
Abstract — Optical networks consist of switches that are con-
nected using fiber optics links. Each link consists of a set of wave-
lengths and each wavelength can be used by one or more users to
transmit information between two switches. In order to establish a
connection between the source and destination nodes, a set of
switches and links must be efficiently selected. This is known as the
routing problem. A wavelength is then assigned in each selected
link to establish the connection. This is known as the wavelength as-
signment problem. The problem of routing and wavelength assign-
ment (RWA) in optical networks has been shown to be NP-
Complete. In this paper, we propose a new approach to solving the
RWA problem using advanced Boolean satisfiability (SAT) tech-
niques. SAT has been heavily researched in the last few years. Sig-
nificant advances have been proposed and have lead to the
development of powerful SAT solvers that can handle very large
problems. SAT solvers use intelligent search algorithms that can
traverse the search space and efficiently prune parts that contain
no solutions. These solvers have recently been used to solve many
challenging problems in Engineering and Computer Science. In
this paper, we show how to formulate the RWA problem as a SAT
instance and evaluate several advanced SAT techniques in solving
the problem. Our approach is verified on various network topolo-
gies. The results are promising and indicate that using the pro-
posed approach can improve on previous techniques.

I.   INTRODUCTION

The Internet has started in the late 1970, ever since its inception,
the traffic, the nodes, and the users are growing at an unprecedented
pace. Today the Internet handles completely different types of traffic
compared to the 1970’s and 1980’s Internet. Link bandwidth and Inter-
net traffic are continuously increasing. Routing protocols are constant-
ly being proposed and improved in order to handle the constant
changes in the traffic, link bandwidth, and the required quality of ser-
vice in today’s Internet.

The increasing growth of Internet traffic has put a significant de-
mand on the Internet capacity, especially in the core network [24]. Op-
tical networks are gaining wide acceptance and has emerged as the
solution for increasing Internet traffic demands [27], especially as
backbone network for service providers.

Optical networks have a huge bandwidth advantage, security, and
ease of configuration for a point to point connection which means eas-
ier Virtual Private Networks (VPN) implementation over public
switching networks. Optical networks consist of fiber optic links con-
nected by using optical switches. Since the capacity of the fiber optic
link is huge, wave-length division multiplexing (WDM) is used where
the bandwidth is usually divided into several wavelengths (or channels)
and every wavelength is assigned to one user; thus sharing the link
bandwidth among many users.

Another advantage of optical networks is the limitations of the
electronic switches when operating at very high data rates. The circuits
used at rates more than 10Gbps are very expensive, optical switches
can handle such speeds (and more) with less complexities and lower
cost. 

The problem of routing and wavelength assignment (RWA) in op-
tical networks is NP-complete. Methods proposed to solve the RWA
problem can be classified into two different categories. The first cate-
gory divides the RWA problem into two subproblems, solves each sub-
problem disjointly, and then combines their solutions. The second
category solves both problems jointly. This requires more complex al-
gorithms but produces better results. In this paper, we are interested in
the latter approach. We show how to formulate the RWA problem as a
Boolean Satisfiability (SAT) instance and explore the possibility of us-
ing advanced SAT techniques to solve the RWA problem.

Recently, SAT have been shown to be very successful in solving
complex problems in various Engineering and Computer Science ap-
plications. Such applications include: Formal Verification [5], FPGA
routing [23], Power Optimization [3], etc. SAT has also been extended
to a variety of applications in Artificial Intelligence including other
well known NP-complete problems such as graph colorability, vertex
cover, hamiltonian path, and independent sets [11]. Despite SAT being
an NP-Complete problem [10], many researchers have developed pow-
erful SAT solvers that are able of handling problems consisting of
thousands of variables and millions of constraints. Briefly defined, the
SAT problem consists of a set of Boolean variables and a set of con-
straints expressed in product-of-sum form. The goal is to identify an as-
signment to the variables that would satisfy all constraints or prove that
no such assignment exists.

