF/PB constraints. Therefore, using those symmetries is
convenient for “counting”if-choosek) constraints, leadingin general incorrect. However, if the original constraints are

With impressive progress in Boolean Satisfiability (SA
solving and several extensions to pseudo-Boolean (PB) ¢
straints, many applications that use SAT, such as hi
performance formal verification techniques are still restrict



unsatisfiable, an objective function or future clauses maketaeoted using graph automorphism. The formula is expressed
difference, and symmetries could be helpful in concludiag an undirected graph such that the symmetry group of the
unsatisfiability faster. However, we cannot tell which assiggraph is isomorphic to the symmetry group of the CNF for-
ments satisfy constraints in advance. Once symmetry bremkda. Symmetries induce equivalence relations on the set
ing predicates (SBPs) are added, it is very difficult to track truth assignments of the CNF formula. All assignments
down and undo all clauses learned due to them. Therefdmean equivalence class result in the same truth value for
symmetries of existing constraints cannot be used at allthve formula. Therefore, it is only necessary to consider one
incremental satisfiability and are intersected with the syassignment from each class. Both [6, 1] propose adding
metries of the objective function in Boolean optimization. symmetry-breaking predicates (SBPs) that choose lexico-
We propose a new techniguiynamic symmetry-breakinggraphically smallest assignments, lex leadersfrom each
which adds SBPs when conflicts are identified during teguivalence class. These SBPs are added statically during
search process. This prunes all unsatisfying assignmengsprocessing. An efficient tautology-free SBP construc-
symmetric to the one that induced the conflict, acceleratitign, whose size is linear in the number of problem variables
optimization in cases where the objective function destrogsproposed in [3]. Symmetry detection and breaking via
many constraint symmetries. Dynamic symmetry-breakiggpph automorphism is extended to 0-1 ILP problems with
is also safe for incremental satisfiability. Unfortunately, dgbjective functions in [4], and empirical results show that
namic SBPs added later during the search may not asiistaddition of SBPs to PB formulas results in considerable
learning at the same rate as static SBPs added at the speedups for the 0-1 ILP solver PBS [2] on FPGA routing
set. However, they are more attractive than explicitly pruniagd ASIC global routing instances.
symmetric branches of the search tree which does not corFigures 1 and 2 illustrate how breaking symmetries is use-
tribute to learning at all. Another contribution in our workul. Figure 1 shows a formula with six CNF constraints, the
is the generalization of commonly-used static lex-leaderfour assignments that satisfy it, and an unpruned search tree
MinLex SBPs, introduced in [6], to account for a given objeésr the formula assuming variables are assigned in the order
tive function. This involves encoding the objective functiofa,b,c,d). Figure 2 (a) shows the two generators of the sym-
as a set of predicates so that it becomes part of the constramggry group for this formula, and the lex-leader SBPs added
and static symmetry-breaking can be applied. Unfortunatdty, each generator. Figure 2 (b) shows how the-26 possi-
arbitrary objective functions are not as well-suited to this aple assignments are partitioned into four equivalence classes
proach as the MinLex function, and it is not likely to be conunder the symmetry group. Lex-leader SBPs permit only the
petitive with dynamic symmetry-breaking in general. Sinenallest assignment from each class. Figure 2 (c) shows the
empirical results for static and dynamic symmetry-breakisffect of static SBPs on the search tree. Bold lines indicate
indicate that neither one is universally preferable to the othgruned search paths.
we propose a flow that picks the type of symmetry-breakingHandling Objective Functions. The work in [4] accom-
best suited to the problem in question. We perform an emedates optimization problems fiytersectingsymmetries
pirical comparison of static vs. dynamic symmetry-breaking the objective function and the constraints, and describes
on several application-derived decision and optimization &ppropriate graph constructions. Taking the intersection im-
stances, and point out that the adaptive flow we propgges that some constraint symmetries may be discarded.
would pick the best configuration in every case.

