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Abstract— AHNs are wireless networks operating without the
benefits of network infrastructure (basestations) or centralized
control. AHNs working with limited spectrum perform best
when simultaneous transmissions are coordinated to avoid col-
lisions. Optimal transmission coordination is a combinatorial
optimization problem that is, in general, intractable for large
size networks, even with global information and central con-
trol. Constraints on simultaneous transmissions may arise from
both transceiver limitations (e.g., half-duplex designs) and from
requirements on the signal to interference ratio. We study the
transmission coordination optimization problem under a variety
of natural communication constraints. Our work identifies par-
ticular instances where the problem may be solved by greedy
algorithms, and studies the performance of several natural
heuristic solutions.

I. INTRODUCTION

Transmission coordination refers to the process of efficiently
arranging simultaneous transmissions in space. This forms
an important part of scheduling which involves arranging
simultaneous transmissions in space, time, and frequency. We
assume an ad hoc network (AHN) with limited spectrum,
necessitating that concurrent transmissions must be spread out
in space to avoid them generating excessive interference for
their respective receivers.

Our focus in this paper is to study optimal transmission
coordination under the presence or absence of various com-
munication constraints. These communication constraints can
be a result of hardware limitations of the transceiver, or the
operational mode of the network. Table I gives a description of
these constraints, and possible means of circumventing them.

The optimization problems seek to select a set of concurrent
transmissions (edges in the communication graph) that maxi-
mize the weighted sum of the selected edges when subject to
some subset of the communication constraints. Each possible
subset of communication constraints is called a communica-
tion constraint set (CCS). We express each of these problems
as an integer linear program (ILP). An ILP seeks to maximize
a linear objective (say wTx) subject to linear constraints (say
Ax ≤ b) over decision variables x = (x1, ..., xM ) taking
integer values:

maxx∈ZM
+
{wTx : Ax ≤ b} (1)

In our case each decision variable is either zero or one (xl ∈
{0, 1}) indicating whether or not the edge is in the selected
set.

Two key concepts we will employ for solving these opti-
mization problems are matroids and totally unimodular matri-
ces (TUMs). Matroids are a class of subset systems (used to
model constraints) for which greedy algorithms yield optimal
solutions. We will classify which CCSs are matroids. TUMs

TABLE I
DESCRIPTION OF, REASONS FOR, AND MEANS TO CIRCUMVENT

COMMUNICATION CONSTRAINTS.

Constraint Abbr. Description
Half-duplex HD A node can not concurrently

transmit and receive.
Single reception SR A node can not concurrently

receive from multiple Tx.
Unicast UC A node can not concurrently

transmit distinct information
to multiple receivers.

Interference I A node can not receive if
there is any interfering
transmission in its vicinity.

Constraint Reason for To circumvent
constraint constraint

HD Transceiver design FD transceiver,
multiple channels

SR Receiver design Multi-user detection
UC Source/channel Broadcast channel

code design codes
I Receiver design, Interference

lack of CSI, cancellation,
channel conditions error correction,

reduced data rates,
spread spectrum

have the property that an ILP with a TUM constraint matrix
may be solved as an LP by relaxing the integrality constraint
(in our case relaxing each xi ∈ {0, 1} to each xi ∈ [0, 1]).

We will also introduce two natural heuristics and study their
performance for the various problems. The length heuristic
adds edges to the solution set in order of increasing/decreasing
edge lengths, while satisfying the constraint criteria. The
degree heuristic orders the edges by head or tail degree. If
two edges have the same degree we break ties on either edge
weight or edge length.

The rest of this paper is organized as follows. Section II
discusses the various communication constraints, construction
of the matrices for these constraints, and the formulation of
the optimization problem. Related work is discussed in Section
III. Section IV introduces the heuristics and the concept of
unimodularity. Section ?? looks at the impact of TUM on our
problem formulations. Section V investigates which problems
yield a matroid structure. Section VI compares the heuristics
to the optimal solution. Finally, Section VII summarizes our
contributions and presents promising future directions.
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II. COMMUNICATION CONSTRAINTS AND THE
OPTIMIZATION PROBLEM

