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Abstract
In this work, we demonstrate the possibility of performing two-dimensional rotation
on a chaotic system. This enables the rotation of its attractor in space without changing
its chaotic dynamics. In particular, the rotated system preserves the same eigenvalues
at all equilibrium points and its largest Lyapunov exponent remains unchanged. Two
chaotic systems, one of which is the classical Lorenz system, are used to illustrate and
validate the rotation operation using numerical simulations and further experimentally
using a digital FPGA platform.

Keywords Chaotic oscillators · Digital chaos generation · FPGA · Two-dimensional
rotation

1 Introduction and Background

Chaos theory studies aperiodic sequences,which are unpredictable on the long termbut
are generated from deterministic relations [1]. Chaos is observed in many biological,
chemical [22], electronic [20] and financial systems [9] and has important applications,
particularly in chaos-based communications and cryptography [12–14,19]. Several
encryption schemes are now based on continuous-time chaotic systems [24] and their
modified fractional-order versions [11,25].

Meanwhile, two-dimensional vector rotation is a standard and well-known opera-
tion that can be performed on various trajectories. In particular, a system of differential
equations ẋ = f (x) in the original coordinate system x can be transformed to the
rotated coordinate system u using a rotation matrix R. Thus, u = Rx , and hence
x = R−1u. The rotated system of differential equations is given by u̇ = Rẋ =
R f (x) = R f (R−1u).
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In a space of two dimensions x and y, the rotated axes u and v can be given by:

[
u
v

]
= R

[
x
y

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
, (1)

where θ is the angle of rotation in the x − y plane. This can also be considered as the
rotation angle about the z-axis in a 3D space or equivalently

⎡
⎣ u

v

w

⎤
⎦ =

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ , (2)

which means that the coordinate z does not change, i.e., w = z. Consequently, the
governing differential equations of the rotated variables u and v in terms of x and y
are given by:

u̇ = cos θ ẋ + sin θ ẏ,
v̇ = − sin θ ẋ + cos θ ẏ.

(3)

In this work, we seek to illustrate the possibility of rotating chaotic attractors and
show that the dynamics donot change as a result of this rotation because the eigenvalues
at all equilibrium points remain unchanged. We first consider the famous Lorenz
system [15]

ẋ = a(y − x),
ẏ = (b − z)x − y,
ż = xy − cz,

(4)

where (a, b, c) are parameters. In particular, we show that its butterfly attractor can
be rotated in the x − y plane with a rotation angle θ ∈ (−π, π ]. We also show that
dynamic rotation of the attractor, whereby the rotation angle changes with time rather
than being a constant, is possible. This may be particularly important for security
applications based on chaos since the information can be encoded dynamically in the
rotating angle with no fear of changing the chaotic dynamics of the system.

In a second example, we demonstrate the rotation in the x − y plane of the chaotic
attractor from the canonical switching-type system proposed in [6] and given by

ẋ = y,
ẏ = z,
ż = −a(x + y + z − sgn(x)),

(5)

where a is a parameter and sgn(x) is the signum function defined as

sgn(x) =
⎧⎨
⎩

−1, x < 0,
0 x = 0,
1, x > 0.

(6)
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Finally, we verify in hardware the two-dimensional rotation using an FPGA to
synthesize and test the systems, which is much easier than using analog circuit imple-
mentations. That is why efficient realizations of many chaotic systems have recently
been presented on digital platforms, including DSPs and FPGAs [5,17,23,26,27]. In
addition, Lorenz system has inspired many researchers to develop modified versions
of this attractor and their hardware realizations [2,7,8,16,18]. However, we note that
despite the unchanged chaotic dynamics, the original z(t) signal diverges from w(t)
in the rotated system due to the limited step size used in the discretized versions of
the chaotic equations implemented on the FPGA.

2 Two-Dimensional Rotation About the z-Axis

2.1 Lorenz System

The system (4) in the rotated coordinates u, v and the renamed coordinate w is given
by:

u̇ = cos θ(a((− sin θ u + cos θ v) − (cos θ u + sin θ v)))

− sin θ((b − w)(cos θu + sin θ v) − (cos θ v − sin θ u)),

v̇ = sin θ(a((− sin θ u + cos θ v) − (cos θ u + sin θ v)))

+ cos θ((b − w)(cos θ u + sin θ v) − (cos θ v − sin θ u)),

ẇ = (cos θ u + sin θ v)(− sin θ u + cos θ v) − cw.

(7)

This system of equations can be simplified through defining

T1 = cos θ u + sin θ v,

T2 = − sin θ u + cos θ v
(8)

resulting in the rotated Lorenz system described by

u̇ = a cos θ (T2 − T1) − sin θ ((b − w)T1 − T2),
v̇ = a sin θ (T2 − T1) + cos θ ((b − w)T1 − T2),
ẇ = T1T2 − cw.