. . R . f(a,b,c,d):

The remainder of this paper is organized as follows. Sec- (a & 8 v

tion 2 reviews previous work in symmetry-breaking for (azord) v _
SAT and 0-1 ILP. Section 3 introduces dynamic symmetry- -y gy
b~ d v

breaking and explains its implementation in the PBS solver

[2]. Section 4 outlines our adaptive symmetry-breaking flow. abed
Experimental results are discussed in Section 5, and Section 1513
6 concludes the paper. The Appendix discusses SBPs tailored 9193
to a given objective function, such as MinLex.

2 Background

In this section, we survey previous work in symmetry-

breaking for SAT and 0-1 ILP. Currently, most symmetr ; ;

detectiogn approaches are static, and ydynamic symme{?fy— Dynamlc Symmetry-Breakmg

detection appears impractical. The Boolean Satisfiabilityhen SBPs are added statically, they are applied only to the

(SAT) and 0-1 ILP problems are well-known and have begnersection of the objective function and constraint symme-

extensively discussed in the literature [6, 1, 4, 5]. We do rteigs. This is necessary to ensure correctness because an opti-

define them here. mal assignment needs to have the best value for the objective
Recent work [6, 1] showed that breaking symmetries fanctionandsatisfy the constraints. Optimizing an objective

CNF formulas for SAT instances can prune the search speceritical to many applications. Formal verification applica-

and lead to significant runtime speedups. Symmetries areta®is can use an objective to specify a preference for solutions
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Figure 1:Formula with only CNF constraints with satis-
fying assignments and unpruned search tree.
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(0,1,0,0) and(0,1,0,1) have different values for the objec-
tive function (1 and 2 respectively). The search tree reverts to
EC1-[0000, 0001, 0010, 0011} the unpruned version of Figure 1. Figure 3 (b) shows a search
={0100, 0101, 1010, 1011} 4 . . . . .

M AT T ELEIEEEE] °°°°°°° with dynamic SBPs in progress. When a conflict-induced
(b) clause is learned, SBPs are applied to it so that any symmet-

ric images of it are also added to the clause database. Figure

3 (c) shows the effect of dynamic SBPs on the search tree,

symmetry generators and SBPs for the example in Fig-  \hare many unsatisfying assignments are eliminated. Bold
ure 1. Part (b) shows equivalence classes (ECs) induced lines indicate pruned search paths

by symmetries. Part (c) shows the pruning effect on the @ f(ab,c,d) =f(abcdn Max@+b +c+d)
search tree Bold lines indicate pruned paths. o o

Figure 2: Effect of SBPs on search tree. Part (a) shows

Search w. Dynamic SBPs:
Decision#1:a=1
Decision#2:b=1

that conform with statistical data. For example, the Local- pecision #3: ¢ =1
mply:d=1 d=afAd

ized Bit Selection (LBS) objective proposed in this work can Conflict#1:
. . . . Learn :(lonc) v

be used to find a solution with the desired percentages of 0s, Ap(ply g)ens. to
a Cc)v

1s and don't-cares, based on input frequencies known in ad-

vance. The MinLex objective can be used to find the smallest ®) (©) oe o o o oe

value of a counter that causes a bug. However, adding the ob- 0 00 011000 01 10 00 O

jective may destroy several constraint symmetries. Animpor- N _

tant observation is that constraint symmetries areahoays F19ure 3: Utility of dynamic SBPs. Part (a) shows the new
related to the objective function. For a satisfying assignmerftinction that includes an objective. Part (b) shows the cre-
overlooking symmetric assignments is incorrect because th&en of dynamic SBPs from conflict-induced clauses during
may have different values of the objective function. Howevep€arch- Part (c) shows the pruning of the search tree with
an unsatisfying assignment can never be optimal, and we c&yfiamic SBPs. Bold lines indicate pruned paths.

