
Solving Difficult SAT Instances in the Presence of Symmetry

Fadi A. Aloul, Arathi Ramani, Igor L. Markov and Karem A. Sakallah
Department of EECS, University of Michigan, Ann Arbor 48109-2122

ffaloul,ramania,imarkov,karemg@eecs.umich.edu

ABSTRACT
Research in algorithms for Boolean satisfiability and their implementa-
tions [23, 6] has recently outpaced benchmarking efforts. Most of the
classic DIMACS benchmarks [10] can be solved in seconds on commod-
ity PCs. More recent benchmarks take longer to solve because of their
large size, but are still solved in minutes [25]. Yet, small and difficult
SAT instances must exist because Boolean satisfiability is NP-complete.

We propose an improved construction of symmetry-breaking clauses
[9] and apply it to achieve significant speed-ups over current state-of-
the-art in Boolean satisfiability. Our techniques are formulated as pre-
processing and can be applied to any SAT solver without changing its
source code. We also show that considerations of symmetry may lead to
more efficient reductions to SAT in the routing domain.

Our work articulates SAT instances that are unusually difficult for
their size, including satisfiable instances derived from routing problems.
Using an efficient implementation to solve the graph automorphism prob-
lem [18, 20, 22], we show that in structured SAT instances difficulty may
be associated with large numbers of symmetries.

Categories and Subject Descriptors
I.1.2 [Algorithms]: Algebraic algorithms.

General Terms
Algorithms, experimentation, verification.

Keywords
SAT, CNF, faster, search, symmetry, difficult, instances, speed-up.

1. INTRODUCTION
Boolean satisfiability (SAT) is a pivotal problem in Computer Science

and has numerous applications in Design Automation that range from
microprocessor verification [25] to FPGA layout [19]. A one-million-
dollar prize is offered by the Clay Institute for Mathematical Sciences
for a complete polynomial-time SAT solver or a proof that such an al-
gorithm does not exist (the P-vs-NP problem). Neither is likely to be
found. Nevertheless, industrial applications motivate intensive research
in SAT algorithms that quickly solve real-life instances. The fundamen-
tal framework for state-of-the-art SAT algorithms was laid out in the
1960s, but a number of recent improvements in algorithms and imple-
mentation techniques [23, 6] have led to performance breakthroughs.
Most DIMACS challenge benchmarks [10] from the early 1990s are now
solved in seconds on commodity PCs. Recently posted SAT benchmarks
[25] take somewhat longer to solve (minutes), but that is primarily due
to their enormous size (50MB+ files, etc). With the exception of arti-
ficially constructed families of benchmarks, it appears that SAT can be
solved in polynomial time “for practical purposes”.

It is well known that the dominant back-track solvers, such as GRASP
[23] and CHAFF [6] do not perform well on randomly-created 3-SAT in-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2002June 10-14, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM 1-58113-297-2/01/0006(1-58113-461-4) ...$5.00.

stances with� 4:3 clauses per variable. However, such instances do not
arise in Design Automation because application-derived SAT instances
are typically structured. Attempts to explain the ease of structured in-
stances were successful for certain applications [21], and generic ways
to exploit certain types of structure were proposed [1].

Our work addresses both benchmarking and algorithmic aspects of
SAT research. Given the excellent performance of existing SAT solvers,
there is no room for improvement on easy benchmarks, and we focus
on difficult instances.1 Since the works of Haken and Urquhart [24] on
lower bounds for resolution and back-tracking algorithms for SAT, sev-
eral instance families have been known to require exponential time for
DP/DLL (Davis-Putnam and Davis-Logemann-Loveland) solvers. For
example, a recent lower bound for the pigeon-hole problem isΩ(2n=20)
[2] wheren is the number of pigeons. Another such family was con-
structed by Urquhart in terms of expander graphs and with considerable
use of randomization [24]. Indeed, state-of-the-art SAT solvers, such
as CHAFF, take a long time to solve those instances (see Table 1), but
the relevance of such pathological cases to Design Automation is ques-
tionable. While lower bounds for SAT are often proven for unsatisfiable
instances, it remains to be seen whether satisfiable instances can be dif-
ficult for the best solvers. We demonstrate CAD-related SAT instances,
both satisfiable and unsatisfiable, that are very difficult for their size.
Moreover, an easy instance of any size can be made difficult by adding
a small difficult instance to it and connecting the two by inconsequential
clauses to defeat partitioning.

