Solving Difficult SAT Instances in the Presence of Symmetry

Fadi A. Aloul, Arathi Ramani, Igor L. Markov and Karem A. Sakallah
Department of EECS, University of Michigan, Ann Arbor 48109-2122
{faloul,ramania,imarkov,karem}@eecs.umich.edu

ABSTRACT stances withs 4.3 clauses per variable. However, such instances do not
Research in algorithms for Boolean satisfiability and their implementﬁtIse in Design Automation because appllt_:atlon-derlved SAT Instances
tions [23, 6] has recently outpaced benchmarking efforts. Most of tRES typically structured. Attempts_to exp_laln_ the ease of structur_ed In-
classic DIMACS benchmarks [10] can be solved in seconds on Commqunces_were S.UCCQSSM for certain applications [21], and generic ways
ity PCs. More recent benchmarks take longer to solve because of t 3 xploit certain types of structure were proposed [1].

large size, but are still solved in minutes [25]. Yet, small and difficu ur work addresses both benchmarking and algorithmic aspects of

SAT instances must exist because Boolean satisfiability is NP-compI% @T research. Given the excellent performance of existing SAT solvers,

We pronose an imoroved construction of symmetry-breaking claus €re is no room for improvement on easy benchmarks, and we focus
prop P Y y 9 ofr difficult instances. Since the works of Haken and Urquhart [24] on

[9] and apply it to achieve significant speed-ups over current state-iz o o nds for resolution and back-tracking algorithms for SAT, sev-
the-art in Boolean satisfiability. Our techniques are formulated as P&al instance families have been known to require exponential time for

processing and can be applied to any SAT solver without changing P/DLL (Davis-Putnam and Davis-Logemann-Loveland) solvers. For
source code. We also show that considerations of symmetry may lead to

i . /20
more efficient reductions to SAT in the routing domain. example, a _recent lower bound_ for the pigeon-hole proble@(ﬁ‘)
JZ] wheren is the number of pigeons. Another such family was con-

Qur_wor_k artlt_:ulates_ S.AT Instances that_are unusuall)_/ difficult fgtructed by Urquhart in terms of expander graphs and with considerable
their size, including satisfiable instances derived from routing problems.., ;¢ 2 ndomization [24]. Indeed, state-of-the-art SAT solvers, such

Using an efficientimplementation to solve the graph automorphism pr " CHAFF, take a long time to solve those instances (see Table 1), but

lem [18, 20, 22], we show that in structured SAT instances difficulty M3He relevance of such pathological cases to Design Automation is ques-

be associated with large numbers of symmetries. tionable. While lower bounds for SAT are often proven for unsatisfiable
Categories and Subject Descriptors instances, it remains to be seen whether satisfiable instances can be dif-
1.1.2 [Algorithms]: Algebraic algorithms. ficult for the best solvers. We demonstrate CAD-related SAT instances,
both satisfiable and unsatisfiable, that are very difficult for their size.
General Terms Moreover, an easy instance of any size can be made difficult by adding
Algorithms, experimentation, verification. a small difficult instance to it and connecting the two by inconsequential
clauses to defeat partitioning.
Keywords Over many years, empirical research in algorithms for Design Au-
tomation identified a number of fundamental problem formulations, such
1. INTRODUCTION as Boolean satisfiability, and mustered significant efforts to solve them

Boolean satisfiability (SAT) is a pivotal problem in Computer Scienc%fﬁ.deml}" S_tatenof thefart is gaubgedkb)ﬁ optirﬂized sc;lver(;mplemen- |
and has numerous applications in Design Automation that range fréf{ons (‘engines”). Performance break-throughs are often due to nove
microprocessor verification [25] to FPGA layout [19]. A one-million-2/g0rithmic ideas, leaner implementations or the ability to apply a highly
dollar prize is offered by the Clay Institute for Mathematical Sciencec?f)t'rmze.d engineé in a novel way. I_n this work, we suggest that graph au-
for a complete polynomial-time SAT solver or a proof that such an atp_rrlorphlsm engines can be applied to the .sat'Sﬂab”'ty problem In cer-
gorithm does not exist (the P-vs-NP problem). Neither is likely to B@in €ases. Given that the graph automorphism problem is thought to not
found. Nevertheless, industrial applications motivate intensive reseap%glP-complﬁte (thgs potenttzz_allz easfler than SAT) and fthat ver% little
in SAT algorithms that quickly solve real-life instances. The fundametr: #esearc was hone I?r'] 'f] -pe;] ormancebeng!nei_ or grap a}uto-
tal framework for state-of-the-art SAT algorithms was laid out in th orphism (one such work is [.6])’ there may be significant room for
1960s, but a number of recent improvements in algorithms and implbUre improvement. To be precise, we will be dealing with the colored
mentation techniques [23, 6] have led to performance breakthroughifiant of the graph automorphism problem that can be easily extended
Most DIMACS challenge benchmarks [10] from the early 1990s are nd® hyperglraphi(see deflnltcljor;]s |n“§ect||(9n 2). os in CNE f
solved in seconds on commodity PCs. Recently posted SAT benchm%r@e\’era works suggested that “breaking symmetries” in C ormu-

SAT, CNF, faster, search, symmetry, difficult, instances, speed-up.

[25] take somewhat longer to solve (minutes), but that is primarily dja€ can speed up SAT solvers [3, 4, 5, 9, 16]. Symmetries of a CNF

to their enormous size (50MB+ files, etc). With the exception of art|'Mula include clause-preserving permutations of variables. Such per-
ficially constructed families of benchmarks, it appears that SAT can tations may involve farbltrarlly many variables at once, €.9., a com-
solved in polynomial time “for practical purposes’. plete cyclic shift. In this work, we do not address permutations _that_

It is well known that the dominant back-track solvers, such as GRASPaNge the CNF formula but leave unchanged the Boolean function it

[23] and CHAFF [6] do not perform well on randomly-created 3-SAT in[epresenté’. However, if such symmetries are detected by other tech-
niques [14], our proposed methods can process them in the same way as

Permission to make digital or hard copies of all or part of this work for persona

or classroom use is granted without fee provided that copies are not mad In practice, the difficulty of domain-specific classes of SAT instances is often

wn, and adequate SAT algorithms can be chosen. Otherwise, one can run
eral SAT solvers in parallel until one of them finishes. On a single processor,
may buy exponential speed-ups at the cost of a constant-factor slow-down.

