
Satometer: How Much Have We Searched?
Fadi A. Aloul, Brian D. Sierawski, Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

{faloul, bsieraws, karem}@eecs.umich.edu
ABSTRACT
We introduce Satometer, a tool that can be used to estimate the per-
centage of the search space actually explored by a backtrack SAT
solver. Satometer calculates a normalized minterm count for those
portions of the search space identified by conflicts. The computa-
tion is carried out using a zero-suppressed BDD data structure and
can have adjustable accuracy. The data provided by Satometer can
help diagnose the performance of SAT solvers and can shed light
on the nature of a SAT instance.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Expressions and
Their Representation, Algorithms.

General Terms
Algorithms, Measurement, Experimentation, Verification.

Keywords
BDDs, ZBDDs, SAT, CNF, backtrack search, conflict diagnosis,
search space coverage, search progress.

1. INTRODUCTION
The last few years have seen significant algorithmic advances in,
and carefully-crafted implementations of, Boolean Satisfiability
(SAT) solvers [3, 13, 15, 19]. This has led to their successful appli-
cation to a wide range of large-scale EDA problem instances con-
sisting of thousands of variables and millions of clauses [4, 16, 18].
Despite these remarkable developments, SAT solvers cannot es-
cape the underlying worst-case exponential complexity of their
search space and must sometimes be aborted after a certain time-out
limit has been reached. Typically, when a solver aborts it provides
very little data about how much progress it had achieved up to that
point. Such data can be quite useful. Knowing, for instance, that the
solver had managed, after several hours, to explore only 1% of the
search space might suggest a very hard problem instance and the
need, perhaps, to try a different approach. If, on the other hand, the
solver reports exploring more than 99% of the search space without
finding a solution, it may be reasonable to assume that the instance
has very few satisfying assignments or is possibly unsatisfiable.

Satometer (pronounced like barometer) is an accessory that can be
used with any backtrack search SAT solver to report the percentage
of search space actually explored by the solver. It requires the solv-
er to emit the set of clauses corresponding to the conflicts encoun-
tered during the search. It can be used dynamically, while the SAT

solver is running, to indicate progress in the search for a solution. It
is more useful, however, as a postprocessor to analyze the result of
an aborted or completed search.

The paper is organized as follows. In Section 2 we introduce our
measure of search progress. We then describe, in Section 3, how
this measure can be computed using BDDs and ZBDDs. In Section
4 we illustrate the utility of this measure in a variety of experimental
scenarios and conclude, in Section 5, with a summary of the paper’s
main contributions.

2. MEASURING SEARCH PROGRESS
Despite the considerable activity in SAT research, the question of
measuring the progress of a search process does not seem to have
attracted much attention. The only relevant work that we were able
to find is that of Kokotov and Shlyakhter [10]. They describe a
progress bar that can be integrated into a backtrack SAT solver to
measure its progress. The bar is updated based on either historical
or predictive estimates of the size of the decision tree maintained by
the SAT solver. They reported that the bar is able to predict progress
with an accuracy of 80-90% without significantly impacting the
solver’s run time.

In our approach, we view the search process as a sequence of moves
that continually (and systematically) modify a (partial) variable as-
signment until 1) a satisfying assignment (a solution) is found, 2)
the formula is proven to be unsatisfiable (has no solution), or 3) a
time-out limit is reached. Along the way, many assignments that are
explored will correspond to zeros of the function represented by the
formula and will cause the search process to backtrack. Every time
such a “conflict” occurs, it identifies a portion of the search space
that can be regarded as having been explored and found to contain
no solutions.

Let denote the assignments that correspond to the
first i conflicts. We can measure how much of the search space has
been explored by counting the number of minterms1 covered by the
function . Normalizing this count by the total
size of the space yields the percentage of the space that has been ex-
plored up to this point. We will use the notation to express the
normalized number of minterms of the function . Thus,

, , and 2. In the
sequel, we will refer to as the size of .

This measure can be equivalently computed by considering the con-
flict clauses identified at each conflict. Let denote
the conflict clauses identified after the first i conflicts. In general,

 as one or more conflict clauses may be identified at each con-
flict. The portion of the search space that would have been explored
after processing the ith conflict can now be computed as

.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00.