A. Communication and Interference graph.

We assume that all nodes employ unit transmission power.
The communication graph Gc = (Vc, Ec) (with |Vc| = N and
|Ec| = M ) is directed with an edge from i to j indicating
that i is able to successfully transmit to j in the absence
of interference. Specifically, η is the common noise factor at
every node v ∈ Vc. Also, we define the symmetric N × N
channel matrix H with entries Huv ∈ R+ that denote the
power attenuation factor of the channel from u to v at a
particular instant of time. A directed edge (u, v) is added if
the SNR from u to v (Huv/η) exceeds the SNR constraint
βc. The interference graph Gi = (Vi, Ei) (with |Vi| = N )
is constructed in a similar manner with βi specifying the
interference threshold, i.e., Ei = {(s, t) : Hst/η ≥ βi}. Both
graphs Gi, Gc are directed, but edges come in pairs:

(u, v) ∈ Ec(Ei) iff
(v, u) ∈ Ec(Ei)

(2)

B. Transmission vector.

The point to point transmission coordination problem re-
quires identification of an optimal subset of edges from the
communication graph, E∗S ⊆ Ec. The feasible set is exponen-
tially large in N , i.e., E∗S ∈ P(Ec), the power set of Ec, where
|P(Ec)| = 2M , for M = |Ec| = O(N2) the size of Gc. The
transmission vector for a particular point to point schedule,
say ES , is a {0, 1}-valued M -vector, x = (x1, . . . , xM ),
with elements xe = 1 if edge e ∈ ES and xe = 0 if edge
e /∈ ES . The transmission vector is the decision variable
for the transmission coordination combinatorial optimization
problem.

Transmission coordination schemes can be classified as
maximum or maximal. A coordination scheme is maximum
if its cardinality is at least as large as that of all feasible
schedules. A coordination scheme is maximal if adding any ad-
ditional transmissions violates one or more of the constraints.
Finding the maximum coordination scheme generally requires
searching over the entire state space and in some cases can
be a NP-Hard problem. Maximal coordination schemes on the
other hand, are easily found by greedy algorithms.

C. Performance objective.

The performance objective of interest is to maximize the
weighted sum of the selected edges. The weight vector w =
(w1, . . . , wM ) has elements wm ∈ R+ denoting the relative
value of activating each edge, and the transmission coordina-
tion objective is to maximize wTx. Maximizing the number
of edges corresponds to w = 1.

D. Communication constraints

The constraints are presented in linear form (Ax ≤ 1),
where A is {0, 1}-valued and has M columns. The rows of
A indicate incompatible edges, i.e., the ones in each row in A
represent a set (or pair) of edges that cannot be simultaneously
active as they together violate one or more of the governing

constraints. The number of rows in A varies depending on
the active constraints. Here 1 = (1, ..., 1) is a vector of ones
with the same dimension as the number of rows of A. This
mathematical formulation of the communication constraints
allow us to express the point to point transmission coordination
problem as a family of integer linear programming (ILP) prob-
lems, shown below. The objective is to maximize wTx over
all possible transmission vectors x ∈ {0, 1}M , subject to any
subset of the three primary constraints, and the interference
constraint.

maximize wTx
over x ∈ {0, 1}M

subject to any subset of
(primary constraints) AHDx ≤ 1

ASRx ≤ 1
AUCx ≤ 1

(secondary constraint) AIx ≤ 1

(3)

Primary communication constraints. There are three possi-
ble primary communication constraints.

Half-duplex: Given the directed communication graph
Gc = (Vc, Ec), define KHD to be the set of head-to-tail pairs
of edges

KHD = {{(i, j), (j, k)} : i, j, k ∈ Vc, (i, j), (j, k) ∈ Ec}. (4)

Let KHD = |KHD| be the number of such edge pairs. Form
the KHD ×M matrix AHD with elements:

AHD
ef,g =

{
1, g = e or f
0, else , (5)

where each row in AHD corresponds to a head-to-tail edge
pair (e, f) in KHD. Note that each row of AHD has exactly
two 1’s in the positions of the two edges comprising the pair.
The linear constraint AHDx ≤ 1 prohibits any two edges that
form a head-to-tail pair from being simultaneously active.

Single reception: a node can not concurrently receive from
multiple transmitters. Define the N ×M matrix ASR (with
each row representing a node), and an entry:

ASR
j,e = 1 if e = (i, j) is an incoming edge of node j. (6)

The constraint is ASRx ≤ 1, i.e., at most one incoming edge
for any node can be active at a time.

Unicast: a node can not concurrently transmit distinct
information to multiple receivers. Define the N ×M matrix
AUC (with each row representing a node), and an entry:

AUC
j,e = 1 if e = (i, j) is an outgoing edge of node j. (7)

The constraint is AUCx ≤ 1, i.e., at most one outgoing edge
of each node can be active at a time.
Interference communication constraint.

