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Abstract—Vitamin A deficiency is one of the leading causes
of visual impairment globally. While blood tests are com-
mon approaches in developed countries, various socioeconomic
and public perspectives render this a challenge in developing
countries. In Africa and Southeast Asia, the alarming rise
of preventable childhood blindness and delayed growth rates
has been dubbed as an ”epidemic”. With the proliferation of
machine learning in clinical support systems and the relative
availability of electronic health records, there is the potential
promise of early detection, and curbing ocular complication
progression. In this work, different machine learning methods
are applied to a sparse dataset of ocular symptomatology and
diagnoses acquired from Maradi, Nigeria collected during routine
eye examinations conducted within a school setting. The goal
is to develop a screening system for Vitamin A deficiency in
children without requiring retinol serum blood tests, but rather
by utilizing existing health records. The SVC model achieved the
best scores of accuracy: 75.7%, sensitivity:83.7%, and specificity:
74.9%. Additionally, Shapley values are employed to provide
post-hoc clinical explainability (XAI) in terms of relative feature
contributions with each classification decision. This is a vital
step towards augmenting domain expert reasoning, and ensuring
clinical consistency of shallow machine learning models.

Index Terms—Electronic Health Records, Decision Making,
Machine Learning, Ophthalmology, Optometry, Refractive Er-
rors, Vitamin A, XAI

I. INTRODUCTION

The World Health Organization reports the inordinate preva-
lence of Vitamin A deficiency in developing countries, partic-
ularly those in Africa and South-East Asia. The most severe
effects of this illness is observed in young children, and is
primarily associated with poor dietary nutrition. While it is a
preventable condition, an estimated 250,000 to 500,000 chil-
dren become blind, with increase in the risks for respiratory
and diarrhoeal infections, decrease in growth rates and bone
development, and worsened likelihood of survival. [1].

It is becoming imperative to identify patients with Vitamin
A deficiency, for targeted supplementation by doctors because
of the association between this condition and major ocular

degenerative conditions as well as delayed growth. For exam-
ple, one of the most common co-occurring condition is that
of refractive errors. Refractive errors are aberrations causing
poor focus of light onto the retina, resulting in impaired
vision. More specifically, it is the mismatch between the
optical refractive determinants of the eye in terms of the
corneal curvature, lens power, lens location and axial length.
Refractive errors can be categorized as myopia, hyperopia, or
astigmatism, and stem from a multitude of potential causes
including environmental, genetic and even lifestyle factors
[2]. Electronic real-world clinical data consisting of patients’
health, medical history and treatment outcomes and train in-
telligent, predictive models to aid diagnosticians and facilitate
early screening [3]. As found by the studies [4] and [5],
Vitamin A awareness is extremely low, and so is the general
scarcity of clinical preventative measures owing to socio-
economic reasons. Relatively speaking, ocular afflictions, such
as visual acuity, night blindness, etc. are physically notice-
able in children and therefore exists more chances on an
individual levels for consultation and intervention with an
optometrist/ophthalmologist. A retinol serum test measures the
level of vitamin A in the blood through venipuncture, and
while this is a routine procedure in developed countries, the
costs of blood tests and persisting stigma around needles as
a consequence of the widespread safety issues of HIV [6]
dissuade the undertaking of regular tests. As such, alterna-
tives enabled by technical advancements can offer promising
auxiliary approaches for screening for Vitamin A disorders, in
a resource-effective and cost-effective manner.

Prior studies in the domain intersection of opthalmology,
optometry and machine learning can be divided into two
categories; 1) predicting refractive error risk (myopia, hyper-
opia or astigmatism), and 2) assessing vision outcomes after
treatment. The following paragraph provide an overview of
the recent advances in terms of their key results and the
machine learning approaches used. Notably, Vitamin A is
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not considered as predictor variables in analysis of ocular
diseases across these works, and commonly utilize axial length
measurements, spherical equivalent readings and age. This is
likely due to the lower prevalence of childhood blindness and
lesser severity of Vitamin A deficiency in developed countries
where the studies are conducted.