Over many years, empirical research in algorithms for Design Au-
tomation identified a number of fundamental problem formulations, such
as Boolean satisfiability, and mustered significant efforts to solve them
efficiently. State of the art is gauged by optimized solver implemen-
tations (“engines”). Performance break-throughs are often due to novel
algorithmic ideas, leaner implementations or the ability to apply a highly
optimized engine in a novel way. In this work, we suggest that graph au-
tomorphism engines can be applied to the satisfiability problem in cer-
tain cases. Given that the graph automorphism problem is thought to not
be NP-complete (thus potentially easier than SAT) and that very little
CAD research was done on high-performance engines for graph auto-
morphism (one such work is [16]), there may be significant room for
future improvement. To be precise, we will be dealing with the colored
variant of the graph automorphism problem that can be easily extended
to hypergraphs (see definitions in Section 2).

Several works suggested that “breaking symmetries” in CNF formu-
lae can speed up SAT solvers [3, 4, 5, 9, 16]. Symmetries of a CNF
formula include clause-preserving permutations of variables. Such per-
mutations may involve arbitrarily many variables at once, e.g., a com-
plete cyclic shift. In this work, we do not address permutations that
change the CNF formula but leave unchanged the Boolean function it
represents.2 However, if such symmetries are detected by other tech-
niques [14], our proposed methods can process them in the same way as

1In practice, the difficulty of domain-specific classes of SAT instances is often
known, and adequate SAT algorithms can be chosen. Otherwise, one can run
several SAT solvers in parallel until one of them finishes. On a single processor,
this may buy exponential speed-ups at the cost of a constant-factor slow-down.
2Such permutations can be called “semantic” symmetries versus “syntactic”
symmetries that leave the CNF formula unchanged.

symmetries of the CNF formula. Similarly, many of the works we cite
do not deal with symmetry detection, but rather assume that symmetries
of the Boolean function are given. Using this assumption, two main
directions were explored: (a) preprocessing the original CNF formula
by adding symmetry-breaking clauses that do not affect satisfiability but
speed up search [9], (b) extending SAT solvers, particularly those based
on back-tracking, to dynamically use symmetries during the search pro-
cess [5]. In this paper we pursue the pre-processing approach due to its
simplicity, but will outline how our techniques can be applied within a
back-tracking solver for increased efficiency.

Prior works on symmetries in SAT predate recent breakthroughs in
SAT solvers and typically use several carefully constructed instances to
illustrate their approach. E.g., Crawford et al. [9] suggest that symmetry-
based techniques allow the pigeon-hole instances to be solved in poly-
nomial time, but their empirical data [9, Figure 3] do not support this
suggestion. Also it remains unclear whether the performance of leading-
edge SAT solvers can be improved via the use of symmetries. In prin-
ciple, the overhead due to symmetry detection and usage may outweigh
the benefits, and it remains to be seen that useful CNF formulae have
many symmetries. P´olya (1937), Erd¨os and R´enyi (1963) proved that
a random graph onn vertices hasno symmetrieswith probability 1��n

2

�
2�n�2(1+o(1)) [12, p. 1461]. This claim can be extended to CNF

formulae using constructions in Section 2, but structured real-world in-
stances may have richer symmetries. Indeed, Boolean functions from
synthesis applications may have many symmetries [14]. If exponentially
many symmetries exist, adding all possible symmetry-breaking clauses
can be disastrous [9]. Despite these pitfalls, symmetry-based approaches
have been useful in model checking [13, 7], verification [16], logic syn-
thesis [15] and DSP algorithms [11].

In this work, we propose an automated flow that starts with a CNF
formula in the DIMACS format and detects all of its symmetries (not
just pairwise swaps). In this flow, all symmetries are captured implicitly,
with exponential compression. The CNF formula is then preprocessed
adding symmetry-breaking clauses that do not affect satisfiability. A
black-box SAT solver is applied to the preprocessed CNF instance to
produce the final answer; any satisfying assignment to this instance is (or
corresponds to) a satisfying assignment of the original instance, and if
the preprocessed instance is unsatisfiable then so is the original instance.