1. Complete truth assignment that sets the function to 1.
2. Assuming that the number of variables is 2.

A1 A2 … Ai, , ,

A1 A2 … Ai+ + +

 f
f

a b+ 75%= a b⋅ 25%= a b⊕ 50%=
 f f

C1 C2 … Cj, , ,

j i≥

1 C1 C2 … Cj⋅ ⋅ ⋅–

An illustration of these computations is shown in Figure 1 for the 4-
variable formula

(1)

3. COMPUTING SPACE COVERAGE
When the conflicting assignments are disjoint (i.e., when

 for), space coverage can be simply calculated by
the formula:

(2)

Equivalently, if the conflict clauses are disjoint, i.e. if
for , then space coverage is simply

(3)

In other words, if conflicts identify non-overlapping pieces of the
search space, then the size of the explored space can be found by
simply adding the sizes of the different pieces. In general, this will
not be the case except for standard backtrack algorithms that do not
employ conflict diagnosis to prune the search space. To compute the
size of the explored space in such cases we have no choice but to
build some type of symbolic representation for the disjunction of
conflict assignments or the conjunction of conflict clauses. We de-
scribe below the two representations we examined and show how
we used them to measure space coverage. Without loss of generali-
ty, we restrict the discussion to building representations for con-
junctions of conflict clauses.

3.1 Using BDDs
The conflict clauses can be symbolically “anded” using a reduced
ordered binary decision diagram (ROBDD or BDD for short) [5].
BDD semantics allow us to write the function at a node labeled
with variable using Boole’s expansion:

(4)
where and are the functions associated with the 0- and 1-chil-
dren of that node (see Table 1.) This immediately leads to the fol-
lowing formula for the size of :

(5)

The size of the function represented by a BDD can now be obtained
by sweeping the BDD from the terminal nodes towards the top node
and applying (5) at each visited node. The sweep is initialized by

setting and for the constant functions of the ter-
minal nodes.

3.2 Using ZBDDs
The problem with the BDD representation, of course, is that it
quickly runs out of memory. An alternative that has lower memory
requirements is the zero-suppressed BDD (ZBDD) originally pro-
posed by Minato [14] for manipulating large combination sets, in-
cluding sets of Boolean cubes. A combination set can be regarded
as a set of sets, e.g. . Recently,
Chatalic and Simon [6] demonstrated that ZBDDs can be an effec-
tive implicit representation of large CNF formulas and showed how
they can be used to perform “multi-resolution” to solve some large
structured SAT instances. In this scenario, the above example set
corresponds to the CNF formula , i.e.
each combination is viewed as an OR term (a clause) and the entire
set (a union of combinations) as an AND term. Such an interpreta-
tion allows the semantics of Boolean algebra to be layered on top of
the semantics of set algebra to obtain further compression of the
ZBDD structure. In particular, Chatalic and Simon extended the
standard ZBDD set-union operation to a subsumption-free union
that automatically removes any clause that is completely subsumed
by another clause. In the above example, combination is
subsumed by combination yielding the logically equivalent set

. Additional reduction rules based on liter-
al absorption, i.e. , were subsequent-
ly described in [1].

The semantics of ZBDD nodes were first articulated by Lobbing et
al. in [11]. Given a set of atoms , a ZBDD node labeled
with atom represents a combination set constructed according
to the formula:

Decisions Implications Conflicts Explored Space
Y/N Clause Minterms %

1 N
2 N
3 Y 2 12.5
4 Y 4 25
5 Y 8 50
6 N
7 N
8 Y 10 62.5
9 N Solution!

a
ab

abc d′ a′ b′ c′+ +()
abc′ d a′ b′ c+ +()
ab′ c′d a′ b+()
a′

a′b
a′bc d′ a b′ c′+ +()
a′bc′ d

Decisions Implications Conflicts Explored Space
Y/N Clause Minterms %

1 N
2 N
3 Y 4 25
4 Y 6 37.5
5 Y 10 62.5

N
6 N Solution!

a
ab

abc d′ b′ c′+()
ab c′d a′ b′+()
a b′c′d a′()

a′
b a′c′d

Figure 1. Execution traces of two different SAT solvers on the formula in (1) illustrating how search progress is measured.
(a) Execution trace of a basic backtrack SAT Solver (b) Execution trace of a conflict-based backtrack SAT Solver

ϕ a b c+ +() a b c′+ +() a′ b c′+ +() a c d+ +() ⋅=
a′ c d+ +() a′ c d′+ +() b′ c′ d′+ +() b′ c′ d+ +()