safely prune its symmetric images. This cannot be done stat- . L. .
ically, since it is not possible to tell whether an assignmends  Adaptive Boolean Optimization

satisfying before the search has even begun. This i”dicat?ﬁ/ﬁamic symmetry-breaking is most useful when the objec-
need for flexible schemes that cover symmetries more Qs fynction destroys many constraint symmetries. However,
prehensively. it is preferable to use static SBPs where possible to facilitate
We propose that symmetries be broken dynamically for Qehrning since they are added in advance. Even when the in-
ILP problems with objective functions. Our algorithm workgrsection of the objective function and constraint symmetries
as follows. Symmetries of theonstraintsare detected in ad-is small, static SBPs can be used to obtaim‘pper boundn
vance, but no SBPs are immediately added. Problem solMiRg objective function value. The constraint set is first solved
begins as usual using a modified 0-1 ILP solver. When an a§-an optimization problem, using static SBPs to break all
signmentinduces a conflict, SBPs are appdiaty to conflict- detected symmetries. If constraints are unsatisfiable, solv-
induced clausesliminating symmetric images of the unsaing is terminated. However, if a satisfying assignmeénis
isfying assignment. This can have no impact on the ogund, the value of the objective functiopfor ® is used
mal SOlUtion, since it affects Only UnsatiSfying aSSignmen&%, an upper bound by add|ng a constraint Specifying that the
However, SBPs added late in the search may not contritgfigective function value must b€ y. The problem is then
as much to conflict-driven learning and Boolean constragiflved using dynamic SBPs when unsatisfying assignments
propagation. Static SBPs contribute to learning because theYdetected, as explained in Section 3 above. This approach
are added in advance. The success of dynamic SBPs depgiélas us to utilize constraint symmetries to a greater extent.
on the objective function: if it destroys many constraint symtowever, there is a trade-off: symmetries found in the con-
metries, the improved coverage offered by dynamic SBPs &@ints cannot be applied to implications or conflict clauses
make up for the lack of learnindf considering the objec- |earned from the objective function, since there symmetries
tive function leaves the constraint symmetries unchanged,were found using constraints alone. Therefore, as soon as an
static SBPs will perform better since they break all the jmplication from the objective function is detected, we dis-
same symmetries without affecting learningOur results in aple all learning from SBPs.
Section 5 indicate that dynamic symmetry-breaking is effec-another potentially useful technique in Boolean optimiza-
tive when used with the MinLex and LBS objectives, whicljon is the use of optimization-aware SBPs, discussed in the
destroy all constraint symmetries. MinLex seeks the |eXi(‘,Qppendix_ The idea here is to encode the objective func-
graphically smallest assignment, and LBS seeks an assig@ih as a set of predicates that become part of the constraints.
ment with specified proportions of Os and 1s. This way, the whole problem can be solved usimdy static
Figure 3 shows the effect of dynamic SBPs. Figure 3 @BPs. However, optimization-aware SBPs are feasible only
shows the constraints from Figure 1 intersected with a max<ases where the optimization function is not too complex
imizing objective function. This destroys all constraint synte encode. They are unlikely to be competitive with dynamic
metries, because equivalent satisfying assignments, suchyasmetry-breaking in general, except for certain objective



functions such as the MinLex function described in the Ape most useful in this situation.

pendix. We propose a flow that chooses either dynamic2or MaxSAT: Seeks to maximize the number of satisfied
static SBPglepending on the the nature of the optimizatiarlauses for unsatisfiable benchmarks.

problem to be solvedBy not committing to one strategy, we8. MaxOnes: Seeks a satisfying assignment that maximizes
can employ static and dynamic symmetry-breaking only time number of variables set to 1.