[7] proposes logistic regression and multilayer perceptron
to identify people at risk of developing myopia. Their dataset
and was derived from the Orinda Longitudinal Study of My-
opia database. After feature selection, the logistic regression
model performed better than the multilayer perceptron at
classification accuracy, of 92.2% with 5 features. This study
shows the influence of lifestyle activities on the prognosis
of myopia in the context of machine learning. [8] proposes
an SVM for the prediction of myopia (diopters) in grade 6
children based on historical ocular measurements and behavior
data. The dataset used is collected from several primary
schools belonging to the Henan province in China The SVM
model achieved accuracy, precision, sensitivity, specificity, F1-
score and AUC scores of 92%, 95%, 94%, 94%, 94% and
98% respectively through a 10-fold cross-validation approach.
This study is of importance in consolidating the impact of
lifestyle factors over time (5 years) on myopia prediction.
[9] leverages Big Data and the random forest algorithm to
predict myopia (diopters) in terms of the right eye spherical
equivalent parameter up to 8 years in the future. The dataset
was compiled using electronic health records of children aged
6 to 20 years from 8 different ophthalmic centers across a
10 year period. Additionally, two population based datasets
named Guangzhou Outdoor Activity Longitudinal Trial, and
Refractive Error Longitudinal Study. The algorithm when
applied to the internal validation subset, 7 external validation
subsets and 2 population based datasets achieved MAE ranging
from 0.503 to 0.799 for 8 years, as well as AUC ranging
from 85.2% to 88.8% for 8 years, 80.2% to 88.6% for 8
years. [10] sought to estimate the physiological elongation of
ocular axial length in right eyes using linear regression based
on routine clinical data to better understand the amount of
myopia progression in children undergoing ortho-K treatment.
The dataset was constructed using electronic health records
from the Peking University People’s Hospital, Beijing, China.
The linear regression model obtained R2 score of 0.87, and
the primary contributing factors were age, spherical equivalent
and mean K reading. This is beneficial for detecting children
who can become more myopic at an early age by defining the
physiological component in the progression of axial length
elongation. [11] adopts machine learning to identify ideal
candidates to undergo corneal refractive surgery for refractive
error correction (in both eyes). The dataset was retrospectively
collected from the BVIIT Eye Center in South Korea. The
best performing model was an ensemble classifier composed of
support vector machines, multilayer perceptron, random forest,
AdaBoost, and LASSO, which obtained an external validation
score of AUC: 97.2% and accuracy: 93.4% through a 10-fold
cross validation approach.

For the successful adoption of models in critical domains

such as healthcare, medical experts must have a clear under-
standing of the model’s behavior, their potential biases and
diagnostic capability [12]. The ever increasing complexity of
new machine learning models makes it difficult for experts to
discern their nature, thereby introducing the need for methods
to provide explainability for artificial intelligence (XAI) and
transparency as to which features were most important for the
trained models.

The contributions of this study are listed as follows.
1) Present machine learning methods utilizing data symp-

toms and refractive error diagnoses derived from elec-
tronic health records during routine eye checkups.

2) Provide explainable Vitamin A deficiency screening as a
surrogate method without requiring relatively expensive
or invasive blood tests in developing countries.

This paper is organized as follows: section III discusses the
methodology, section III presents the results and discussion,
and section VI concludes the work.

II. MATERIALS AND METHODS

The end-to-end sequential pipeline of i) dataset prepro-
cessing, ii) model training, iii) hyperparameter optimization
culminating in iv) evaluation is depicted in Figure 1.

Fig. 1: End-to-end model creation pipeline

A. Dataset

This data was collected from the town of Maradi in Niger,
Africa from school children aged 6-15, studying in grades 1 to
9 during government mandated annual eye checkups. Initially
there are 125 variables, across 86,216 records. Primarily,
patient-specific information such as name, ID, family occu-
pation and school name were removed for de-identification.
Aligning with the results of Little’s MCAR test, filtering
was performed for rows where columns had missing data
higher than 70%. Redundant columns as per Spearman’s
correlation higher than 0.5 were also removed separately.
The pre-processed dataset had 24 categorical variables, across
18,423 unique patient records. The final set of variables chosen
for constructing models include age, gender, presence/absence
of itching, blepharitis, conjunctivitis, cataracts, blunt force
trauma, ptosis, pthisis bulbi, myopia, hyperopia, astigmatism,
exotropia, esotropia, alternative squint, amblyopia, nystugmus,
megalocornea, and opaque cornea disorders. Examining the



features in light of medical knowledge, it is found that frequent
itching, and corneal impairments like cataracts have a strong
association with the target variable [13].

To overcome bias due to the relative abundance of patients
with eye disease but no vitamin A deficiency versus patients
with the former and the latter, random under-sampling and
random over-sampling was utilized. This yielded an equal
distribution of 1466 in each class, for a total of 2932 instances.
The dataset instances after separation by patient ID were
divided into a standard 60-20-20 training-valid-test, across
five-fold cross-validation.

B. Models

In concordance with recent literature [3], the frequently
used traditional and ensemble machine learning methods were
employed. For the former, Support Vector classifier (SVC),
Logistic Regression (LR) and K-Nearest Neighbors (KNN)
were used, and for latter, Light Gradient Boosting (LGB), eX-
treme Gradient Boosting (XGB), Categorical Boosting (CB),
and Random Forest (RF) were used.

C. Shapley Values

For XAI, Shapley values, which is a concept from cooper-
ative game theory that fairly distributes a payout generated by
the grand coalition in a game to each of its players is utilized.
The classic form of the Shapley value estimation for a feature
i is presented in Equation 1 [14]:

ϕy (xi;x) =
∑
i ̸⊃S

|S|!(n− 1− |S|)!
n!