(9)

In order to realize this system later on an FPGA, we consider its Euler discretized
form as

ui+1 = ui + h (a cos θ (T2 − T1) − sin θ ((b − wi )T1 − T2)) ,

vi+1 = vi + h (a sin θ (T2 − T1) + cos θ ((b − wi )T1 − T2)) ,

wi+1 = wi + h (T1T2 − cwi ) ,

(10)

with T1 and T2 evaluated at ui and vi , respectively. h is a constant step which is fixed
throughout this work to h = 0.01.

Figure 1a presents the numerical simulation results of the rotated Lorenz attrac-
tor for different phase angles with a = 10, b = 28 and c = 8/3 projected
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Fig. 1 Rotated Lorenz chaotic
attractor a projection in the
u − v plane and b rotation of the
equilibrium points

(a)

(b)

in the u − v plane. The reference trajectory at θ = 0 is plotted in red, and
the rotating trajectories at θ = π/4 and θ = π/2 are also plotted. The new
attractors are rotated versions in the anticlockwise direction as a result of rotating
the equilibrium points in the u − v plane, as shown in Fig. 1b. The equilibrium
points of the system at the given parameter values are, respectively, (0, 0, 0) and
(±8.48528 (cos θ − sin θ) ,±8.48528 (cos θ + sin θ) , 27). The corresponding Jaco-
bian is given by

J =

⎡
⎢⎢⎣

(
w
2 − 19

)
sin 2θ − 9 cos 2θ

2 − 11
2 (38 − w) cos2 θ − 9 sin 2θ

2 + w − 28 T1 sin θ

(38 − w)(cos θ)2 − 9 sin 2θ
2 − 10 − (

w
2 − 19

)
sin 2θ + 9 cos 2θ

2 − 11
2 −T1 cos θ

v cos 2θ − u sin 2θ u cos 2θ + v sin 2θ −8
3

⎤
⎥⎥⎦

(11)

The equilibrium points and the Jacobianmatrix of the rotated system differ from the
original system. Yet, the characteristic polynomial evaluated at the equilibrium points
results in eigenvalues that are identical to those of the original system as follows. The
characteristic polynomial is given by:
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Fig. 2 Deviation of w(t) from
z(t) at three different values of θ .
Note that w(t) = z(t) at θ = 0

λ3 − tr(J )λ2 + (M11 + M22 + M33) λ − |J | = 0, (12)

where tr(J ) is the trace of the Jacobian matrix, |J | is its determinant and Mi j is the
minor determinant of the matrix J by removing the i th row and j th column. The
coefficients of the characteristic polynomial are obtained as follows:

• tr(J ) = − 11
2 − 11

2 − 8
3 = − 41

3 .
• M11 = 0.5u2 cos 2θ + 0.5u2 cos2 2θ − 0.5v2 cos2 2θ + 0.5v2 + 0.5uv sin 2θ +
0.5uv sin 4θ + 4

3w sin 2θ − 12 cos 2θ − 152
3 sin 2θ + 44

3 .
• M22 = −0.5u2 cos2 2θ + 0.5u2 − 0.5v2 cos 2θ + 0.5v2 cos2 2θ + 0.5uv sin 2θ −
0.5uv sin 4θ − 4

3w sin 2θ + 12 cos 2θ + 152
3 sin 2θ + 44

3 .• M33 = 10w − 270.
• and henceM11+M22+M33 = 0.5(1+cos 2θ)u2+0.5(1−cos 2θ)v2+uv sin 2θ+
10w − 722

3 .
• |J | = 5(sin 2θ−cos 2θ−1)u2+5(cos 2θ−sin 2θ−1)v2−10(cos 2θ+sin 2θ)uv−

80
3 w + 720.

Consequently, tr(J ) is always independent of θ . At the equilibrium point (0, 0, 0),
M11+M22+M33 = − 722

3 and |J | = 720. Hence, the characteristic polynomial evalu-
ated at the equilibrium point (0, 0, 0) and the resulting eigenvalues are independent of
θ and identical to those of the original system. This result was similarly validated for
the other two equilibrium points, where M11 + M22 + M33 = 304

3 and |J | = −1440.
In conclusion, a symbolic derivation of the characteristic polynomials followed by

the substitution by these different equilibrium points results in eigenvalues that are
identical to those of the original system. Hence, the original and rotating systems have
the same eigenvalues, respectively, at the three equilibrium points. Thus, the rotation
does not change the chaotic dynamics. However, the rotation results in a w(t) time
series that differs from the original z(t) time series due to the sensitivity of the chaotic
system to initial conditions and the finite discretization step h. This is clearly shown
in Fig. 2.