Ak Al⋅ 0= k l≠

A1 A2 … Ai+ + + Ak
1 k≤ i≤
∑=

Ck Cl+ 1=
k l≠

1 C1 C2 … Cj⋅ ⋅ ⋅– 1 Ck–()
1 k≤ j≤
∑=

f
x

f x′ g⋅ x h⋅+=
g h

f

 f 1
2
--- g h+()=

0 0= 1 1=

S
a b,{ } c d e, ,{ } a d,{ } b{ }, , ,{ }

a b+() c d e+ +() a d+() b()

a b,{ }
b{ }

c d e, ,{ } a d,{ } b{ }, ,{ }
a() a′ b c+ +() a() b c+()=

Table 1. Semantics of Decision Diagrams

Internal Nodes Terminal Nodes

BDD

Z
B

D
D

Set

CNF

DNF

x
f

g h
0

f
1

f

f x′ g⋅ x h⋅+= f 0= f 1=
f g x{ } h×∪= f ∅= f ∅{ }=
f g() x h+()⋅= f 1= f 0=
f g() x h⋅()+= f 0= f 1=

Representation

Diagram Type

a b c …, , ,{ }
x f

(6)
where and are the combination sets associated with the 0- and
1-children of that node (see Table 1.) The terminal 0 and 1 nodes
correspond, respectively, to the empty set (set of no combinations)
and to the set of consisting of the empty combination. The “product”
in (6) is similar to the Cartesian product of two sets and is defined by

(7)

For example, given the combination sets
and , their product is3

(8)
When used to represent a CNF formula, the formula associated
with a ZBDD node labeled by variable follows the same template
of (6) except that the union of atoms in a combination is viewed as
logical OR and the union of the combinations is viewed as logical
AND yielding

(9)
where and are the formulas associated with the 0- and 1-chil-
dren of that node (see Table 1.) The terminal 0 and 1 nodes, corre-
spond, respectively, to the constant 1 and constant 0 functions.

To represent CNF formulas with ZBDDs, the set of atoms is taken
to be the set of literals over which the formula is defined. In addi-
tion, the positive and negative literals of each variable are grouped
together so that they are adjacent in the total order used in construct-
ing the ZBDD. This restriction facilitates, among other things, the
identification and automatic removal of tautologies, i.e. combina-
tions that have the form , to further reduce the size of
the ZBDD [6].

To determine the size of the function represented by the CNF for-
mula associated with a ZBDD node, we must first re-write (9) as the
disjoint sum of two terms

(10)
This immediately leads to

(11)

which, unlike (5) for BDDs, requires that we compute the size of the
product of the two child formulas. This is not a problem if one or
both of the children is a terminal node, but does pose a serious com-
plication if they are both internal nodes. One way to resolve this
complication is to (recursively) create additional ZBDD nodes for
such products until one of the children becomes terminal. This will
provide us with the exact answer, but may exponentially increase
the size of the ZBDD. Some of that increase can be ameliorated with
caching and garbage collection. In particular, created nodes can be
eliminated as soon as they have been used to tighten the bound of
their parent.

An alternative to computing exactly is to bound it. The up-
per bound is easily established as and occurs when
either or . The lower bound can be determined by not-
ing that . Thus is smallest when

 is largest which occurs when and are disjoint. This
gives a lower bound of and yields the interval

(12)
where the max in the lower bound insures that the estimate remains
non-negative.

An illustration of these computations is given in Figure 2 for the ex-
ample formula . The percentages annotating the
ZBDD nodes denote the function sizes of their corresponding for-
mulas as computed by (11) and (12). The uncertainty in the size at
the top node is resolved, in part b of the figure, by creating a node
for the product of its children.

Between the two extremes of an exact count and a bound computed
according to (12) we can produce a range of approximations that
trade accuracy with speed and memory consumption. Specifically,
when a given level of accuracy, say 10%, is exceeded by the bound
computed from (12), additional ZBDD nodes are created for the
product formulas until the desired level of accuracy is achieved.

We must finally note that (11) is correct
only when is vacuous in . The only
situation when this is not true is depicted
in Figure 3 where g’s node is labeled by
the literal .4 Substituting

 in (10) produces the
disjoint sum

(13)
which readily leads to

(14)

Figure 4 illustrates the three possible
modes of our approach on the bridging-
fault bf2670-001 instance. Despite set-

ting an error limit of 20%, on average, the restricted bound and the
unrestricted bound methods reported results within 7% and 24%, re-
spectively, of the exact answer.