[fy (xS ∪ xi)− fy (xS)] (1)

To estimate Shapley value for feature xi of a single data
instance x in our ocular dataset, a set of all possible feature
unions subsets with n features excluding i is generated. The
value of feature i is obtained by the difference between the
results of the characteristic function fS applied on the set of
all features, and the set of features excluding i. The Shapley
value is then estimated by averaging the marginal contributions
of xi across all generated feature union orderings [14]. When
a feature xi contributes highly to the classification of data
instance x, it will have a relatively larger Shapley value score.
When a feature xi has negligible contribution to a particular
classification outcome, its corresponding Shapley value score
is lower than the other features.

III. RESULTS

The classification metrics of accuracy, sensitivity, specificity
and F1-score are employed for the quantitative evaluation of
the algorithms. The results are reported in Table I. The ratio-
nale for testing multiple algorithms is to provide a systematic
evaluation benchmark in the realm of machine learning for
the purpose outlined in this work. Empirically, random under-
sampling yielded quantitatively better results than random
over-sampling after experimentation with different stratifica-
tion of data subsets. Regardless, the difference in perfor-
mances were only marginally higher in favor of random under-
sampling, by a factor of 2-3% on sensitivity and F1-score.

To improve model performance, hyper-parameter optimization
method Random Search was leveraged for tuning a search
space of parameters during cross-validation. The search space
is a bounded domain of hyperparameter values, and random
sampling is performed to elicit different combinations. As the
SVC model performed relatively the best, the tuned parameters
are kernel: linear, gamma: 1.18737 and C: 0.05635.

While all classifiers achieved relatively similar acceptable
average performances, SVC had marginally superior scores as
can be surmised from Table I across accuracy, specificity and
F1-score.

TABLE I: Quantitative model performance metrics

Model Accuracy Sensitivity Specificity F1-Score
SVC 75.7 83.7 74.9 40.7
LR 75.6 83.8 74.6 40.5

KNN 72.9 80.9 72.0 37.3
LGB 73.3 84.3 72.1 38.6
XGB 75.2 83.9 72.0 40.2
CB 74.5 83.6 73.5 39.5
RF 72.5 84.3 71.2 38.0

For explaining which feature contributed to a single patient’s
outcomes, and by how much, the Shapley value analysis was
performed on the best (SVC) model and aggregated as in
Figure 2.

Fig. 2: Global explanations with Shapley Values

IV. DISCUSSION

Traditional models and ensemble models obtaining scores
near to each other implies a certain level of linearity as-
sumption is valid for the dataset. As such, it appears that
the complex nature of ensemble models to capture higher
dimensional relationships is not necessary. Noticeably, only a
few features are numerical and largely categorical features are
treated differently by each algorithm internally. The balance
between precision and recall is relatively low as denoted by
F1-Score, owing to a likely saturation of borderline cases,
where patients have symptoms very similar to that of a
confirmed Vitamin A deficit patient, yet belongs to the healthy
class. It is also possible that the stochastic behavior of ran-
dom undersampling applied for correcting imbalances led to



unfavorable instances. These “harder” to classify instances are
where separation boundaries are not clearly defined within the
scope of the available features. Synthetic augmentation was not
utilized in this work for two reasons. First was to observe the
baseline performance, and second was to keep the instance
distributions as close as to the original patient data without
major external intervention.

Aposteriori analysis was preferred as almost all features are
positively correlated with the target variable of Vitamin A with
reasonable strength. Permutation feature importance methods
(for tree-based models and apriori feature selection is based
on diminishing model performance, whereas Shapley values
is based on magnitude of feature attributions. As mentioned
previously, Figure 2 confers a notion of interpretability on a
granular level to aid in the reduction of false positives and
false negatives. Upon observation of Figure 2, it appears em-
pirically that absence of conjunctivitis, cataracts, and itching
but the presence of a singular refractive error among older
children increases potential of deficiency. Although itching and
conjunctivitis can share a similar pathology with other ocular
diseases, their emergence as xerophthalmia in accompaniment
with refractive errors and cataracts can be indicative of severe
Vitamin A deficiency [15]. Approaches like this can help
doctors prioritize certain predictor features on a patient-by-
patient basis to provide precision medicine, provided that XAI
techniques’ results are viewed in purview of domain expertise,
as posited by [3].

V. CONCLUSION

This study is one of the first works to explore the clinical
utility of electronic records containing symptoms and prior
diagnoses only for the detection of Vitamin A deficiency
with an XAI perspective. A potential limitation in medical
record acquisition is process uniformity, measurement units
and nature of variables collected. This dataset is obtained from
a single region, constraining any inferences to the local popula-
tion demographics. Recent research dictates site-agnostic data
harmonization to be a valid mitigation technique. Future work
can consider them in addition to employing various synthetic
oversampling and undersampling methods for better utilization
of available data, as well as incorporation of visual acuity
prescription values for improved model performance measures.
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