In this paper, we present a SAT-based approach to solving the
RWA problem in optical networks. We show how to formulate the
problem as a SAT instance. We report results using randomly-generat-
ed network topologies. Initial results indicate the efficiency of the pro-
posed approach. The proposed approach is complete and is guaranteed
to identify the cheapest path and wavelength assignment, if one exists.
The approach also allows user-specific conditions to be easily added to
the problem, which was not as easy to add in previous approaches.

This paper is organized as follows. Section II provides a general
overview of SAT. Section III shows how to formulate routing and
wavelength assignments in optical networks as a SAT instance. Exper-
imental results for optical networks are presented and discussed in Sec-
tion IV. Finally, the paper is concluded in Section V.

II.   BOOLEAN SATISFIABILITY

The last few years have seen significant advances in Boolean sat-
isfiability (SAT) solving. These advances have lead to the successful
deployment of SAT solvers in a wide range of problems in Engineering
and Computer Science. Given a set of Boolean variables and a set of
constraints expressed in product-of-sum form, the goal is to find a vari-
able assignment that satisfies all constraints or prove that no such as-
signment exists. 

The SAT problem is usually expressed in conjunctive normal form
(CNF). A CNF formula  on  binary variables  is the con-
junction (AND) of  clauses  each of which is a disjunc-
tion (OR) of one or more literals, where a literal is the occurrence of a
variable or its complement. 

A variable  is said to be assigned when its logical value is set to
0 or 1 and unassigned otherwise. A literal  is a true (false) literal if it
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evaluates to 1 (0) under the current assignment to its associated vari-
able, and a free literal if its associated variable is unassigned. A clause
is said to be satisfied if at least one of its literals is true, unsatisfied if
all of its literals are set to false, unit if all but a single literal are set to
false, and unresolved otherwise. A formula is said to be satisfied if all
its clauses are satisfied, and unsatisfied if at least one of its clauses is
unsatisfied. In general, the SAT problem is defined as follows: Given
a Boolean formula in CNF, find an assignment of variables that satis-
fies the formula or prove that no such assignment exists.

In the following example, the CNF formula:

 (1)
consists of 3 variables, 3 clauses, and 6 literals. The assignment

 violates the third clause and unsatisfies ,
whereas the assignment  satisfies . Note that a
problem with n variables will have  possible assignments to test.
The above example with 3 variables has 8 possible assignments.

Despite the SAT problem being NP-Complete [10], there have
been dramatic improvements in SAT solver technology over the past
decade. This has lead to the development of several powerful SAT al-
gorithms that are capable of solving problems consisting of thousands
of variables and millions of constraints. Such solvers include: GRASP
[20], zChaff [22], and Berkmin [17]. In the next three sections, we de-
scribe the basic SAT search algorithm, recent extensions to the SAT
solver input, and the use of hardware with SAT.

A. Backtrack Search
Most modern complete SAT algorithms can be classified as en-

hancements to the basic Davis-Logemann-Loveland (DLL) backtrack
search approach [13]. The DLL procedure performs a search process
that traverses the space of  variable assignments until a satisfying
assignment is found (the formula is satisfiable), or all combinations
have been exhausted (the formula is unsatisfiable). It maintains a deci-
sion tree to keep track of variable assignments and can be viewed as
consisting of three main engines: (1) Decision engine that makes elec-
tive assignments to the variables, (2) Deduction engine that determines
the consequences of these assignments, typically yielding additional
forced assignments to, i.e. implications of, other variables, and (3) Di-
agnosis engine that handles the occurrence of conflicts, i.e. assign-
ments that cause the formula to become unsatisfiable, and backtracks
appropriately. 

Recent studies have proposed the use of the conflict analysis pro-
cedure in the diagnosis engine [20]. The idea is whenever a conflict is
detected, the procedure analyzes the variable assignments that cause
one or more clauses to become unsatisfied. Such analysis can identify
a small subset of variables whose current assignments can be blamed
for the conflict. These assignments are turned into a conflict-induced
clause and augmented with the clause database to avoid regenerating
the same conflict in future parts of the search process. In essence, the
procedure performs a form of learning from the encountered conflicts.
Today, conflict analysis is implemented in almost all SAT solvers [17,
20, 22]. 