Bifurcation diagrams of the three state variables against θ are shown in Fig. 3
after discarding the first 2000 points in each simulation. The figures show that the
chaotic behavior is preserved independent of θ over the whole range θ ∈ (−π, π ]with
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(a) (b)

(d)(c)

Fig. 3 Bifurcation diagrams of a u, b v and c w and d MLE versus θ

no islands of stability, as expected. A finite positive maximum Lyapunov exponent
indicates chaotic behavior and is a target for maximization against the parameters
[4]. The calculated maximum Lyapunov exponent of the system was found to remain
positive, independent of θ , fluctuating around the value of 0.8 as shown in Fig. 3d. In
conclusion, it is evident that the rotation angle does not change the chaotic dynamics
of the system or force it into any possible periodic mode of operation.

The effect of rotation on the eigenvectors of the Jacobian matrix is also studied,
where their values at the third equilibrium point are given in Table 1. In addition, the
eigenvectors inclination (EVI) is plotted against the rotation angle θ . EVI is the angle
between the vector at θ = 0 and that at a given value of θ . In a real inner product
space, the angle φ between two vectors x and y is defined by cosφ = <x,y>

||x ||||y|| . In a
complex vector space, taking the real part of this cosine defines the Euclidean angle
as cosφE = �{<x,y>}

||x ||||y|| . Figure 4 shows that EVI (φE ) follows a pattern similar to that
of the rotating system itself where EVI is plotted at the third equilibrium point, as an
example. The same holds for the other equilibrium points.

2.2 Dynamic Rotation

To demonstrate the possibility of encoding information into the phase rotation angle,
we consider θ as a dynamic signal with two different cases, as shown in Table 2.
Switching the sign of a parameter such that it varies dynamically with time was used
in [8] to generate the four-wing Lorenz attractor. This switch in sign can be considered
as a phase rotation of π . By introducing this dynamic rotation, it is possible to increase
the number of parameters that can be used to encode information for example by using
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Table 1 Eigenvalues and eigenvectors of Lorenz and rotated Lorenz systems at the third equilibrium point

Lorenz Rotated Lorenz

λ1 = −13.85, λ1 = −13.85,

λ2,3 = 0.09396 ± 10.19 i λ2,3 = 0.09396 ± 10.19 i

V1 =
⎡
⎣ −2.146
0.827
1

⎤
⎦ V1 =

⎡
⎣ −2.146 cos θ − 0.827 sin θ

0.827 cos θ − 2.146 sin θ

1

⎤
⎦

V2,3 =
⎡
⎣ 0.37 ± 0.4102 i

−0.04467 ± 0.7912 i
1

⎤
⎦ V2,3 =

⎡
⎣ cos θ(0.37 ± 0.4102 i) + sin θ(0.04467 ∓ 0.7912 i)
cos θ(−0.04467 ± 0.7912 i) + sin θ(0.37 ∓ 0.4102 i)
1

⎤
⎦

Fig. 4 Eigenvectors inclination
(EVI) against the rotation angle
θ at the third equilibrium point

the amplitude A and/or period T (see Table 2). Since no periodic windows or change
in the Lyapunov exponents spectrum is observed due to rotation, the information
encoding within the rotation angle parameters is an attractive option. Projections of
the dynamically rotated Lorenz attractor are shown within Table 2 for the case of a
sinusoidal function as well as for a staircase function.

2.3 Switching-Type System

The system (5) in the rotated coordinates (u, v, w) in Euler form can be written as

ui+1 = ui + h (T3 cos θ + sin θ w) ,

vi+1 = vi + h (−T3 sin θ + cos θ w) ,

wi+1 = wi − ha (T3 + T4 + w − sgn(T4)) ,

(13)

where

T3 = sin θ u + cos θ v,

T4 = cos θ u − sin θ v
(14)
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Table 2 Possible dynamic signals with amplitude A and period T used for dynamic rotation (A = 10, T =
50)

and sgn(T4) is the signum function. Figure 5a shows the numerical simulation results
of the rotated attractor with a = 0.8 at three different angles. The equilibrium points
(cos θsgn (T4), − sin θsgn (T4) , 0) have a corresponding Jacobian given by (15)

J =

⎡
⎢⎢⎣
cos θ sin θ cos2θ sin θ

−sin2θ − cos θ sin θ cos θ

−0.8 (cos θ + sin θ) −0.8 (cos θ − sin θ) −0.8
+1.6 cos θδ(T4) −1.6 sin θδ(T4)

⎤
⎥⎥⎦ (15)

for a = 0.8.
We again verify that the un-rotated and rotated systems have the same eigenvalues

at all equilibrium points. Hence, the rotation process does not change the chaotic
dynamics. However, as mentioned earlier for the Lorenz system, w(t) deviates from
z(t) due to the fixed value of h albeit with no periodic windows at any value of θ as
shown in Fig. 5b.
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(a)

(b)

Fig. 5 Rotated switching-type chaotic attractor a projection in the u − v plane and b bifurcation diagram
of w versus θ