DAC 2002June 10-14, 2002, New Orleans, Louisiana, USA Such permutations can be called “semantic” symmetries versus “syntactic”
Copyright 2002 ACM 1-58113-297-2/01/0006(1-58113-461-45.00. symmetries that leave the CNF formula unchanged.

symmetries of the CNF formula. Similarly, many of the works we citstructures defined axiomatically in terms of such a composition opera-
do not deal with symmetry detection, but rather assume that symmetties (multiplication) are commonly callegroups In this work we will
of the Boolean function are given. Using this assumption, two maanly deal with groups of symmetries whose elements can be thought
directions were explored: (a) preprocessing the original CNF formutd as permutations. A permutation can be represented by cycles, e.g.,
by adding symmetry-breaking clauses that do not affect satisfiability bi®3) (567) represents a permutation on a set of at least 7 mark (elements).
speed up search [9], (b) extending SAT solvers, particularly those ba3éris permutation swaps marks 2 and 3, it cycles marks 5, 6 and 7 in that
on back-tracking, to dynamically use symmetries during the search pooder. All other marks, e.g., 1 and 4, are left unchanged.
cess [5]. In this paper we pursue the pre-processing approach due to iSomputational group theory is approximately 25 years old, and great
simplicity, but will outline how our techniques can be applied within atrides were made in the last decade with the development of the GAP
back-tracking solver for increased efficiency. package (“Groups, Algebra and Programming”) [22]. A major effi-
Prior works on symmetries in SAT predate recent breakthroughsdiency in computational group theory comes from the notion of irredun-
SAT solvers and typically use several carefully constructed instancesitmt sets of generators of a group. A set of generators is made of group
illustrate their approach. E.g., Crawford et al. [9] suggest that symmetglements such that any other group element can be composed of gen-
based techniques allow the pigeon-hole instances to be solved in p@sators and their inverses (no uniqueness required). Elementary group
nomial time, but their empirical data [9, Figure 3] do not support thitheory implies that any irredundant set of generators for any group with
suggestion. Also it remains unclear whether the performance of leadifg>> 1 elements containat mostlog, N elements, e.g., thk! permu-
edge SAT solvers can be improved via the use of symmetries. In prtations onk marks can be generated b§2) and(12.k). Thus, repre-
ciple, the overhead due to symmetry detection and usage may outwesghting groups by sets of generatai&ays ensures exponential com-
the benefits, and it remains to be seen that useful CNF formulae havession Computational group theory provides efficient algorithms for
many symmetries. dlya (1937), Erds and Rhyi (1963) proved that manipulating groups represented by sets of generators, without decom-
a random graph on vertices hasio symmetriesvith probability 1— pression. Therefore, an intelligent algorithm for symmetry detection
(2) 27"-2(1+40(1)) [12, p. 1461]. This claim can be extended to CNFnay return a small set of generators rather than list all symmetries.
formulae using constructions in Section 2, but structured real-world in-COLORED AUTOMORPHISM PROBLEMS. Given a graph, a
stances may have richer symmetries. Indeed, Boolean functions fregmmetryis a permutation of its vertices that maps edges to edges.
synthesis applications may have many symmetries [14]. If exponentially case of directed graphs, edge orientations must be preserved. In
many symmetries exist, adding all possible symmetry-breaking clauskes Graph Automorphism problem one seeks all symmetries of a given
can be disastrous [9]. Despite these pitfalls, symmetry-based approadraph, e.g., in terms of group generators. It is known that all graphs
have been useful in model checking [13, 7], verification [16], logic syrexcept for an exponentially small family hav® symmetrie$l2, p.
thesis [15] and DSP algorithms [11]. 1461]. No worst-case polynomial-time algorithms are known for this
In this work, we propose an automated flow that starts with a CN¥foblem, but it is commonly believed not to be NP-complete unless
formula in the DIMACS format and detects all of its symmetries (nd®=NP. Polynomial-time algorithms are available in many special cases
just pairwise swaps). In this flow, all symmetries are captured implicitlj1 2, p. 1511]. Generic algorithms [17, 16] are based on linear-time par-
with exponential compression. The CNF formula is then preprocesdéibn refinement passes; a simple version finishes in three passes for all
adding symmetry-breaking clauses that do not affect satisfiability. Bt an exponentially small family of graphs [12, p. 1513].
black-box SAT solver is applied to the preprocessed CNF instance torhe Graph Automorphism problem may be constrained by vertex la-
produce the final answer; any satisfying assignment to this instance isljels — symmetries must map each vertex into a vertex with the same
corresponds to) a satisfying assignment of the original instance, anthlfel. Label constraints are computationally easy and can be formally
the preprocessed instance is unsatisfiable then so is the original instareduced to plain graph automorphism. Labels are often expressed by
Our construction of symmetry-breaking clauses is novel. It is mometegers and called colors (no relationgmph coloring. Another ex-
economical and provides better coverage than that in [9]. Additiotension is to colorethypergraphs— symmetries must map hyperedges
ally, it directly applies to the compressed representation of all symmte-hyperedges (of the same cardinality because no two vertices can map
tries in the format produced by graph automorphism software [17, 18,0ne). The colored hypergraph automorphism problem reduces to the
20, 22]. Our empirical results show significant improvements on CNiolored graph automorphism via the bipartite graph of the hypergraph.
instances arising in Design Automation applications as well as highthis graph contains a vertex for each hypergraph vertex and hyperedge,
randomized provably-difficult Urquhart benchmarks [24]. Two exterand connects them with edges according to the hypergraph’s incidence
sions are proposed to speed up symmetry detection. One is opporturgkation. Graph vertices in the hyper-edge part are painted with a new
tic symmetry detection, where only some symmetries are found. Toelor, and other vertices retain their original colors.
other extension pursues domain-specific symmetries and leads to imBrendan McKay implemented a practical algorithm for Graph Auto-
provements of SAT formulations by adding domain-specific symmetryaorphism [17] in a software package called NAUTY [18], which has
breaking clauses. Thus generic symmetry detection is avoided by crdmen continually improved for the last 20 years (version 2.0 released
ing symmetry-less SAT instances that can be solved quickly. in 2001). NAUTY has been integrated into the computational group
The remaining material is organized as follows. Symmetry detectitimeory system GAP [22] by means of the GRAPE package [20]. This
is described in Section 2 and symmetry-breaking in Section 3. Sectiategration enables efficient group-theoretic operations on the results re-
4 discusses constructions of SAT benchmarks. Our empirical results anged by NAUTY and facilitates some of our proposed algorithms. In