cases where they are likely to be useful. The flow is outlinédLocalized Bit Selection (LBS): This objective allows con-
as follows, and is illustrated in Figure 4. trol over individual bits by assigning coefficients in the ob-

e For an optimization problem, symmetries of the cofective function for each bit. Here, we test a version that
straints and the objective function are detected sepivides the variables into three groups by random selection.
rately, and their intersection is computed One group is maximized, another minimized and the third

e If the intersection is almost the same as the set of cdreated as don’t cares.
straint symmetries, the use of static SBPs is not M modified the 0-1 ILP solver PBS [2] to dynamically break
stricted, and we follow the static flow from [3] symmetries. The SBPs from [3] are applied to generators of

e Ifthe intersection is small but the objective function cahe symmetry group found by the graph automorphism tool
be efficiently encoded using optimization-aware SBFsaucy [7]. Whenever a conflict-induced clause is learned, we
the optimization function is replaced with SBPs and tt&®ply the generators to the clause and create dynamic SBPs
problem solved with static symmetry-breaking that are added to the clause database. Results for the decision

e If the intersection is small, invalidates most of the coRroblem experiments are listed in Table 1. The table shows
straint symmetries, and the objective function is tdgstance names, satisfiability (SAT or UNSAT), sizes w. and
complex to be encoded as predicates, the constraints/¥{fe SBPS, symmetry detection runtimes, number of symme-
solved with static SBPs to verify satisfiability and obtaifii€s and generators, solver runtimes for static and dynamic

an upper bound. The optimal solution is found using d§¥mmetry breaking, and also with no symmetry-breaking of
namic SBPs as discussed above any kind. The best runtime for an instance is boldfaced.

Static symmetry breaking outperforms dynamic symmetry
breaking on most instances, probably because SBPs added in
advance contribute to learning. Results for optimization ex-
periments are listed in Tables 2 and 3. Table 2 shows results
for MinLex instances, and Table 3 shows data for MaxSAT,
Y ersegion ™ N/ Qbiecive MaxOnes and LBS instances. The tables provide an empir-
[\ oot . ical compariso_n of tyvo different ponfigurations qf our rov_v.
oo ot g The static configuration uses static SBPs on the intersection
**Saps on constrts of the objective function and constraint symmetries e
namic configuration uses dynamic SBPs on the constraints
with an upper bound obtained with static SBPs. Although
we show results for both configurations, the flow picks the
configuration best suited to a given instance. Thus, for all in-
5 Results stances here, it effectively achieves the best result attained by

. . i figuration.
We evaluate the effectiveness of dynamic symmetry breakﬁﬁ]er con -
on several well-known decision and optimization problems. ables 2 and 3 show benchmark names followed by ‘S

Experiments are performed on an Intel Xeon 2 GHz machfﬁreiu’ to indicate whether constraints are satisfiable. Next,

with 1 GB of RAM running Linux. Time-out is set at 2000d'€e show results for the static configuration: number of sym-

seconds. For decision problems, we use one large instdﬂ@éﬂes and generators, Saucy’s symmetry detection runtime,
from each of the pigeon holehole;) [8], FPGA routing PBS solving runtime, and whether or not the optimal solu-
[11] (chnl), (fpga) and global routi,ng [1]grout) tion was found (pigeonhole instances are all unsatisfiable and

families. Optimization benchmarks include selected Ma@i@ding the optimal solution means satisfying the largest pos-
Ones, MaxSAT, and MinLex instances from the FPGA [1 ible number of clauses). The same statistics are repeated
global routing [1] and XOR chain families [14f) which r the dynamic configuration. The best runtime for an in-

are relevant to circuits for error-correcting codes. We al Binr::e IS poldlfacled_. If_thel SOE’ elrj]f'mcje?;om’ the bgtt&r_ value
introduce a new objective function, Localized Bit Selecti Rr the optimal solution s also boldfa s expected, Min-

(LBS) that allows values to be specified for subsets of bilfse.x does not intersect with constraint symmetries, so static

We summarize each objective function below. symmetry-breaking finds nothing. However, the dynamic

1. MinLex: Seeks the lexicographically smallest satisfyi ethod does_ find a_nd br(_eak many symmetries, and is faster

assignment. This is ideally accomplished minimizing t an the static configuration in almost all cases. The great-

function 2xq + 2%, + ... + 2" .. This cannot be realized®St benefit is seen with XOR chain benchmarks, which are
- n-

in practice because coefficient sizes are too large. We miglved with dynamic SBPs in under 40 seconds, but the static

mize the following app_rOXimation(l +20+...+ an-_Min' 1In some cases PBS times out when its current assignment has the opti-
Lex breaks all constraint SBPs. We expect dynamic SBPsn# value. The timeout occurs while proving optimality.