3 FPGA Realization

Advent in technology has led to the development of highly dense and reliable FPGA
platforms that are currently being used in applications such as image and packet pro-
cessing, accelerating the execution of machine learning algorithms, and recently in
the design of chaotic systems [3,21]. The systems of Eqs. (10) and (13) were imple-
mented using the experimental setup shown inFig. 6. The platformused is theDE2-115
development board equippedwith Intel®Cyclone IVFPGAEP4CE115F29C7 device.
These devices are suitable for low-cost, low-power and small form factor applications.
Cyclone IV has 114,480 logic elements, 300 9 × 9 multipliers, 266 18 × 18 multi-
pliers, 3888 K of embedded memory, 4 general-purpose PLLs, 8 user I/O Banks and
528 maximum user I/O. For the work discussed here, a data conversion card with two
DAC5762 14-bit 275 MSPS is interfaced with the FPGA platform as shown in Fig. 6.
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Fig. 6 Experimental FPGA setup and results of the dynamic angle rotation shown on the oscilloscope

θ=0 θ=−π/4

θ=−π/2 θ=−π/2,−π/4

Fig. 7 Experimental results showing the u − v projection of the chaotic Lorenz attractor rotated by −π/4,
−π/2 and dynamic switching between these two angles of rotation
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θ=0 θ=−π/4

θ=−π/2 θ=−π/2,−π/4

Fig. 8 Experimental FPGA results of the switching system showing the u − v projection of the chaotic
attractor rotated by −π/4, −π/2 and dynamic switching between these two angles

Initially, the MATLAB/Simulink HDL coder was used to generate the RTL code
of the chaotic system. However, the generated code was far from optimal [3], and
hence we opted to build the system using Verilog and the Quartus environment from
Intel [10]. The codewas verified by performing functional and timing simulation using
ModelSim [10] and was also verified after prototyping using a standard logic analyzer.

At the heart of the code are three core modules responsible for the generation of
the output state variables u(t), v(t) and w(t) for a specific rotation angle using 32-bit
fixed point arithmetic. For testing purposes, the implemented rotation angles were 0,
±π/4 and±π/2. Arithmetic operators in eachmodule are implemented using IP cores
from Intel. The DACs output is displayed on oscilloscope as shown in Fig. 6. A data
conversion cardwith a 14-bit resolution two-channel digital-to-analog (D/A) converter
was interfaced and used with the board as shown in Fig. 6 to observe the output on
the oscilloscope. Finally, a phase-locked loop (PLL) was used to generate the system
clock of 15MHz for the rotated Lorenz system and 24MHz for the switching system,
ensuring that its phase matches with that of the internal DE2-115 board’s oscillator.
Multiplication operations were converted to shift and add operations to save resources
where possible.

Experimental results of the rotated Lorenz system are shown in Fig. 7 which shows
the observed attractors in the u − v plane, respectively, rotated by −π/4 and −π/2
compared to the original non-rotated version. Further, dynamic switching between
these two rotation angles using a simple binary switching function is also shown.
Figure 8 represents the experimental results of the switching-type system rotated
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Table 3 Summary of used FPGA resources

Resources Rotated Lorenz system Rotated
switching-type
system

Logic elements 3543/114480 (3%) 1873/114480
(2%)

Combinational functions 3490 1869

Registers 736 721

Embedded multiplier (9-bit) 48/532 (9%) 0/532

Pins 41/529 (8%) 38/529 (7%)

PLL 1 1

Frequency 15MHz 24MHz

Table 4 MAE for the different
rotations

Degree MAEu MAEv MAEw

0 0.0717 0.0695 0.0624

π/4 0.0617 0.0571 0.0540

π/2 0.0407 0.0435 0.0366

also in the u − v plane by −π/4 and −π/2. The hardware resources utilized in
the implementations of the two systems are summarized in Table 3 showing efficient
hardware utilization.

To assess the validity of our FPGA realization, we have used a logic analyzer to
capture the values of u, v and w from the FPGA for the three angles 0, π/4 and π/2.
The obtained values are then fed into MATLAB such that they can be compared with
the ideal simulation values. Table 4 lists the mean absolute errors (MAEs) between
the simulation values and the values obtained from the FPGA realization for the first
5000 iterations.

4 Conclusions

We have demonstrated theoretically and experimentally the possible 2D rotation of
chaotic attractors applied to two different chaotic system prototypes. The rotation
operation does not change the eigenvalues at the respective equilibrium points of the
chaotic system, and hence it does not change the global dynamical behavior of the
system. This is an attractive feature which can be exploited in chaos-based encryption
applications and needs to be further investigated in addition to exploring the possibility
of 3D rotation. FPGA implementations of two rotated chaotic systems show reasonable
use of resources, indicating that the technique is not hardware intensive.
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