4. EXPERIMENTAL EVALUATION
Satometer is implemented in C++ using the CUDD package [17]. It
incorporates the ZBDD enhancements described in [1] and [6] for
symbolic manipulation of CNF formulas. In this section we demon-

3. Note that . For this example,
.

f g x{ } h×∪=
g h

S T× s t∪{ }
s S∈ t T∈,
∪=

S a b,{ } b c,{ },{ }=
T a d,{ } e{ },{ }=

S T× S T∪≠
S T∪ a b,{ } b c,{ } a d,{ } e{ }, , ,{ }=

S T× a b d, ,{ } a b e, ,{ } a b c d, , ,{ } b c e, ,{ }, , ,{ }=
f

x

Figure 2. Computation of using (11) and (12).a b′+() b c+()

b

a

c

1
0%

0
100%

50%

75%

[50%, 62.5%]

b′
50%

b

a

c

1
0%

0
100%

50%

75%

50%

b′
50%

b′
25%

(a) Using bound in (12) (b) By computing

hg

g h⋅

g h⋅

f g() x h+()⋅=
g h

x x′ …+ +()

f g() x h+()⋅ x g⋅ x′ g h⋅()⋅+= =

 f 1
2
--- g g h⋅+()=

4. Note that h’s node cannot be labeled by as this would cre-
ate a tautology that is automatically eliminated.

g h⋅
min g h,()

g h≤ h g≤
g h⋅ 1 g′ h′+–= g h⋅

g′ h′+ g′ h′
g h 1–+

g h⋅ max 0 g h 1–+,() min g h,(),[]∈

a b′+() b c+()⋅

x
f

g h

p q

x′

Figure 3. The special
case when is not

vacuous in .
g

x

g x

x′

x′

g p() x′ q+()⋅=

f x p q⋅()⋅ x′ p h⋅()⋅+=

 f 1
2
--- p q⋅ p h⋅+()=

strate its utility by applying it in a number of experimental scenari-
os. We configured it to report the size of the explored search space
to within 20% of the exact answer; in many cases it was able to
achieve a higher level of accuracy or to even report the exact an-
swer. In the tables to follow, a single number in the explored space
columns indicates that an exact answer was reported; ranges are in-
dicated as intervals. All experiments were performed on an AMD
Athlon 1.4 GHz machine with 1GB of RAM running the Linux op-
erating system.

4.1 Effect of Preprocessing the CNF Formula
A variety of preprocessing techniques have been proposed to mod-
ify a CNF formula before submitting it to a SAT solver. These tech-
niques generally add clauses to the formula in order to increase the
number of potential implications or perform stylized algebraic sim-
plifications to reduce the number of variables. We used Satometer
to study the effectiveness of such techniques. In each case we com-
pare the size of the space explored by a standard DLL algorithm5 [8]
(i.e. without conflict analysis) on the original as well as on the mod-
ified formula. The time-out limit in these experiments was set to 10
seconds; Satometer’s run time was negligible. The results of these
experiments are given in Table 2, Table 3, and Table 4.

Addition of consensus clauses. In [2] the authors report that
augmenting a CNF formula with clauses identified using consensus
can reduce search time. To avoid generating an exponential number
of clauses, they proposed a truncated iterative consensus procedure
that augments the original formula with clauses whose size (number
of literals) is limited by a small user-specified constant. They report
speedups on the aim benchmarks from the DIMACS set [9] when
the size of added clauses are limited to 3 or fewer literals.

A sampling of results on some unsatisfiable instances from this suite
is shown in Table 2. Column 1 lists the name of the benchmark; col-
umns 2 and 3 give the number of variables (V) and clauses (C) in
the original formula; column 4 gives the number of consensus claus-
es that are added to the formula; and columns 5 and 6 indicate the
size of explored space reported by Satometer. The data in this table
clearly show the effectiveness of these added clauses. For the two
smaller instances, the search algorithm was actually able to explore
the entire search space, and thus prove the unsatisfiability of the

modified formula. In all cases, the addition of these clauses helped
the SAT solver explore a significantly larger portion of the search
space in the allotted amount of time.

Addition of symmetry-breaking predicates. In [7] the au-
thors propose analyzing a CNF formula 1) to identify its symme-
tries, and 2) to augment it with clauses that break those symmetries.
The intuition here is that the symmetry-breaking clauses act by al-
lowing only one of many equivalent variable assignments to be a
potential solution to the formula. If the original formula is satisfi-
able, the number of solutions may considerably decrease after pre-
processing, clearly indicating that the search space was reduced.
However, even if the original instance was not satisfiable, “the num-
ber of equivalent roads leading nowhere” would be reduced, and a
generic SAT solver is likely to conclude much faster that no solution
exists.