presented in Section 5 and further extensions in Section 6. 1998, Manku et al. [16] claimed speed-ups over a pre-2.0 version of
NAUTY in the context of hardware verification. However, their code is
2. FINDING SYMMETRIES not generic (built into a larger system) and is no longer supported.

. CNF SYMMETRIES VIAGRAPH AUTOMORPHISM. The prob-

In general, a symmetry of a discrete object is a permutation of iy, of finding symmetries of a CNF formula is reduced to colored graph
components that leaves the object unchanged. Every discrete objecth§morphism, similarly to the reduction from the hypergraph automor-
at least one symmetry — the “do-nothing” permutation. It is €asy fhism outlined above. Every variable is represented by two vertices
see that a composition of two symmetries is a symmetry, and that cafis; correspond to the positive and negative literals. Every clause is
position with the do-nothing permutation does not change a symmefiyresented by a vertex, and bipartite edges connect those vertices to

The composition of symmetries is associative, and every symmetry Rasiices of relevant literals. Clause vertices are painted with color 1
an inverse. Composition is oftamot commutative. Abstract algebraic

23| F b/c/d flg/h
A (1+2+3) B v 00011 ap|c 0 e- g ! EE@ 7
B (1+-2+-3) N> NS> 010| 0 1 2 i N
C(2+3 2 T 4 B
g e i
| (| C 110(0
(@ () ©)RR Figure 2: Construction of difficult SAT instances: (left) two switch-boxes

Figure 1: A CNF formula with three clauses A, B and C and three vari- in common FPGA architectures, (right) similar N-by-M switch-boxes are
ables (a) is converted into a bipartite graph (b) for symmetry detection pur- used to build hard satisfiable instances.
poses. The two-literal clause C is represented by one edge (bold) while larger
clauses A and B are represented by a vertex and three edges each. Any sym-Longer cycles require more complex symmetry-breaking clauses, but
metry must map C — C therefore this instance has only one non-trivial sym- one can always improve on the construction from [9]. We observed that
metry (1 -1)(2 -3)(-2 3)(A B) shown in (c). The first cycle yields a symmetry- Symmetry generators produced for CNF formulae often consist of just 2-
breaking clause(1) which reduces the search space by half (d). Alternatively, Cycles and only rarely have 3-cycles. A cy¢tm) means that the value
the clause (2 + 3) corresponding to the third cycle can be added. of a can be fixed arbitrarily, and this can be expressed by a one-literal
symmetry-breaking clause. The construction in [9] does not address
and literal vertices are painted with color 2. To ensure Boolean consgich phase-shift symmetries and never results in one-literal clauses.
tency, vertices of opposite literals are mated by direct edges. An addilf no cycles generate single-literal clauses (which achieve maximal
tional simplification, motivated by [9, footnote 6], is to represent eadbruning if all clauses have leng#f?), we can produce symmetry-breaking
two-literal clause by an edge directly connecting their two literals rathelauses from any one 2- or 3-cycle of a symmetry. That significantly
than by two edges and a vertex. In the final colored graphyas speeds up SAT solvers in many cases. However, clauses of the form
vertices represent the positive and negative literals and the remainiAg- b) achieve no pruning in areas of the solution space where the
Clauses- 2 x LitClausesvertices represent clauses. Figure 1 shows afriables involved have identical values. A key idea in that case, sim-
example. This reduction has the advantage of detecting phase-shift sifai-to that in [9] is to process another cycle. Namely, for a symme-
metries @ — a) and their compositions with permutational symmetriedry (ab)(cd)(ef)..., we first add(a+ b), then(a=b) = (c < d), then
((a=b)(c=d)) = (e< f), etc. This construction can be efficiently im-
3. SYMMETRY-BREAKING plemented with one additional variable per cycle to indicate the equality

Symmetries induce equivalence classes in the solution space (in gréfipll variables in the cycle. A sample clause with new variables looks
theory, they are calledrbits). Given a satisfying truth assignment, allliké (Xa=b +Xc=d +€+ f). To ensure consistency, we sort marks within
other truth assignments to which it can be mapped by symmetries, ne}gtles and sort cycles by their first marks.
also be satisfying. Similarly, symmetries always map unsatisfying as-The construction of symmetry-breaking clauses is dwarfed by the
signments to unsatisfying assignments. Therefore, for a complete Symmetry-detection time. However, with every cycle processed, we add
solver it suffices to reason about one representative from each such clasger and larger symmetry-breaking clauses. Since large clauses typi-
This restriction can be implemented by selecting unique representatigady do not have a great effect on the behavior of SAT solvers, we op-
from every equivalence class and adding clauses that are only satistie@ally limit symmetry-breaking clauses to the first 10 cycles of every
on those representatives. An earlier construction of such symmetymmetry. For the price of incomplete coverage, this technique con-
breaking clauses [9] is based on a given ordering of variables. Its m&lferably reduces the overhead of symmetry-breaking clauses. In our
idea is (i) to order all elements from the solution space lexicograptfixperiments it often performed better than the addition of symmetry-
cally, and (ii) to select the lexicographically smallest element from eagfeaking clauses for all cycles. Moreover, extending back-track algo-
equivalence class as its representative. rithms for SAT to dynamically check conditions of the fO(’(’ﬂZ b)(C:

The construction described in [9] is applied to every given symmet%)n(U =V)) may lead to improvements over pure pre-processing.
and generates many redundant clauses. To prune redundant clauses, the
authors propose the concept of a symmetry tree, but it is not well SLﬂ‘J‘- DIFFICULT SAT INSTANCES
ported by efficient algorithms for permutation groups, does not alwaysFPGA ROUTING INSTANCES. A recent comparative study of two
prevent redundant clauses and is itself not always prunable to polyBwmolean formulations of FPGA detailed routing constraints [19] showed
mial size [9]. Phase-shift symmetries were not addressed in that workhat problem encoding affects the difficulty of SAT instances. Our work

We compute symmetry-breaking clauses on a per-symmetry basis [#es the better formulation, but still produces difficult instances. Two
but consider only irredundant sets of symmetry generators, returnedsigh constructions are shown in Figure 2 in terms of FPGA switch-boxes
graph automorphism programs. By breaking generator symmetries ofbge [19] for details on SAT formulations). The one on the left entails
one does not necessarily break all symmetries, except for some casesing N + k connections through tracks and yields unsatisfiable in-
[9]. So far, the power of such partial symmetry-breaking has not bestances that fdt= 1 resemble the well-known pigeon-hole benchmarks.
evaluated, but we believe that a reasonable coverage is often achidaxgpirical results in Table 1 are shown for six routing configurations
because an irredundant set of generators contains “maximally indephal) in which one tries to route (a) 11, 12 or 13 connections through
dent” symmetries — none of them can be expressed in terms of othet§. tracks, and (b) 12, 13 or 20 connections through 11 tracks. These in-

Our construction is formulated in terms of cycles of a permutaticstances are extremely difficult for the leading-edge SAT solver CHAFF
(cf. [9]). For the variable swagpab) the construction in [9] entails [6] and also have many symmetries. They can appear as sub-instances in
one additional variable and six symmetry-breaking clauses. Our cdarger routing instances, and such sub-instances may be difficult to find.
struction below entails only one clause. First observe that if the cy-From the benchmarking point of view, it is natural to expacsatis-
cle (ab) is a symmetry, whenever there is a satisfying assignment witiable instances among the most difficult to solve. Indeed, randomized
a=0,b=1, there should be a symmetric (equivalent) satisfying assigrestarts used by CHAFF [6] typically allow it to avoid difficult regions
ment witha=1,b= 0 and other variables unchanged. To allow only thef the search space and to quickly find satisfying solutions if they exist.
first assignment, we add the symmetry-breaking cldgaseb), which However, our second construction is designed to create difSetitfi-
can also be interpreted és< b). Similarly, to “break” a cycle of length ableinstances that trap even the best solvers in hopeless regions of their
three(abc), we add(a+b)(b+c), i.e.,(a< b)(b <c). To prevent tran- solution space for a long time before a satisfying solution can be found.
sitivity violations, one has to choose an ordering of all variables at tiiéne main idea is to create a satisfiable instance with a large number of
beginning, and always use the sign consistently with that ordering. hard-to-avoid unsatisfiable sub-instances. If the number of unsatisfiable

S Ry, 1 2 3 The queue contains cells reachable from those already visited. A list

1| Se J==t| - of visited cells is also maintained so that a cell is not pushed on the
| | | 1 T+ Tracks

* * * Vi, queue twice. While the queue is not empty, cells are popped off it and

@ 2 LT (b) 2 new clauses are introduced for the route tracks across the cell bound-
3 "l el s aries. In our example, assume that the cell to the rigitisfpopped off

E the queue. Since this cell is not an endpoint of the connection, exactly

two of its boundaries must be selected. The cell boundaries in this case
areh;,,, hi,, andvi,,. We therefore introduce the clausgs, , +Vi,,),
h. . +hi,,), and(hi,,+vi, ,). However, again it is not possible for more
ééﬁ two tracks to be selected. Therefore, we add clauses of the form:
i, \Vi,,) = hi,,. This procedure is repeated for every cell popped off

Figure 3: Construction of difficult SAT instances (global routing).

branches is much larger than the number of satisfiable branches,
random restart will keep on jumping from one unsatisfiable branch
another for a long time. Solvers without random restarts will, too, ne " queue until the queue is empty.

e e mber ofwiestrougCEPSEyConsirats. Esch ordcll boundary as capacy asso-
four N-by-K FPGA switch-boxes of the type used in the first constru ted with it to restrict the number of connections that can be routed

tion. The rightmost switch-box in the configuration in Figure 2 has se(if/hrongh it. The capacity limits are intended to prevent congestio@. If

eral redundant outgoing tracks that are divided into two channels. E I3,fhe capacity limit for an edge of a grid cell, we inclueariables per