B. More Expressive Input
Restricting the input of SAT solvers to CNF formulas can restrict

their usage in various domains. Therefore, researchers have focused on
extending SAT solvers to handle stronger input representations. Spe-
cifically, SAT solvers [2, 7, 14, 15, 29] have recently been extended to
handle pseudo-Boolean (PB) constraints which are linear inequalities
with integer coefficients that can be expressed in the normalized form
[2] of:

(2)
where  and  are literals of Boolean variables. Note that

any CNF clause can be viewed as a PB constraint, e.g. clause
 is equivalent to . 

PB constraints can, in some cases, replace an exponential number
of CNF constraints. They have been found to be very efficient in ex-
pressing “counting constraints” [2]. Furthermore, PB extends SAT
solvers to handle optimization problems as opposed to only decision
problems. Subject to a given set of CNF and PB constraints, one can
request the minimization (or maximization) of an objective function
which consists of a linear combination of the problem’s variables. 

(3)

This feature has introduced many new applications to the SAT do-
main. Recent studies have also shown that SAT-based optimization
solvers can in fact compete with the best generic integer linear pro-
gramming (ILP) solvers [2, 7].

C. Hardware-Based SAT Solvers
Note that SAT solvers can be implemented in hardware. Several

studies proposed the use of FPGA reconfigurable systems to solve SAT
problems [1, 33]. Hardware solvers could be a standalone or as an ac-
celerator where the problem is partitioned between the hardware solver
and the attached computer using software. Many different architecture
were proposed to solve SAT problems in hardware. Linearly connected
set of finite state machines, control unit, and deduction logic was pro-
posed in [33]. The authors in [33] implemented their algorithm on Xil-
inx XC4028 FPGA. While in [1], the authors proposed a technique for
modeling any boolean expression. Their objective is to set the function
output to 1. A backtrack algorithm is used to propagate the output back
to the input and finding an assignment of the inputs to satisfy a logical
1 at the output.

The authors in [12] proposed an architecture for evaluating clauses
in parallel. In their architecture, the clauses are separated into a number
of groups and the deduction is performed in parallel. Then the results
are merged together to allow the assignment to the variables.

A software/hardware solver for SAT was introduced in [30]. In
their approach, they minimized the hardware compilation time which
greatly reduced the total time to solve the problem. They also imple-
mented their solver on an FPGA.

III.   ROUTING AND WAVELENGTH ASSIGNMENT 
IN OPTICAL NETWORKS

In optical networks, wavelength routers perform the function of
switches in non-optical networks. Figure 1 shows a wavelength router
with three input links and three output links. Each link uses three wave-
lengths . The function of a router is to switch packets from
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Fig. 1. An example of a wavelength router with three input and 
three output links. Each link has 3 wavelengths.
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input links to output links. Depending on the switch type, it might or
might not be able of doing wavelength conversion.

Simple switches do not perform wavelength conversion, meaning
that if a packet is arriving at input , it could be switched to any out-
put link, however it must use the same wavelength it arrived with on

. That makes the switch design simple, however, it can not fully uti-
lize the network resources. For example if a node arrives at  using
wavelength , and the best path to the destination is edge O3, How-
ever,  is used by another connection at O3. In this case, the connec-
tion must be routed through another edge and node. 

Advanced switches can perform wavelength conversion between
input and output links [25], thus a packet can travel on different wave-
lengths on different links from the source to the destination. In this case
these switches can fully utilize the network resources on the expense of
cost and complexity. With fixed routing, where the path between any
two nodes is calculated and set up based on shortest path, it has been
reported that wavelength conversion results in 30%-40% improvement
in blocking probability compared with no wavelength conversion [19].

Establishing a path from a source node to a destination node in-
volves determining the path and the wavelength assignment on every
link on the path. These two problems could be solved independently
(first we find the path, then we perform wavelength assignment on the
chosen links) or we can solve these two problems jointly thus produc-
ing a better solution with a more complicated algorithm.

Routing in optical networks has been the subject of intensive re-
search [8] and was analyzed in [26]. Adaptive routing was reported in
[21]. Three routing strategies were compared in [16] with respect to
performance and the size of the network, while alternate routing has
been studied in [9].