Given the directed communication graph Gc = (Vc, Ec) and
the interference graph Gi = (Vi, Ei), define KI to be the set
of pairs of edges that interfere with one another:

KI = {{(i, j), (k, l)} : i, j, k, l ∈ Vc, (i, j), (k, l) ∈ Ec,
(i, l) ∈ Ei or (k, j) ∈ Ei}.

(8)
Let KI = |KI| be the number of such edge pairs. Form the
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KI ×M matrix AI with elements:

AI
ef,g =

{
1, g = e or f
0, else , (9)

where each row in AI corresponds to a pair of conflicting
edges in KI. Note that each row of AI has exactly two 1’s
in the positions of the two edges comprising the pair. The
linear constraint AIx ≤ 1 then prohibits any two edges that
interfere with one another in Gi from being simultaneously
active. Refer to Fig. 1, where edges e, f ∈ Ec interfere if
either (i, l) ∈ Ei or (k, j) ∈ Ei.

i

j

k

l

e

f

g

h

Fig. 1. Illustration of the interference (I) constraint.

III. RELATED WORK

Distributed throughput optimal scheduling. In their seminal
paper [1], Tassiulas and Ephremides use a multi-queue system
to model a multi-hop wireless network with transmissions
being specified via a collection of link activation sets.

In [2] the authors show that maximum throughput algo-
rithms based on max-weight principles yields constant-factor
optimality results when the controller implements an algorithm
that achieves only a constant factor of the max-weight rule
every slot. In [3] the authors use a general interference
model based on interference sets to show that greedy maximal
scheduling achieves stability when the arrival rates are within
a constant factor of the capacity region.

Recently [4] points out that the scheduling literature re-
veals no systematic study of the algorithmic and performance
impacts of communication constraints. Performance impact
refers to the effect of a CCS on the cardinality of the optimal
transmission coordination scheme. In this paper the average
cardinality of a maximal transmission coordination scheme as
a function of the network size is studied.

Several of the optimization problems in Eqn. (3) can be
related to classical problems in graph theory.

Maximum weighted matching (MWM). A matching is
a set of edges not sharing a common vertex. Optimization
for bidirectional point to point communication subject to all
three primary constraints (HD+SR+UC) is an instance of
the distance-1 MWM problem. Edmonds [5] proposed an
algorithm in 1965 to find a maximum matching (in both
bipartite as well as non-bipartite graphs) in polynomial time.
Additional related work can be found in [4].

IV. FINDING THE OPTIMAL SCHEDULE

The problem of finding the optimum schedule is a com-
binatorial optimization problem. Linear programming (LP) is

a technique for optimization of a linear objective function,
subject to linear constraints. An ILP formulation is a LP
formulation with the additional requirement that the variables
can only take integer values. LP problems can be solved
efficiently in most cases. ILP problems on the other hand are,
in general NP-Hard. Our problem is a 0 − 1 ILP or Binary
Integer Programming (BIP) problem. These problems too are
classified as being NP-Hard.

All of the problems in Eqn. (3) are ILPs. Relaxing the ILP to
an LP (replacing x ∈ {0, 1}M with x ∈ [0, 1]M ) would result
in the vector x having (in general) fractional values, which
we would round up or down accordingly to yield a feasible
solution to the original ILP. The optimal objective value of this
LP relaxation gives an upper bound on the optimal objective
value of the original ILP (because the relaxation enlarges the
search space). This LP relaxation is in general not tight, i.e.,
we may well have non-integer solutions achieving a strictly
higher objective value than any integral solution. In such a
case the upper bound of the solution to the LP relaxation may
be a poor estimate of the optimal solution to the original ILP.
Relaxation is an appealing approach because LP problems can
be solved efficiently in most cases.

Although ILP and BIP problems are classified as NP-Hard,
there do exist an important subclass of problems that can be
solved by LP relaxation. This arises as a result of the constraint
matrix A and the right hand side b in Ax ≤ b satisfying
certain properties. We now review some relevant terms and
theorems.

A. Unimodularity

An integer matrix of full row rank A is said to be totally
unimodular if every square submatrix of A has determinant
either 0,+1, or −1 [6]. The following theorem of Hoffman
and Kruskal is key to our problem.

Theorem 1 (Hoffman-Kruskal [6]): Let A be an m by n
integral matrix. Then the polyhedron defined by Ax ≤ b,x ≥
0 is integral for every integral vector b ∈ Rm iff A is TUM.