C : X
. . .) - EdYe for each connection. In other words, each connection can be routed
channel is connected to a smaller switch-box with an insufficient nur)-

lle

ber of outgoing tracks. The two groups of tracks that leave the sma FOUgh one of tracks across a cell boundary as shown in Figure 3 (b).
switch-boSes gre conﬁected to ?he Igft-most switch-box. When ro “Consider two connectionisand j. Consider horizontal route tracks
. . . ek ?ﬁr each connectiondy, ., andhj, . for some rowr and columnc. Let
ing connections through tracks right-to-left, connections must be SR ([. di ne, ne be theC iables i
between switch-boxes subject to the throughput constraints of switc] 1 11p0 - Iree AN Jrey, Irg,) - - Iree D theC extra variables intro-
) uced in the SAT formulation for the horizontal track in question. Then
boxes. However, to a SAT solver, the throughput constraints are gb- . . ; ! .
scured by the pigeon-hole principle. SAT solvers first partition the coRice Yz [OF Mirg, L < K< C, irg = hi.;, and alsdy, = (g, ...+

y P9 principle. P . Clauses of this form are added to the SAT instance. Another re-

nections between the two chz_mnels _and back-track from every partitlsﬁ gtion is that a route cannot pass through two tracks in the same chan-
tt;]at doels lnotdl_ead toﬁ Sat'Sfﬁ"ng a_ss;gﬁment. Ifthe capaﬁltleshoftﬁe Weﬁ (edge of a grid cell), i.e., if for somel <k <C, if iy, is true, then
channels leading to the smaller switchboxes are greater than the throygh- R .) '

ut of those switchboxes, an overwhelming majority of partitions il & L <1 <C,1 2k (i = —lrg). These clauses are also added.
P e > . g majority of p inally, two connections cannot be routed through the same track, i.e.
lead to unsatisfiable pigeon-hole instances. On average, at Ieasts§ V2l k 1<K<C, (ire = —jra) for all j # i, wherej represents an-’
eral such_mstances must be solve_d before a good partition is f_ound. gﬁer C(’)nrﬁecti)n ’B;Cckombinirhca the aforeméntioned techniques, we are
solvers without random restarts will also need to solve many plgeon-htglgI) '

0

sub-instances before finding satisfying solutions. Empirical results € to express routing instances as SAT problems.
9 9 : P We created ten routing configurations by randomly flooding a 3-by-

these satisfiable instancepga) in Table 1 show that they are very diffi- 3 [outing grid with connections subject to edge capacity constraints of

cult for CHAFF. We observe that these instances become more difficyl - : o
when the difference between the throughput of the small switchbo;‘% Eng?ovrvtehzair\)/“eegut)r;? cﬁf?zueltn |(r:1(;?g:1?: abog Yﬁc) Table 1 shows empirical

and the capacities of the channels that lead to them is increased. Thisis
consistent with our observations for the unsatisfiathtel instances.
GLOBAL ROUTING INSTANCES. We propose a new construc-5. THE EFFECT OF SYMMETRY-BREAKING
tion of difficult randomizedsatisfiableinstances unrelated to pigeon- Our computational experiments were performed on PCs with AMD
holes. They express routing two-pin connections in a grid with edge g&thlon processors @1.2GHz and 1Gb of RAM. All codes were com-
pacity constraints. To ensure that an instance is satisfiable but difficgiled with g++ 2.95.4 -03 and ran on Debian Linux. In addition to
we userandomized floodingNamely, we create a routing configurationthe instances described in Sectiorcr(l andfpga) and grout), Ta-
by adding shortest possible routes while unused routing resources (egigel lists six standard pigeon-hole instandesig), five families of ar-
capacities) remain. Shortest routes are created by breadth-first-segfighally constructed randomized Urquhart benchmaitksg] [24] and
between pairs of randomly chosen grid cells or, if that fails, by findinggeven recent benchmarks from the micro-processor verification domain
maximal shortest route starting at a given grid cell with unused routings]. CHAFF runtimes in Table 1 are averages of (up to) 20 independent
resources. After a routing configuration is created, routes are erased &fs because CHAFF uses randomization internally and results of dif-
their end-points are used to formulate a SAT instance. ferent runs may vary significantly. All runs that did not complete in 1000
Our SAT encoding of routing instances has two components. Osgconds were aborted and did not contribute to averages. The percent of
deals withroute definitionand captures possible ways to route each cofime-outs is shown for each instance.
nection. The other addresseapacity constraintand restricts the num- T detect symmetries in CNF formulae, we converted them into col-
ber of connections that can be routed across a grid cell boundary. ored graphs (see Section 2). We then used the NAUTY program [17,
Route definition. Routes are specified in terms of edges across calg]. At each run, the result was a list of permutation generators of the
boundaries in a grid. For each connection, there are routing tracks acig@fup of symmetries. Permutation generators are specified by cycles.
each cell boundary on the grid. In the SAT formulation, each track fr each SAT instance, Table 1 lists NAUTY runtime in seconds exclud-
treated as a variable. Figure 3 (a) illustrates routing tracks in a 3-byng 1/O. the total number of symmetries and the number of permutation
grid. Horizontal tracks for connectionare labeledy, ., wherer and generators. Those symmetry detection implementations are determinis-
c are the row and column indices of the cell whose boundary the tragk and not affected by re-ordering of vertices in the input graph. For
crosses. Vertical tracks are labelggd. In Figure 3 (a), let the points some benchmarks we built symmetry-breaking clauses only for ten cy-
markedSandE be the terminals of some two-terminal conneciiofihe cles per symmetry. The first ten cycles typically capture most of the
SAT formulation proceeds as follows. Consider the terminal magked speed-up provided by “breaking” a given symmetry. After new clauses
A route for this connection must pass through, orvi,,. Therefore, were added, the preprocessed CNF instance was solved with CHAFF.
we add the clauseh;,, +Vi,,). Since these two track selections areraple 1 lists average runtimes of 20 independent runs of CHAFF for
incompatible, we add the mutual exclusion cla(isg, + Vi, ,). each instance. Pre-processed CNFs never timed out in our experiments.
We now push the cells reachable from the possible tracks into a queu€lhe last column in Table 1 shows relative speed-up ratios due to the

Table 1: CHAFF runtime on original SAT instances is compared to the combined runtime of symmetry detection and CHAFF on instances with
symmetry-breaking clauses (the right-most column). The full name of benchmarlkd1lx_ca mc is 2d1x_ca_mc_ex_bp_f . The numbers of symmetry
generators and max cycles used per generator are shown (10 or all). Pure search speed-up (that does not take symmetry detection into account) is also
given. Results for opportunistic window-based symmetry-finding are also given and in most cases discover all or a large fraction of all symmetries.
All benchmarks that we generated for these experiments are available atttp://www.eecs.umich.edu/"faloul/benchmarks.html