In this paper we are interested in using advanced SAT solvers to
solve the problem of routing and wavelength assignment in optical net-
works. To illustrate our approach, lets consider the network in Figure
2. In the figure, each node is labeled by an upper-case letter, and each
link is marked by (x, n) where x is the name of the link and n is a pos-
itive integer that represents the weight, i.e. cost, of the link. We will as-
sume that each edge has w wavelengths and the variable  denotes
wavelength z in edge a. Node I and H are the source and destination
nodes, respectively. The objective is to find a path from I to H that min-
imizes the total path cost (sum of weights of all links in the path). 

Two sets of variables are defined for the problem: 

• A Boolean variable is defined for each node. A value of 1 (0) for
each variable indicates that the corresponding node is (is not)
included in the optimal path from the source node to the
destination node.

• A Boolean variable is defined for each wavelength in every edge.
A value of 1 (0) for each variable indicates that the corresponding
wavelength is (is not) included in the optimal path from the source
node to the destination node. Initially, we set  to zero, if
wavelength  in link  is being used by another connection.

In the above example, if we assume 4 wavelengths per link, a total
of 57 variables are declared, 9 of which represent the nodes

 and 48 variables represent the edges with their 4
wavelengths . The following set of con-
straints are generated: 

• For both source and destination nodes, only one of the
wavelengths in the neighboring edges will be part of the path. This
can be expressed using the following two PB constraints for the
above example:

(4)

(5)

• All other nodes (except the source and destination nodes) will
either be (i) part of the path or (ii) not part of the path. In the first
case, exactly two wavelengths in two of the edges connected to
that node will be part of the path. In the second case, none of the
wavelengths in any of the edges connected to the node will be part
of the path. This can be expressed using a single PB constraint for
each node. In the above example the PB expression for node A is
as follows:

(6)

If node A is within the path, then variable A is true. Hence 
and the only way to satisfy the expression is to set two wavelengths in
the neighboring edges to true, i.e. making them part of the path. If node
A is not within the path, then variable A is set to 0. Hence  and
the only way to satisfy this expression is to set all three variables to 0,
i.e. none of the edges are part of the path. Similar PB constraints are
generated for the other nodes, for example, node B gets:

(7)

(8)
To ensure that no two wavelengths from the same edge are used in

the same optimal path, we add the following new constraint for each
edge z:

(9)

That will ensure a maximum of only one chosen wavelength in any
link. If no wavelengths are chosen in a particular link, then the link is
not part of the optimal path.

For the switches without wavelength conversion, we add w con-
straints, i.e. equal to the number of wavelengths per edge, for each
available node forcing the optimal path to use the same wavelength
among all edges. For example, the constraint for node  is:

(10)
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Fig. 2. An example of a network with 9 nodes and 12 edges. 
Upper-case letters represent nodes. Lower-case letters represent 
edges. Each edge is associated with an integer representing its 

weight.
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this can be expressed using 4 CNF constraints as following:

(11)

Note that the 4 CNF constraints prohibit the 4 assignments: 111, 100,
010, and 001 for variables a,d,e, respectively. In other words, it disal-
lows the selection of an odd number of identical wavelengths in each
node. The first CNF constraint in (11) can also be discarded, since it is
impossible to enable 3 wavelengths per node for the same optimal path
(violates constraint (9)).

The above set of constraints guarantee that a complete path will be
formulated from the source node to the destination node. To minimize
the total cost of the path, a PB objective function, consisting of all
wavelength variables with their corresponding edge weights, is created
as follows:

(12)

In general, the minimization could be represented as

(13)

where weighta and varai represent the cost and variable of wavelength
i in edge a, respectively. Other objective functions can also be ex-
pressed. For example if the goal is to reduce the number of nodes in the
path, the objective function in  can be replaced by

(14)
which only consists of the sum of node variables without taking into
consideration the edge variables or the edge weights.

By formulating the problem as such, we can do more than finding
the minimum cost path. We can incorporate any restrictions that we can
think of in the resulting path. For example, by adding the PB constraint

, we are forcing node A to be part of the minimal cost path. Sim-
ilarly, we can exclude node A from the solution by adding the PB con-
straint . 