For our optimization problems the linear constraints define a
convex polyhedron called the feasible region. If a polyhedron
is integral (has integer-valued vertices) the relaxation of the
ILP is valid, i.e., the LP and ILP have the same solution. This
is because the solution of an LP occurs at a vertex and if all
vertices are integral then the solution of the LP will be feasible
for the ILP. The following is another important theorem we
will require.

Theorem 2 (Heller and Tompkins [7]): Let A be an m by
n matrix whose rows can be partitioned into two disjoints
sets T1 and T2, such that A,T1, and T2 have the following
properties:

• every entry in A is 0,+1, or −1;
• every column contains at most two non-zero entries;
• if a column A contains two non-zero entries, and both

have the same sign, then their rows are in different sets;
• if a column of A contains two non-zero entries, and they

have opposite signs, their rows are in the same set.

Then A is TUM.
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B. Heuristics

We now introduce the various heuristics.
General heuristic.
We consider a greedy heuristic with edges sorted by several
primary and secondary criteria. The general algorithm for the
heuristic is shown in Algorithm (10).

List edges Ec in order of PRIMARY CRITERION,
breaking ties using SECONDARY CRITERION
(break remaining ties arbitrarily)

Set x = 0;
While Ec 6= ∅

Remove edge e from queue
If A(x+ em) ≤ b) then update x := x+ em

(10)
Here, em is the zero vector with a one in position m, and
Ax ≤ b represents the set of governing constraints.

The representative primary and secondary sorting criterion
we will consider include:

1) Primary = Length (Inc/Dec), Secondary = none
2) Primary = Degree (Inc/Dec), Secondary = Length

(Inc/Dec)

We will consider two special cases for edge weights: we = 1
and we = lmax/le, where we is the weight of edge e, le is
the length of edge e, and lmax is the length of the longest
edge. As a result of this function, the length sorting criterion
is equivalent to an edge weight criterion. Also, we point out
that in and out degrees are the same for all nodes, so sorting by
in- and out degree yields the same ordering. For every problem
we consider all the sorting criteria listed above, choosing the
ones that yield the best solution.

We now demonstrate the process wherein one can check
whether the LP formulations of the HD, SR, UC and I
problems satisfy TUM.
1. HD constraint. Consider a network with Gc as shown in
Fig. 2. The constraint matrix (AHD) for this graph is:

A

1 2

3 BC

Fig. 2. Sample communication graph Gc for a three node network.

AHD =
1, 2
1, 3
2, 3


1 2 3
1 1 0
1 0 1
0 1 1


The determinant is |AHD| = −2 /∈ {−1, 0,+1}. As a result

the matrix is not TUM, and so the Hoffman-Kruskal theorem
(Theorem 1) does not hold, meaning LP relaxation does not
generate a feasible solution to the ILP.

2. SR constraint. The matrix ASR is defined in Eqn. (6). Each
column corresponds to an edge, and hence each column has
exactly one 1 in row v = h(e). The matrix therefore is TUM
by Theorem 2 (Heller and Tompkins).
3. UC constraint. The same argument holds here.
4. I constraint. The I constraint matrix has a structure similar
to the HD matrix. One can show that this constraint does not
satisfy TUM.

Combining a TUM problem with a non-TUM problem
results in a non-TUM problem. As a result any combination of
SR and UC with HD and/or I results in a non-TUM problem.
Also, although not shown here one can easily prove that the
SR+UC problem satisfies TUM.

V. MATROIDS AND COMMUNICATION CONSTRAINTS

We now explore the use of greedy algorithms in solving the
transmission coordination problem. Greedy algorithms yield
optimal solutions when the subset system representing the
governing communications constraints is a matroid. We now
proceed to define matroids and then evaluate which of the
various CCSs are matroids.

A. Matroids and greedy algorithms
Definition: Matroid [8]
A matroid is an ordered pair (E , I) consisting of a finite set
E together with a collection I of subsets of E satisfying the
following three conditions:
1. ∅ ∈ I
2. If I ′ ⊆ I ∈ I, then I ′ ∈ I
3. If I1 and I2 are in I and |I1| < |I2|, then there is an element
e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I
If M is the matroid (E , I), then M is called a matroid on E .
The members of I are called the independent sets of M, and
E is the ground set of M. A subset of E not in I is called a
dependent set. A minimal dependent subset C of E is called a
circuit. A maximal independent set ofM is called a base or a
basis ofM. All bases of a matroid have the same cardinality.
A maximal independent subset is the largest subset of E in I.
A minimal dependent subset is the smallest subset E ⊆ E s.t.
E /∈ I. We now look at some examples of matroids.