Instance|] Satis- | #variables Plain | Time Symmetries Speed-up ratios
fiable? and Chaff -out || Finding | Number | #generators| Chaff total ;

#clauses sec % sec of | cycles | sec search only

hole0O7 [UNS 56,204 0.37 0% 0.1 2.03e8 all 13 0.01 3.32; 36.50

hole08 | UNS 72,297 1.27 0% 0.07 | 1.46e10 all 15 0.01 15.22; 94.15

hole09 || UNS 90;415 3.79 0% 0.1 | 1.32e12 all 17 0.02 32.00; 204.97
holel0 || UNS 110;561 22.44 0% 0.15 | 1.45e14 all 19 0.02 132; 1122

holell || UNS 132;738 212.73 0% 0.18 | 1.91el6 all 21 0.03 1229.6; 7090.9
holel2 || UNS 156,949 >1000 | 100% 0.24 | 2.98e18 all 23 0.04 —,—

urq3.5 UNS 46,470 232.441 10% 0.48] 2.32e6 all 29 0.0 484.16; —
urg4.5 UNS 74,694 250.01| 25% 1.35| 2.50e6 all 43 0.0 185.18; —
Urg5.5 UNS 121;1210 | >1000 | 100% 13.15 >1le7 all 72 0.0 —_—
Urg6.5 UNS 180;1756 | >1000 | 100% 62.93 >1le7 all | 109 0.0 —;
urq7.5 UNS 240;2194 | >1000 | 100% || 176.62 >le7 all | 143 0.0 —_
grout3.3-0I]] SAT 864,7592 19.01 0% 4797 8.71e9 I0] 26 3.48; 28.37
grout3.3-03 || SAT 960;9156 44.35 0% 8.94| 6.97el10 10| 29 4.75;110.89
grout3.3-04 || SAT 912;8356 19.36 0% 6.81 | 2.61el0 10| 27 2.70; 53.79
grout3.3-08 || SAT 912;8356 21.30 0% 7.14 | 3.48el10 10| 28 2.73; 31.80
grout3.3-10|| SAT | 1056;10862| 28.18 0% 10.65| 3.48el0 10| 28 2.45; 33.15
chnlIOxIT]] UNS 220;1122 22.17 0% 0.457 4.20e28 all 39 39.91; 210.13

chnl10x12 || UNS 240;1344 81.88 0% 0.61| 6.04e30 all 41
chnl10x13 || UNS 300;2130 | 657.61| 25% 1.28 | 4.50e37 all a7

111.63; 663.00
454.78; 3961.4

chnll1x12 || UNS 264,1476 | 207.37 0% 0.75 | 7.31e32 all 43 231.31; 1415.5
chnl11x13 | UNS 286;1742 | 788.32| 20% 1.08 | 1.24e35 all 45 633.45; 4792.2
chnl11x20 || UNS 440;4220 | >1000 | 100% 4.4 | 1.89e52 all 59 — —

fpgal0.08]] SAT 120;448 7.56 0% 0.63] 6.00e71 all 62 11.15;157.56
fpgal0.09|| SAT 135,549 3.80 0% 0.88 | 6.33e77 all 68 4.16; 113.39
fpgal2.11|| SAT 198,968 694.00 | 50% 3.76 | 7.18e77 all 95 181.63; 11377.0
fpgal2.12|| SAT 216;1128 80.20 0% 5.31| 7.44e77 all | 104 14.74; 616.92

fpgal2.08|| SAT 144;560 246.70 | 10% 1.23 | 8.41e77 all 72 188.39; 3103.14

fpgal2.09|| SAT 162;684 | 885.00| 80% 1.7 | 2.25e77 all 79 504.56; 16388.8|
fpgal3.09|| SAT 176,759 550.00 | 85% 2.57 | 2.56e77 all 84 208.81,; 8593.75
fpgal3.10|| SAT 195,905 >1000 | 100% 4.04 | 5.76e77 all 93 ;
fpgal3.12|| SAT 234;1242 | >1000 | 100% 6.9 | 8.85e77 all | 110 —

ONRPPOIO000000009 000009 00009
| | DOPVUWOOOO0OROOY|WwkRrRrREH|0OWD O
ONOOY|OOOTOWORARoINNR|OINO OS]

2dIx_camc* UNS [3250;24640 6.54 0% 38.36 [9.36e77 I0] 66 0.15;
2pipe.cnf|| UNS 892; 6695 2.08 0% 10.74 | 2.26e45 10| 38 0.17;
2pipe.1_ooo UNS 834; 7026 2.55 0% 9.37 8 10 3 0.23;
2pipe2_.000 UNS 925; 8213 3.43 0% 11.14 32 10 5 0.25;
0.08;

[y

3pipe || UNS | 2468;27533| 36.44 0% || 463.57| 7.29e77 10| 85
4pipe || UNS | 5237;80213| 337.61 0% || >1000 —

5pipe || UNS | 9471;195K | 325.92 0% || >1000 — — | —
WINDOW-BASED SYMMETRY FINDING (1000 variables per window)