Boolean
Optimization
Problem

Symmetries Symmetries
of of
Objective Constraints

Intersection

SBPs

Solve w/Generic
0-1 ILP solver

Solve w/ modified
0-1 ILP solver w/
dynamic SBPs

Figure 4:Adaptive flow for Boolean optimization.




Instance Size w. and w/o static SBPH Constraints-Only Symmetry Detection No SBPs:

Instance Original w. Static SBPs Symmetry Stats Static SBP | Dynamic SBP Orig.
Name Saucy PBS PBS PBS

S/U \% C PB \ C #Symm. | #Gen. | Time Time Time Time
chnl1a12 §] 240 | 24 20 | 796 2167 6.04E+30 41 0.08 0.01 43.7 472
fpgalll0 S 165 | 120 | 21 | 443 1181 4.51E+15 26 0.04 0 88.9 470
hole10 U 110 11 10 309 770 1.45E+14 19 0.01 0 32.7 251
grout3-3-5 S 240 | 634 | 12 | 288 819 16 4 0.02 0.02 0.02 0.04

Table 1:Static vs. dynamic symmetry breaking: Results for 0-1 ILP decision problems without objective functions.

Static Config: Constraints + Obj. Fn. Dynamic Config: Constraints Only
MinLex Saucy | PBS Best Saucy PBS Best
Instance S/U #Symm. | # Gen. | Time Time | Soln. | Optimal? #Symm. | # Gen. | Time Time Soln. | Optimal?
fpga87 S 1 0 0 94.8 689 YES 4.18E+08 17 0 93.6 689 YES
fpgaQ7 S 1 0 0 691 759 YES 2.09E+09 18 0 664 759 YES
grout3-3-1 S 1 0 0 T/O 6735 NO 5.32E+17 49 0.1 9882 3323 YES
grout3-3-3 S 1 0 0 T/O 6775 NO 1.20E+19 50 0.13 8427 3729 YES
x1.140s S 1 0 0 4.76 652 YES 1.10E+12 40 0.01 0.28 652 YES
x1.144s S 1 0 0 8.89 634 YES 8.80E+12 43 0.01 3.3 634 YES
x1.148s S 1 0 0 55.47 | 816 YES 1.41E+14 47 0.02 1.88 816 YES
x1.156s S 1 0 0 139 850 YES 3.60E+16 55 0.01 6.86 850 YES
x1.164s S 1 0 0 9988 846 YES 9.22E+18 63 0.01 32.13 846 YES
x1.172s S 1 0 0 5798 949 YES 2.36E+21 71 0.02 21.93 949 YES
x2_40s S 1 0 0 2.24 902 YES 5.50E+11 39 0.01 1.78 902 YES
x2_-44s S 1 0 0 4.58 | 1016 YES 8.80E+12 43 0.01 1.69 1016 YES
x2.72s S 1 0 0 217.3 | 1942 YES 2.36E+21 71 0.03 | 110.25 | 1942 YES

Table 2: Static vs. dynamic symmetry breaking: Symmetry statistics and runtimes for FPGA, global routing and XOR chain
instances with MinLex objective. No intersection symmetries were found for the static case, so we are effectively solving the
original problem w/o SBPs. Timeout is set at 20000 seconds.

configuration takes several thousand seconds in many caggsamic symmetry-breaking only for certain functions.