This intuition is confirmed by the data in Table 3 (whose layout is
identical to that of Table 2.) The benchmarks in this experiment are
members of the unsatisfiable hole suite [9] (which relates to the Pi-
geonhole principle.) The augmentation of each instance by a small
number of symmetry-breaking clauses drastically enhances the abil-
ity of the SAT solver to prove unsatisfiability. This trend is clearly
accentuated as instance sizes increase.

Algebraic simplification. Another formula preprocessing
technique is based on formula simplification rules aimed at reduc-
ing the number of variables or clauses in the formula [12]. We stud-
ied this approach on some large hard bounded model checking [4]
and microprocessor verification [18] instances. Results on a repre-
sentative sample are given in Table 4.

Unlike the earlier experiments, the performance of the SAT solver
on the modified formulas is not significantly better than its perfor-
mance on the original formulas. The best improvement is in the
barrel7 benchmark and can be attributed to the simplifier’s ability
to drastically reduce the number of variables (from 3523 to 800.)5. The solver uses a fixed decision heuristic, chronological back-

tracking, and implements BCP as implemented in Chaff.

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Conflict Number

Exact
Unrestricted bound-high
Unrestricted bound-low

Bound with 20% error limit-high
Bound with 20% error limit-low

Figure 4. Applying three modes of the proposed approach to
bf2670-001.cnf instance

Table 2. Addition of consensus clauses

Benchmark Original Modified Explored Space, %
V C Extra C Original Modified

aim-50-1_6-no-4 50 80 54 57.06 100
aim-100-1_6-no-3 100 160 73 0.015 100
aim-200-1_6-no-3 200 320 233 0.049 [97.72, 100]
aim-200-2_0-no-1 200 400 191 0 [87.75, 100]

Table 3. Addition of symmetry-breaking predicates

Benchmark Original Modified Explored Space, %
V C Extra C Original Modified

hole-7 56 204 14 100 100
hole-8 72 297 16 79.2 100
hole-9 90 415 18 37.5 100
hole-10 110 561 20 18.75 [99.98, 100]
hole-11 132 738 22 9.39 [99.96, 100]
hole-12 156 949 24 4.68 [99.96, 100]

Table 4. Algebraic Simplification

Benchmark Original Modified Explored Space, %
V C V C Original Modified

longmutl7 3319 10335 2184 7635 0.280 0.341
queinvar20 2435 20671 2343 28438 50 50.1

barrel7 3523 13765 800 3447 51.02 62.46
dlx2_cc_bug08 1515 12808 1486 13875 0 9.38

The low coverage in this experiment is also an indication of the dif-
ficulty of these instances.

4.2 Analysis of Dynamic Techniques
In this set of experiments, we report on the application of Satometer
to various SAT solvers with a variety of parameters. Our experi-
ments involve two different SAT solvers: a simple DLL solver [8]
and Chaff [15]. Chaff represents an efficient implementation of the
basic DLL solver and is currently known as the leading DLL-based
SAT solver. The goals of this experiment are to determine a) the
best of two black-box SAT solvers, in which each solver’s descrip-
tion is hidden, b) the best of a variety of decision heuristics, c) the
difficulty of CNF instances, and d) an estimate of the number of sat-
isfying assignments in a satisfiable instance.

Black box A vs. black box B experiment. In the following
experiment, several SAT solvers are provided. However, the user
has no knowledge of the internals of any of the SAT solvers. Given
a set of hard instances, the user is required to identify the best solver
in the shortest possible time. In general, the user will need to run
each SAT solver for a specified time or randomly select a solver and
hope that it is the best among all others. Using the proposed method,
however, can give an insight to which solver performs best within
the specified run time limit. Table 5 shows several results for vari-
ous hard instances from bounded model checking [4], microproces-
sor verification [18], FPGA routing [16], and the DIMACs set [9].
We tested each instance for 10 seconds using the following three
SAT solvers and options: standard DLL solver, Chaff with a fixed
decision heuristic, and Chaff with the default cherry.smj heuristic.
The results clearly indicate the superiority of the third solver among
the other two solvers for almost all benchmarks, due to the signifi-
cantly high search space coverage achieved in the given time limit.
Figure 5 shows a detailed space coverage analysis of the barrel5 in-
stance for all three solvers.