We can also add dependencies between nodes. For example, we
can force one of two nodes, e.g. J and B, to exist in the resulting path.
This can be expressed by adding the following two CNF constraints:

 (15)
We can also force certain nodes to be in the path only if a specific

node is. For example, we can force nodes B, C, and D to be part of the
solution if and only if node A is. This is expressed using the following
set of CNF constraints:

(16)
Note that the complexity of converting the graph into a SAT prob-

lem is , where v is the number of nodes, e is the number
of edges, and k is the number of graph restrictions (e.g. (15) and (16)).

IV.   EXPERIMENTAL RESULTS 
In this section, we evaluate the use of SAT solvers in identifying

the shortest routing path and wavelength assignments (RWA) in opti-
cal networks. The RWA problem was encoded as a SAT instance as
shown in Section III. Topology generation has been an active area of
research. Therefore, we decided to use the BRITE topology generator
[6] to produce different random topologies to test our approach. BRITE

can produce multiple generation models and can assign links attributes
such as bandwidth and delay.

We created networks of different sizes with the number of nodes
ranging from 20-50. The number of links per node was set to 2 and the
number of wavelengths per edge ranged from 5-10. Nodes are placed
randomly in a plane with a side of 1000 units. We considered the
weight of the link as the Euclidean length of the link (we can choose
any weight factor but choose the distance since it is already generated
by the topology simulator). The topology model is Waxman model
[32] with parameters . The goal was to find the
path with the minimal edge cost.

The network is stored in a text file and passed to a PERL script that
converts it into a SAT-encoded problem. The SAT problem is then
solved by advanced SAT solvers. For our experiments, we used the
PBS [2, 4] and MiniSAT [15] solvers. PBS and MiniSAT are new solv-
ers than can handle both CNF and PB constraints and can solve deci-
sion and optimization problems. Both implement the latest
enhancements in the SAT domain. Both have won several awards in
the annual PB-SAT Competition [28]. PBS can also solve optimization
problems using a linear-based or binary-based search schemes (Mini-
SAT uses a default linear-based search scheme). Both schemes have
shown competitive performance on various optimization instances that
consists of CNF-only or CNF/PB constraints. The experiments were
conducted on a Pentium Xeon 3.2 Ghz machine, equipped with 4
GBytes of RAM, and running Linux. The runtime limit was set to 1000
seconds. 

Table 1 lists the runtime results for the optical routing benchmarks.
The table lists the name of the instance, the runtime in seconds of PBS
using linear-based and binary-based search schemes, the status of the
search (whether the instance is satisfiable or unsatisfiable), and the size
of the shortest path if the instance is satisfiable. The name of the in-
stances of the form X_Y_A_B_wC_dD indicates that the instance has X
nodes and the number of links per node is Y and the number of wave-
lengths per link is C. The randomly selected source and destinations
nodes are A and B, respectively. Since the time to find the optimal path
depends on the network load, we simulated a busy network by random-
ly disabling various wavelengths and measuring the corresponding
solver time needed to find the optimal path. The percentage of random-
ly disabled wavelengths (i.e. the higher the percentage, the more load-
ed is the network) is D. Several observations are in order:

• PBS and MiniSAT were able to identify the shortest path in all
reported cases. 

• Binary search seems to be more competitive than the linear search,
especially for the larger instances consisting of 50 nodes.

• As more wavelengths are disabled (i.e. used by other paths), the
cost of the optimal path increases. For example, for the
20_2_17_12_w5 instance, the cost of the optimal path was 700
when disabling 50% of the wavelengths, but that increased to
1130 when disabling 60% of the wavelengths. Interestingly, the
problem becomes easier to solve, i.e. lower search runtimes, as
more wavelengths are disabled since the solver has less choices to
make or search through.

• All problems became unsatisfiable, i.e. no paths were available,
once 80% of the wavelengths were randomly disabled.

• The larger the network grid, the longer is the search runtime.