Matroids are related to the greedy algorithm. Under the
greedy algorithm, in each step, we choose any largest weight
member of E , not already chosen, which together with the
members already chosen forms a subset system while subject
to some condition that maintains the property of the set I. For
any matroid M on E , and for any weighting of E , the greedy
algorithm always yields the maximum weight member of the
family I of bases of M [9], [10].

B. Communication constraints and matroids
We now proceed to check if the independent sets I for the

transmission coordination problem for the various CCSs are
matroids.
1. HD: Consider the simple counter-example depicted in Fig.
3. Clearly the union of any of the outgoing edges of i (from
I1) with any of the incoming edges of i (from I2) violates
the HD property. Thus this pair of subsets violates condition
3 in the matroid Definition.
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TABLE II
CATEGORIZATION OF VARIOUS PROBLEMS.

Problem TUM Matroid
HD No No
SR Yes Yes
UC Yes Yes
HD+SR No No
HD+UC No No
SR+UC Yes No
HD+SR+UC+I No No
I No No
HD+I No No
SR+I No No
UC+I No No
HD+SR+I No No
HD+UC+I No No
SR+UC+I No No
HD+SR+UC+I No No

Hence the half-duplex constraint does not yield a matroid,
and hence cannot be solved via use of a greedy algorithm. This
should come as no surprise, since we have already established
that problems involving the HD constraint cannot be solved
by LP relaxation.

|I1| = 3 |I2| = 2

i i

Fig. 3. Counter-example to show that the HD constraint does not yield a
matroid.

2. SR: Form the set I to consist of all distinct unordered
subsets of edges in E , with the following restriction: for any
i, j, k ∈ V , any grouping that contains edges (i, j), (k, j) is an
invalid grouping. This condition results in grouping of edges
where each node in V is the head of (at most) one edge. Hence
for any two groupings I1, I2 ∈ I, where |I1| = |I2|+ 1, we
are guaranteed that I1 contains at least one edge that has as its
head a node that is not the head of any edge in I2. This edge
can then be added to I2 to form a grouping of cardinality
|I2| + 1. Hence the independent subsets I under the single
receiver constraint form a matroid i.e., M = (E , ISR).
3. UC: The proof for the UC constraint is similar to the one
for the SR condition above.

The SR and UC problems are the only two problem that
satisfy the matroid structure property. All other problems
(including the combined SR and UC problem) fail to satisfy
this property. Table II summarizes these results.

C. Importance of matroids in network design
From a design standpoint finding the optimal transmission

coordination scheme implies solving a global optimization

TABLE III
PERFORMANCE (% OF OPTIMAL SOLUTION FOR NETWORK OF N = 100

NODES) WHEN OBJECTIVE IS TO MAXIMIZE 1Tx.

Problem βc = 0.2 0.2 12.0 12.0
Sorting by length degree length degree
HD 86 32 83 82
SR 100 100 100 100
UC 100 100 100 100
HD+SR 68 97 84 95
HD+UC 68 97 84 95
SR+UC 97 97 89 93
HD+SR+UC 97 98 92 96
I 48 50 40 42
HD+I 75 51 35 39
SR+I 52 75 56 59
UC+I 61 88 87 90
HD+SR+I 52 76 35 39
HD+UC+I 60 87 81 90
SR+UC+I 88 81 87 90
HD+SR+UC 74 78 81 90
+I

problem, which requires centralized control. In the best case
this solution may be found in polynomial time (as in the
case of the MWM problem). For most problems however, as
network size increases, the explosion in search space makes
centralized policies difficult and expensive. As a result one
needs to make use of decentralized (distributed) policies that
are able to obtain good approximations of the optimal solution
in constant or polynomial times.

Matroids drastically reduce the complexity of of the opti-
mization problem. This reduction in complexity, obviates the
need of a centralized policy, making them readily scalable.
This can prove to tremendously helpful when designing the
network, as the designer can choose to exclude a non-matroid
constraint thereby saving on the cost (complexity) associated
with solving this problem.

VI. HEURISTICS VS. OPTIMAL SOLUTION

We now compare the solutions provided by the edge length
and degree heuristics to the optimal solution. We show that
depending on the constraint set, either, both, or neither heuris-
tic yields a good approximation to the optimal solution.