Comparison of decision heuristics. As shown in Table 5,
the proposed method can also be used to classify decision heuristics
and rate their performance on various SAT instances. We show the
results for two decision heuristics: a) static fixed [8]: unresolved
variables with minimum index are selected first for decisions; b) dy-
namic VSIDS [15]: variables that appear in the highest number of
clauses are selected first. (Some weight is given to variables appear-

ing in recent conflict-induced clauses). Again, the results show the
effectiveness of VSIDS as opposed to the fixed decision heuristic.
Nevertheless, the k2fix_gr_rcs_w9 instance show a larger upper
bound of the explored search space using the fixed decision order as
opposed to VSIDS. However, since the ranges for both heuristics
overlap, its hard to identify the optimal decision heuristic.

Hard problem prediction. Table 5 also shows the difficulty
of solving the FPGA routing instances as opposed to other hard in-
stances for the given decision heuristics and SAT solvers. Figure 6
shows a detailed space coverage analysis of the k2fix_gr_rcs_w9 in-
stance after unsuccessfully trying to solve it with Chaff for up to 150
seconds. Perhaps, this method can be used as a metric to rate the dif-
ficulty of SAT instances and assist SAT solver developers in im-
proving their SAT tools.

Number of satisfiable assignments. As mentioned earlier,
the search space will never be totally explored in “satisfiable” in-
stances, as SAT solvers typically abort after identifying the first sat-
isfying assignment. However, in some cases, several satisfying
assignments, if not all, are needed. An example is to identify all pos-
sible primary input assignments for a circuit that would minimize
the total gate delay. An insight into the number of possible satisfy-
ing assignments can be very helpful. A satisfiable instance in which
a satisfying assignment is identified at an early stage of the search
process is likely to have many satisfying assignments. In contrast,

Table 5. Percentage of Explored Search Space for Various SAT Solver and Decision Heuristics
Benchmark Space Explored,%

Family Name V C DLL Chaff–Fixed Chaff–VSIDS

uP
Ve

ri
fic

at
io

n 2dlx_cc 4524 41704 0 [81, 100] [99.06, 100]
3pipe 2392 27533 0.098 [47.23, 62.63] [80.41, 100]
4pipe 5096 80213 0.025 [69.68, 88.15] [77.77, 95.46]
9vliw 19148 179492 0 [28.91, 35.16] [99.97, 100]

DIMACS par32-1-c 1315 5254 0 [78.64, 89.39] [82.72, 100]

B
ou

nd
ed

 M
od

el
C

he
ck

in
g

barrel6 2306 8931 52.77 [60.94, 63.83] 100
barrel7 3523 13765 51.02 [60.95, 68.79] [98.34, 100]
barrel9 8903 36606 50.11 [58.59, 58.84] [99.94, 100]

longmult6 2848 8853 0.40 [72.39, 80.43] [99.93, 100]
longmult8 3810 11877 0.21 [80.27, 87.78] [90.48, 100]
queuin18 2081 17368 0 [96.57, 100] 100
queuin20 2435 20671 50 [92.3, 100] [97.59, 100]

FP
G

A
R

ou
tin

g alu2_gr_rcs_w7 3570 73478 2.36 [29.99, 36.55] [50, 58.75]
k2fix_gr_rcs_w8 10056 271393 1.18 [0.665, 7.65] [0.798, 9.03]
k2fix_gr_rcs_w9 11313 305160 0.59 [0.393, 5.147] [0.400, 3.34]
vda_gr_rcs_w8 5776 116522 0 [0.615, 6.65] [0.819, 9.75]

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Conflict Number

DLL-low
DLL-high

Chaff-Fixed-low
Chaff-Fixed-high
Chaff-VSIDS-low

Chaff-VSIDS-high

Figure 5. Search Space Coverage for Barrel5.cnf

an instance that identifies a satisfying assignment after exploring al-
most the complete search space probably has a few satisfying as-
signments only. In order to test our assumption, we selected two
satisfiable instances from the DIMACS set [9], namely the aim-200-
1_6-yes1-1.cnf and ssa7552-160.cnf. The former is known to have
a single satisfying assignment only, whereas the latter represents a
stuck-at-fault problem with many satisfying assignments. Both in-
stances were solved by Chaff in less than a second. We measured
the explored search space after the search was completed for a sin-
gle satisfying assignment. As expected, the percentage of the search
space explored by the aim* instance (99.99%) was tremendously
larger than the ssa* instance (28.13%).