SRR

I el i |

| | ovorwal| |
[N ARN

2dIx_.camc* UNS [3250;24640 6.54 0% 3171 2.34e77 I0] 64 5.42 0.76;1.21
2pipe || UNS 892; 6695 2.08 0% 10.47 | 2.26e45 10| 38 1.30 0.18; 1.63
2pipel.ooo || UNS 834, 7026 2.55 0% 9.02 8 10 3 1.80 0.24;1.41
2pipe2_000 || UNS 925; 8213 3.43 0% 11.09 32 10 5 2.80 0.25;1.23
3pipe || UNS | 2468;27533| 36.44 0% 3.63 | 1.42e77 10| 78| 36.20 0.91;1.01
4pipe || UNS | 5237;80213| 337.61 0% 9.32 | 1.03e78 10 | 142 | 334.00 0.98;1.01
5pipe || UNS | 9471;195K | 325.92 0% 29.42 | 3.64e78 10 | 227 | 290.50 1.02;1.12

use of symmetry-breaking clauses. For a given CNF instance, the filst OPPORTUNISTIC SYMMETRY-FINDING

number is the ratio of (i) CHAFF runtime on original instance, and (i) The use of symmetry-breaking clauses does not require firaling
the total runtime of symmetry qletection and_CI_-lAFF on preprocessed §ymmetries; symmetry detection can be performegortunistically
stances. The second number is produced similarly, except that symme@i#ya|gorithm that does not guarantee to find all symmetries may finish
detection runtime is ignored. This is the maximal possible speed-upséoner. Some symmetries may be found using domain-specific knowl-
symmetries are detected instantaneously or provided as domain-speg@ige’ and new clauses can be added during the creation of SAT in-
knowledge. We make several observatio(l) the proposed SAT in- stances. This may speed up the detection of other symmetries.

stances are only a fraction of the size of recent micro-processor verificayindow-based Symmetry Finding. We observed that a variable
tion benchmarks [25], but are more difficult to solV&) some difficult would sometimes be symmetric to another variable connected by a clause
SAT instanc_es have astronomical numbers of symmetries; this i_ncIutégﬁe hop) or through a chain of two clauses (two hops). When this is not
the randomizedirq and grout benchmarks(3) symmetry-breaking trye for all symmetries of a CNF formula, many symmetries may be
clauses often speed up the best available SAT solver CHAFR4§]; composable from permutation generators of that kind. We therefore fo-
symmetry-breaking clauses typically do not slow down CHAFF and ofys on “local” symmetries that permute small subsets of variables and
ten speed it up, even when few symmetries are pres8MCHAFF fix || other variables. We define the subsets by sliding a window of
runtime and symmetry detection runtime are not correlated; either stg.d size along a given linear ordering of the variables — either original
may be a bottleneck6) among thechnl instances, the hardest to solveyariable ordering of the CNF formula or the connectivity-based MINCE
was routing of 20 connections through 11 tracks. Adding extra unrouthjering [1]. For a window, we consider the left and right cuts, as in
connections consistently increased difficulty. Figure 4 (b). To find symmetries local to a given window, the standard

A (1+3+5) !

-C D) | . . .
O A=A should work with all complete SAT solvers. In experiments described
Sl

DG+-6+-7) & @ | in Table 1 but performed with GRASP [23] instead of CHAFF [6], our
D T LT flow d d speed-ups 1.5-5 ti for the micro-

@ (b)! ow demonstrated speed-ups 1.5-5 times even for the micro-processor
Figure 4: (a) window-based opportunistic symmetry detection for a CNF Verification benchmarks. The proposed flow may not give improvement
instance with ten variables and four clauses; (b) a colored graph for detecting ON arbitrary SAT benchmarks — many difficult SAT instances do not
only symmetries local to a window: (c) the “local” symmetry (6 7) (-6 -7). have symmetries [8]. While many DIMACS benchmarks [10] have large
numbers of symmetries, they are easy and can be solved faster than their

construction of colored graph is applied to clauses and literals that &snmetries can be detected.

entirely inside the window. Each cut clause is represented by a vertexcknowledgements.This work is funded by an Agere Systems/SRC

of unique color that is connected to literals inside the window. Sind@esearch fellowship, a DAC fellowship and DARPA/MARCO GSRC.

the size of this graph increases with cut size, a min-cut ordering im-

proves runtime. We concatenate lists of permutation generators p- REFERENCES

duced for different windows, consider the group generated by all thosg] F. Aloul, I. Markov and K. Sakallah, “Faster SAT and Smaller BDDs via

and use GAP [22] to produce an irredundant list of generators of this Common Structure”|lCCAD 2001 pp. 443-448. N _

“global” group. Symmetry-breaking clauses are constructed from thos&l P- Igegm_e, 5- Karp,PT - P't%‘ss' and M. Sa;‘;i p:I/IhSJ eﬁ'c'?”CyCOf Resolution

generators. Producing symmetry-breaking clauses independently from gtntp; /a}\;f;;.clit.r]wir:hi;gfii;i /‘htoc:nff /F]):)ia_me /Papecizr/rﬁs?_nps omputing

each window and concatenating them may cause considerable redygt B. Benhamou and L. Sais, “Tractability through symmetries in

dancy. The trade-off between runtime, coverage and redundancy among propositional calculusJournal of Autom. Reasoningol. 12, (no.1), Feb.

windows depends on their overlap. Similarly, the window size affect . 39%-588;(82'1(22 sire. L. Sais. “Improving backirack search for SAT b

_the trade-off betwec_en ru_ntlme and coverage. We obs_erve good emp means of i’edundag]ncyﬁbuhdatiéns 0F12 Intellgi]gent Systems. 11th Intl. Y

ical performance with windows of size 1000. Results in Table 1 show Symp., ISMIS'99Warsaw, Poland, June ‘99. Berlin, Germany: Springer

that our window-based technique found all or a significant portion of ~ 1999. p.301-9.

all symmetries for the micro-processor verification benchmarks [25] if5] C. A. Brown, L. Finkelstein, and P. W. Purdom. “Backtrack searching in

a fraction of the runtime spent by complete symmetry-finding. If a ran- g}go;:irt?]srﬁgt;e;]gfesryr/g:rggrtrrgc.ﬂ% Zﬂocgg,segtlaom;.)Ilcz(:ﬁzggggg\é_algfgralc

domized variable ordering is used, one could combine local permutation Springer-Verlag, 1988. '

generators found for different orderings. [6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, “Chaff:
Improving SAT Formulations One way to reduce the runtime of Engineering an Efficient SAT SolverDAC 2001)

symmetry finding is to learn how to detect (or predict) symmetries from-’} Em'u(gt'%rrlfg i?fﬁ'a’dg%tﬁgcﬁ?’ﬁgwutﬁdég aprgullg\sllépl Symmetry

domain-specific knowledge. Given the well-understood structure ang; s A Cook, D. G. Mitchell, “Finding Hard Instances of the Satisfiability

symmetries of théole, chnl andfpga benchmarks, we evaluated this Problem: A Survey”DIMACS Ser. Discr. Math. & Theor. Comp. S¢@7.