• The approach is complete and is guaranteed to find the shortest
path given enough time and memory resources. Even if the solver
times-out, it will return the shortest discovered path.
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V.   CONCLUSION

In this paper, we presented a new approach to solving the routing
and wavelength assignment problem in optical networks using Bool-
ean Satisfiability (SAT) solvers. We showed how to formulate the
RWA problem as a SAT instance and evaluated several advanced SAT
techniques. The approach was tested on a number of networks of vari-
ous sizes and showed promising results. The presented approach is
complete and will find the shortest possible path. One of the advantag-
es of the new approach is the ability to add user-specific constraints
that can restrict the existence of certain nodes and edges in the resulting
path. 
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TABLE 1. Experimental results on various size optical network 
grids using the PBS4 and MiniSAT Solvers. 

(S. Path = Shortest Path. S/U = Satisfiable or Unsatisfiable)

Instance 
Name

PBS4 MiniSAT
Binary Search Linear Search Linear Search

Ti
m

e

S/
U S.
 

Pa
th

Ti
m

e

S/
U S.
 

Pa
th

Ti
m

e

S/
U S. Pa
th

20_2_17_12_w5_d0 0.04 S 700 0.06 S 700 5.79 S 700
20_2_17_12_w5_d10 0.03 S 700 0.04 S 700 1.59 S 700
20_2_17_12_w5_d20 0.03 S 700 0.04 S 700 3.03 S 700
20_2_17_12_w5_d30 0.02 S 700 0.02 S 700 0.9 S 700
20_2_17_12_w5_d40 0.01 S 700 0.01 S 700 0.36 S 700
20_2_17_12_w5_d50 0 S 700 0 S 700 0.34 S 700
20_2_17_12_w5_d60 0 S 1130 0 S 1130 0.04 S 1130
20_2_17_12_w5_d70 0 S 1373 0 S 1373 0.01 S 1373
20_2_17_12_w5_d80 0 U 0 U 0.01 U

20_2_17_12_w10_d0 0.3 S 700 0.29 S 700 26.6 S 700
20_2_17_12_w10_d10 0.5 S 700 0.59 S 700 7.65 S 700
20_2_17_12_w10_d20 0.05 S 700 0.05 S 700 10.1 S 700
20_2_17_12_w10_d30 0.07 S 700 0.08 S 700 4.76 S 700
20_2_17_12_w10_d40 0.03 S 700 0.03 S 700 2.2 S 700
20_2_17_12_w10_d50 0.01 S 700 0.01 S 700 0.68 S 700
20_2_17_12_w10_d60 0 S 700 0 S 700 0.33 S 700
20_2_17_12_w10_d70 0.01 S 1023 0.01 S 1023 0.01 S 1023
20_2_17_12_w10_d80 0 U 0 U 0.01 U

50_2_8_45_w5_d0 0.08 S 309 7.29 S 309 175.8 S 309
50_2_8_45_w5_d10 0.08 S 309 3.05 S 309 102.2 S 309
50_2_8_45_w5_d20 0.25 S 309 1.13 S 309 239 S 309
50_2_8_45_w5_d30 0.05 S 309 0.55 S 309 4.23 S 309
50_2_8_45_w5_d40 0.05 S 309 0.23 S 309 8.88 S 309
50_2_8_45_w5_d50 0.01 S 309 0.02 S 309 2.23 S 309
50_2_8_45_w5_d60 0.01 S 2760 0.01 S 2760 0.73 S 2760
50_2_8_45_w5_d70 0 U 0 U 0.11 U

50_2_8_45_w10_d0 0.22 S 309 10.1 S 309 0.02 S 309
50_2_8_45_w10_d10 0.34 S 309 5.56 S 309 2.97 S 309
50_2_8_45_w10_d20 0.21 S 309 1.18 S 309 2.21 S 309
50_2_8_45_w10_d30 0.1 S 309 1.14 S 309 6.17 S 309
50_2_8_45_w10_d40 0.13 S 309 0.81 S 309 10.5 S 309
50_2_8_45_w10_d50 0.15 S 309 0.26 S 309 3.64 S 309
50_2_8_45_w10_d60 0.18 S 2365 0.03 S 2365 2.07 S 2365
50_2_8_45_w10_d70 0.01 S 2365 0.01 S 2365 0.22 S 2365
50_2_8_45_w10_d80 0 U 0 U 0.01 U