Again, as in the experiments in Section 4.1, the accuracy of our re-
sults are significant. Although a user specified error limit of 20% is
set, out of the 78 runs, 47, 6, 16, 8, reported results with 100%,
>99%, 90%~99%, 80%~90% accuracy.

In terms of run time and memory consumption, constructing the
ZBDDs is fast and is usually dependent on the size of the clauses.
Furthermore, the high compression power of the ZBDD data struc-
ture utilizes less memory than a list data structure. As mentioned in
Section 3.2, computing the search space coverage with an unre-
stricted bound is done by a single traversal of the ZBDD. On the
other hand, the restricted bound and the exact count methods are
slower, since additional ZBDD nodes are created during the ZBDD
traversal. The size of the ZBDD, however, doesn’t grow exponen-
tially since the additional ZBDD nodes are removed as soon as the
function sizes of their corresponding formulas are computed.

One way to reduce the run time and memory consumption is to only
analyze conflict-induced clauses of size or less. In general, small-
er clauses are more useful in measuring the explored search space
and require less ZBDD construction time and fewer ZBDD nodes.
This approach, however, can only be used to measure the lower
bound of the explored search space. For the instances reported in
Table 5, Satometer was able to compute the search space coverage
for almost all instances in less than a second each.

5. SUMMARY AND CONCLUSIONS
We described Satometer, a tool that measures the percentage of
search space explored by a SAT solver. The tool can provide helpful
diagnostic information, either during or at the conclusion of a SAT
run. We believe that tools such as this are needed to complement the
powerful SAT engines that have been developed in recent years. We
plan to identify other metrics that can help characterize a search pro-

cess (e.g., the maximum number of satisfied clauses encountered at
any point during the search), to look for ways to further improve the
efficiency of Satometer (e.g., by caching computation results), and
to use it to analyze the performance of solvers on hard SAT instanc-
es. We are also planning to integrate Satometer into known SAT
solvers and use the search space information to improve decision
and restart heuristics.

6. ACKNOWLEDGMENTS
This work is funded by the DARPA/MARCO Gigascale Silicon Re-
search Center and an Agere Systems/SRC Research fellowship.

7. REFERENCES
[1] F. Aloul, M. Mneimneh, and K. Sakallah, “Backtrack Search Using

ZBDDs,” in Int’l Workshop on Logic Synthesis, 293-297, 2001.
[2] F. Aloul, J. Silva, and K. Sakallah, “An Experimental Study of Satisfi-

ability Search Heuristics,” in the Proc. of Design, Automation and
Test in Europe, 2000.

[3] R. Bayardo Jr. and R. Schrag, “Using CSP look-back techniques to
solve real world SAT instances,” in Proc. of the 14th National Confer-
ence on Artificial Intelligence, 203-208, 1997.

[4] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking using SAT procedures instead of BDDs,” in Proc. of
the Design Automation Conference, 317-320, 1999.

[5] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” in Proc. of IEEE Trans. on Computers, 35(8), 677-691, 1986.

[6] P. Chatalic and L. Simon, “Multi-Resolution on Compressed Sets of
Clauses,” in Proc. of the Int’l Conference on Tools with Artificial
Intelligence, 2-10, 2000.

[7] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-Breaking
Predicates for Search Problems,” in Knowledge Representation: Prin-
ciples of Knowledge Representation and Reasoning, 148-159, 1996.

[8] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for
Theorem Proving,” in Comm. of the ACM, 5(7), 394-397, 1962.

[9] DIMACS Challenge benchmarks in ftp://Dimacs.rutgers.EDU/pub/
challenge/sat/benchmarks/cnf.

[10] D. Kokotov, I. Shlyakhter, “Progress Bar for SAT Solvers,” unpub-
lished manuscript, http://sdg.lcs.mit.edu/satsolvers/progressbar.html,
2000.

[11] M. Lobbing, O. Schroer, and I. Wegner, “The Theory of Zero-Sup-
pressed BDDs and the Number of Knight's Tours,” in IFIP WG 10.5
Workshop on Applications of the Reed-Muller Expansion in Circuit
Design, 1995.

[12] J. P. Marques-Silva, “Algebraic Simplification Techniques for Propo-
sitional Satisfiability,” in Proc. of the Int’l Conference on Principles
and Practice of Constraint Programming, 2000.