All edge weights, we = 1. We evaluate the eight combina-
tions of the primary constraints without the I constraint, and
then the eight combinations with the I constraint. We present
results for βc = 0.2 and βc = 12.0; this allows to us to see
how the heuristics compare when the number of edges is large
(βc = 0.2) and small (βc = 12.0). For βc = 0.2, and N = 100,
we set |M | = 1908, whereas for βc = 12.0, and N = 100,
we set |M | = 284.

Table III provides a summary of our results. Column 2
and 4 specify the performance when the primary sorting
criterion is edge length, whereas columns 3 and 5 specify
the performance when the primary sorting criterion is node
degree. When the primary sorting criterion is degree, we select
the secondary criterion that provides the best performance for
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each problem. Performance is expressed as a percentage of the
optimal solution obtained at N = 70.

From Table III we observe that for the βc = 0.2 case
(without I), at least one of the heuristics yields a very good
approximation of the optimal solution (with the exception of
the HD case the heuristics yield an approximation that is 97%
or better). For the βc = 12.0 case as well, we observe that
at least one (and in some cases both) heuristics yield a very
good approximation of the optimal solution. Observe also that
for the two matroid problems, both heuristics yield the optimal
solution (in fact any sorting criterion always yields the optimal
solution for these problems). Upon adding the I constraint we
observe that the heuristics do not perform as well. Performance
of the heuristics for problems that involve the UC constraint
improves (albeit marginally) when we go from βc = 0.2
to βC = 12.0, whereas the approximation for the problems
that do not include this constraint worsens. We are unable to
explain precisely the reason for this observation. Our intuition
is that the addition of the I constraint makes the problem of
finding the optimal schedule a hard one as we are trying to
maximize the number of transmissions under interference. A
greedy heuristic is too simplistic and ignores this constraint,
resulting in a poor approximation of the optimal solution.
However, when the UC constraint is in effect a node can
only transmit to one other node, this reduces the number of
edges that can be active, effectively allowing the heuristics to
perform better. We also observe that in the absence of the I
constraint, when utilizing a length sorting criterion, sorting by
increasing length performs better than sorting by decreasing
length. This also holds for the case where the I constraint
is added to the primary constraint problems and βi = 12.0.
However when βc = 0.2, we observe that in a majority of
cases sorting by decreasing length performs better than sorting
by increasing length. Once again we are not precisely sure as
to why this occurs.

We conclude that the heuristics in general fail to achieve
good performance in the presence of the I constraint.

VII. SUMMARY

A. Contributions

To summarize:
• We characterize the various problems by way of their

Primal-Dual LP formulations (we have not included this
in the paper due to a lack of space).

• We prove that only the single receiver and unicast prob-
lems individually yield matroids.

• We prove that neither half-duplex nor interference prob-
lems yield matroids, nor are they TUM.

• Simulations suggest that the combined half-duplex, single
receiver and unicast problem (matching problem) can be
well approximated by our heuristics. This holds even with
the addition of the interference problem.

• Simulations suggest that our heuristics are able to yield
good approximations of the optimal solution for the
problems that do not include the interference constraint.

• When operating under only the interference constraint,
our heuristics fail to yield good approximations of the
optimal.

• Depending on the problem at hand, either both heuristics
work very well, or one outperforms the other, or neither
works well.

B. Future work
There are several promising directions for future work. One

such direction looks to address the problems encountered when
employing LP relaxation. When employing LP relaxation to
solve the original ILP, the tightness of the relaxation depends
on the rounding rule employed. Ensuring that the relaxation is
tight requires a certain amount of trial and error in choosing
the rounding rule. An alternate approach would be to construct
a feasible integral solution to the LP (Primal), while making
use of a related LP (the Dual) to guide our decisions. The
procedure that outlines this constitutes the Primal-Dual algo-
rithm. This is a natural next step to try as we already have the
Primal-Dual pairs for each of the problems. Along the same
lines one can use semidefinite programming (SDP) techniques
to solve our set of linear optimization problems. SDP is
generally regarded as an extension of linear programming
where the inequalities between vectors is replaced by matrix
inequalities. One major difference between LP and SDP is that
duality results are weaker for the latter. Nevertheless, SDP can
be solved very efficiently in practice. Yet another promising
direction is to look at more complex algorithms such as belief
propagation techniques which have been successfully adopted
in areas like iterative coding and computer vision, that involve
graphs with numerous cycles.
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