approach on (randomize@rout benchmarks. We noticed that per- [9] J. Cé_awfordf, M. Giner)erg,b F LgtkslaquA. lf?cl)g/,“‘Smietfri/(-brealkidng

muted variables in many cases correspond to neighboring tracks, e.g., Ilo?reeprlggzteenstatci)gr?%?\rdc Rgfsoﬁﬂg FKSF%););M&Q;'V; %p_ ?2‘5’3"_&8?

if two connections are routed in parallel through several grid cells, the] DIMACS Boolean Satisfiability Challenge Benchmarks:

is considerable freedom (Symmetry) in track aSSignment- To break this ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf

symmetry, we added clauses that preserve the relative order of tragkyg C.A.J. van Eijk, E.T.A.F. Jacobs, B. Mesman and A.H.Timmer,

taken by every pair of connections routed through the same two edges !dentification and Exploration of Symmetries in DSP AlgorithD#TE

of a grid cell. In other words, if one connection is routed through trac;h 1 fgég/ll;ric?At?g%Oephgﬁg?& s Isomorohism. Reconstruction”

2 when entering the cell, and another connection is routed through tr cl% Chapter 27, pp. 14?17-1541, In F()R'_ L Grar?am, Mo@chel and L. Lossz,

3 when entering the cell, then the connections are allowed to leave the eds, Handbook of Combinatorics, vol. 2, MIT Press, 1995).

cell through tracks 2 and 3 resp., 1 and 2 resp. or 1 and 3 resp. SUtdl C. Norris Ip and D. L. Dill, “Better verification through symmetry”

constraints speed-up CHAFF: eaghout instance is now solved in Formal Methods in System Desigi(1/2):41-75, 1996.

0.50-0.80 seconds versus 19-45 seconhlitore dramatic speed-ups are [14] Xhﬁé%\é%té.ﬁg%f\bsfgggm. %%?ggl'zed Symmetries of Boolean

achieved fogrout instances built with larger routing grids. [15] V. Kravets and K. Sakallah, “Constructive Library-Aware Synthesis Using
Symmetries” DATE 2001 pp. 208-213.
7 CONCLUSIONS [16] G.S. Manku, R. Hojati and R. Brayton, “Structural symmetry and model

checking”,Proc. Intl. Conf. Comp.-Aided Verific. (CAV '9§)p. 159-171.
We describe an automated flow that finds symmetries in CNF ifit7] B. D. McKay, “Practical Graph IsomorphismGongressus Numerantiym
stances and uses them to speed up SAT search. This flow dramfaltii;-] :éoélg,\fl& Pp-‘"‘\“5'i7/- quide” (version 1.5), Technical report
: _ _(iffi . D. McRay, auty user's guiae” (version 1.5), echnical repor
cally Speequ up th‘? solution of two well-known provably-difficult bench TR-CS-90-02, Australian National University, Computer Science
mark families — pigeon-hole problems and Urquhart benchmarks. We pepartment, ANU, 199http://cs.anu.edu.au/ bdm/nauty/
propose constructions of realistic satisfiable and unsatisfiable SAT 9] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of
stances, arising in routing applications, that are unusually difficult for EWO Blottillegn '?Ole'JDlﬁtIODS IOIfDFRGA(PSGS%I%OF;%UUZHZQZCz%r;stralntS", in
: : : Totl i roc. Intl. Cont. on ySiCal besign . - .
t_helr size. Unllkg most existing SAT benchmarks, our benchmark fanPZO] L. H. Soicher, “GRAPE: A System For Computing With Graphs and
lies enable studies of the asymptotic performance of SAT solvers. Groups”,in "Groups and Computation’{L. Finkelstein and W.M. Kantor,
Since symmetry-finding is a bottleneck, we speed it up using oppor- eds),DIMACS Ser. in Discr. Math. & Theor. Comp. StL, pp. 287-291.
tunistic approaches. In one, we only look for symmetries that permute www—groups .dcs.st-andrews.ac.uk/"gap/Share/grape.html
small groups of variables. Those groups are determined by slidind23! ’I\E"-frgs?idv P. Clhﬁ’lgg' K. Kef“’t/zletrh Wh%f 'SlgpﬂG eas;gAA% 9t.9'
fixed-sized window glong a given variable_ ordering. .The second ap-] Amer. &'aztﬂ?%f)é 41‘3(\4')‘9’\’2'1%94)%;"17%8:_6‘782? ware, otices
proach attempts to improve the construction of SAT instances by de- http://www-groups.dcs.st-andrews.ac.uk/"gap/gap.html
tecting symmetries in domain-specific terms so that new clauses can[2@ J. P. M. Silva and K. A. Sakallah, “"GRASP: A New Search Algorithm for
added during construction. We find astronomically many symmetries in4] iatL'JSf'aE'“t%’ ;‘LEE(EEF&”S- Pnfcogput?rfoh;%a& 5I 'z\))/|4ay1€1335739-

H : izl .urqunhart, ar Xamples 1or Resolutio vol. , .
r_and_omlzed Urgluhar_tr?r‘gkout b_ench%arks, Th_owmg that !’an(_:iomlza [25] M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability
tion is compatible with symmetries. We explain symmetriegrout Procedures in the Formal Verification of Superscalar and VLIW
benchmarks and break them using domain-specific knowledge. Microprocessors”’PAC 2001 pp. 226-231.

Our proposed flow does not require source code modifications and http://www.ece.cmu.edu/"mvelev/#BENCHMARKS