[13] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability,” in IEEE Trans. on Computers, 48(5),
506-521, 1999.

[14] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combi-
natorial Problems,” in Proc. of the Design Automation Conf., 1993.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” in Proc. of the Design
Automation Conference, 530-535, 2001.

[16] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative
Study of Two Boolean Formulations of FPGA Detailed Routing Con-
straints,” in the Proc. of the Int’l Symp. on Physical Design, 2001.

[17] F. Somenzi, CUDD: CU Decision Diagram Package, University of
Colorado at Boulder, ftp://vlsi.colorado.edu/pub/.

[18] M. Velev and R. Bryant, “Boolean Satisfiability with Transitivity
Constraints,” in Proc. of the Conference on Computer-Aided Verifica-
tion, 86-98, 2000.

[19] H. Zhang, “SATO: An Efficient Propositional Prover,” in Int’l Con-
ference on Automated Deduction, 272-225, 1997.

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Time (sec)

Chaff-VSIDS-low
Chaff-VSIDS-high

Figure 6. Search Space Coverage for k2fix_gr_rcs_w9.cnf

k

	Satometer: How Much Have We Searched?
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. MEASURING SEARCH PROGRESS
	Figure 1. Execution traces of two different SAT solvers on the formula in (1) illustrating how se...
	(1)

	3. COMPUTING SPACE COVERAGE
	(2)
	(3)
	3.1 Using BDDs
	(4)
	(5)

	3.2 Using ZBDDs
	Table�1.� Semantics of Decision Diagrams
	(6)
	(7)
	(8)
	Figure 2. Computation of using (11) and (12).
	(9)
	(10)
	(11)
	(12)

	Figure 3. The special case when is not vacuous in .
	(13)
	(14)

	4. EXPERIMENTAL EVALUATION
	4.1 Effect of Preprocessing the CNF Formula
	Addition of consensus clauses
	Figure 4. Applying three modes of the proposed approach to bf2670-001.cnf instance

	Table�2.� Addition of consensus clauses
	Table�3.� Addition of symmetry-breaking predicates
	Table�4.� Algebraic Simplification
	Addition of symmetry-breaking predicates
	Algebraic simplification

	4.2 Analysis of Dynamic Techniques
	Black box A vs. black box B experiment
	Table�5.� Percentage of Explored Search Space for Various SAT Solver and Decision Heuristics
	Comparison of decision heuristics
	Figure 5. Search Space Coverage for Barrel5.cnf

	Hard problem prediction
	Number of satisfiable assignments
	Figure 6. Search Space Coverage for k2fix_gr_rcs_w9.cnf

	5. SUMMARY AND CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	[1] F. Aloul, M. Mneimneh, and K. Sakallah, “Backtrack Search Using ZBDDs,” in Int’l Workshop on ...
	[2] F. Aloul, J. Silva, and K. Sakallah, “An Experimental Study of Satisfiability Search Heuristi...
	[3] R. Bayardo Jr. and R. Schrag, “Using CSP look-back techniques to solve real world SAT instanc...
	[4] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model Checking using SAT pr...
	[5] R. Bryant, “Graph-based algorithms for boolean function manipulation,” in Proc. of IEEE Trans...
	[6] P. Chatalic and L. Simon, “Multi-Resolution on Compressed Sets of Clauses,” in Proc. of the I...
	[7] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-Breaking Predicates for Search Probl...
	[8] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving,” in Comm. of ...
	[9] DIMACS Challenge benchmarks in ftp://Dimacs.rutgers.EDU/pub/ challenge/sat/benchmarks/cnf.
	[10] D. Kokotov, I. Shlyakhter, “Progress Bar for SAT Solvers,” unpublished manuscript, http://sd...
	[11] M. Lobbing, O. Schroer, and I. Wegner, “The Theory of Zero-Suppressed BDDs and the Number of...
	[12] J. P. Marques-Silva, “Algebraic Simplification Techniques for Propositional Satisfiability,”...
	[13] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfiabilit...
	[14] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in Proc. o...
	[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient ...
	[16] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of Two Boolean Formulat...
	[17] F. Somenzi, CUDD: CU Decision Diagram Package, University of Colorado at Boulder, ftp://vlsi...
	[18] M. Velev and R. Bryant, “Boolean Satisfiability with Transitivity Constraints,” in Proc. of ...
	[19] H. Zhang, “SATO: An Efficient Propositional Prover,” in Int’l Conference on Automated Deduct...