For the MaxSat and MaxOnes experiments in Table 3, the ObEmpirica”y, we show that dynamic Symmetry_breaking is
jective function does not destroy any constraint symmetrig§ective for objective functions that destroy constraint sym-
Both configurations work with the same set of symmetrigfetries, such MinLex and our proposed objective function
Here, static SBPs are clearly superior, finding optimal Saycalized Bit Selection (LBS). For functions that leave con-
lutions faster and more frequently. The LBS function, liketraint symmetries intact and for CSPs without optimization,
MinLex, is non-trivial and destroys constraint symmetriestatic SBPs are more useful, possibly because they contribute
Consequently, the dynamic configuration is more effectiglearning by SAT and 0-1 ILP solvers at a greater rate. How-

for LBS instances. ever, non-trivial objective functions such as MinLex and LBS
. may arise in formal verification applications that are required
6 Conclusion to specify a preference for solutions with certain properties.

. . . . ic SBP ially effecti XOR-chai h-
This work is motivated by the observation that recent breatl,%):,/;1 ?I?gn\lzrﬁch Zraerer;?\)/zgtatg eci riﬁtiltvgsgli czgi o ncs aén gbenc? "
thro_ughs n so_lvmg SAT and pseudo-Boolean (PB) CO@Ji&s that generate error correcting codes. Given that both
straint satisfaction problems (CSPs) have not been extende . L .
to Boolean optimization, which is useful in many applicetl)-/pes of symmetry-breaking have advantages in different sit-
tions. including formal v'erification For example. one mauations, we propose an adaptive flow that picks either a static
’ 1¢ing e pie, or dynamic SBP configuration to achieve the most effective
seek solutions that are s.tatls.tlcally common, and ConfOmggolean optimization for a given instance. In terms of the
geli/r:acl)gvne(fjr?r??; ngi/ %'jttrt'ggtlonérfg#nl;Ptis”?ilzggi:iveszfv?_gsuIts presented here, the adaptive flow is always able to
. pe - y P P 0N BY SOW3 chieve the best result obtained by either configuration.
ing a series of SAT or 0-1 ILP CSPs without objective func-

tions. This approach may experience difficulty in the contextOU" Work considerably extends the scope of symmetry-
of structure-aware problem solving. Specifically, the obje(€aking in Boolean optimization. However, the full impact
tive function may interfere with the use of symmetries, off SYmmetry-breaking on learning and decision ordering in
ten found in SAT and 0-1 ILP problems from the circuit dg2/\1 SOIVers is not known. While it is clear that symmetry-
main. We propose new techniques designed to give Bool@Lgaking is a powerful tool for Boolean constraint satisfaction

objective functions special treatment and to accelerate offfid OPtimization, the full measure of its effectiveness is not

mization. One such method éynamic symmetry-breakingY©t understood.

which utilizes the knowledge that constraint symmetries can
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MinLex-SBPs are very effective in practice because the

Appendix: Optimization-aware SBPs Lex function induces a total ordering on truth assignments.
However, functions like MinOnes or MaxOnes (minimize or

Here, we discuss how an objective function may be encogggyimize the number of variables set to 1) can potentially be
as predicates which form a part of the constraints. Such@fisfied by many assignments in the same class. In general,
encoding would eliminate the need for dynamic symmetiy, f-SBPs are likely to be weaker than MinLex. Addition-
breaking and allow the use of more efficient static SBPs. TQ%/, there are known simple CNF constructions for MinLex
original construction of symmetry-breaking predicates [6] SSredicates, such as the one in [3]. Generic MBBPs may
lects representatives of equivalence classes under symmedes ,ch more difficult to encode in CNFfifhas non-trivial

and prefers those truth assignments that are not equwa'%b@fﬁcients.OveraII, it appears unlikely that MkSBPs will

any lexicographically-smaller assignments. Those SBPs BE€&ompetitive with dynamic symmetry-breaking, except for
formulated as follows. very specialized objective functions.