Our construction of symmetry-breaking clauses is novel. It is more
economical and provides better coverage than that in [9]. Addition-
ally, it directly applies to the compressed representation of all symme-
tries in the format produced by graph automorphism software [17, 18,
20, 22]. Our empirical results show significant improvements on CNF
instances arising in Design Automation applications as well as highly
randomized provably-difficult Urquhart benchmarks [24]. Two exten-
sions are proposed to speed up symmetry detection. One is opportunis-
tic symmetry detection, where only some symmetries are found. The
other extension pursues domain-specific symmetries and leads to im-
provements of SAT formulations by adding domain-specific symmetry-
breaking clauses. Thus generic symmetry detection is avoided by creat-
ing symmetry-less SAT instances that can be solved quickly.

The remaining material is organized as follows. Symmetry detection
is described in Section 2 and symmetry-breaking in Section 3. Section
4 discusses constructions of SAT benchmarks. Our empirical results are
presented in Section 5 and further extensions in Section 6.

2. FINDING SYMMETRIES
In general, a symmetry of a discrete object is a permutation of its

components that leaves the object unchanged. Every discrete object has
at least one symmetry — the “do-nothing” permutation. It is easy to
see that a composition of two symmetries is a symmetry, and that com-
position with the do-nothing permutation does not change a symmetry.
The composition of symmetries is associative, and every symmetry has
an inverse. Composition is oftennot commutative. Abstract algebraic

structures defined axiomatically in terms of such a composition opera-
tion (multiplication) are commonly calledgroups. In this work we will
only deal with groups of symmetries whose elements can be thought
of as permutations. A permutation can be represented by cycles, e.g.,
(23)(567) represents a permutation on a set of at least 7 mark (elements).
This permutation swaps marks 2 and 3, it cycles marks 5, 6 and 7 in that
order. All other marks, e.g., 1 and 4, are left unchanged.

Computational group theory is approximately 25 years old, and great
strides were made in the last decade with the development of the GAP
package (“Groups, Algebra and Programming”) [22]. A major effi-
ciency in computational group theory comes from the notion of irredun-
dant sets of generators of a group. A set of generators is made of group
elements such that any other group element can be composed of gen-
erators and their inverses (no uniqueness required). Elementary group
theory implies that any irredundant set of generators for any group with
N > 1 elements containsat mostlog2 N elements, e.g., thek! permu-
tations onk marks can be generated by(12) and(12::k). Thus, repre-
senting groups by sets of generatorsalways ensures exponential com-
pression. Computational group theory provides efficient algorithms for
manipulating groups represented by sets of generators, without decom-
pression. Therefore, an intelligent algorithm for symmetry detection
may return a small set of generators rather than list all symmetries.

COLORED AUTOMORPHISM PROBLEMS. Given a graph, a
symmetryis a permutation of its vertices that maps edges to edges.
In case of directed graphs, edge orientations must be preserved. In
the Graph Automorphism problem one seeks all symmetries of a given
graph, e.g., in terms of group generators. It is known that all graphs
except for an exponentially small family haveno symmetries[12, p.
1461]. No worst-case polynomial-time algorithms are known for this
problem, but it is commonly believed not to be NP-complete unless
P=NP. Polynomial-time algorithms are available in many special cases
[12, p. 1511]. Generic algorithms [17, 16] are based on linear-time par-
tition refinement passes; a simple version finishes in three passes for all
but an exponentially small family of graphs [12, p. 1513].

The Graph Automorphism problem may be constrained by vertex la-
bels — symmetries must map each vertex into a vertex with the same
label. Label constraints are computationally easy and can be formally
reduced to plain graph automorphism. Labels are often expressed by
integers and called colors (no relation tograph coloring). Another ex-
tension is to coloredhypergraphs— symmetries must map hyperedges
to hyperedges (of the same cardinality because no two vertices can map
to one). The colored hypergraph automorphism problem reduces to the
colored graph automorphism via the bipartite graph of the hypergraph.
This graph contains a vertex for each hypergraph vertex and hyperedge,
and connects them with edges according to the hypergraph’s incidence
relation. Graph vertices in the hyper-edge part are painted with a new
color, and other vertices retain their original colors.

Brendan McKay implemented a practical algorithm for Graph Auto-
morphism [17] in a software package called NAUTY [18], which has
been continually improved for the last 20 years (version 2.0 released
in 2001). NAUTY has been integrated into the computational group
theory system GAP [22] by means of the GRAPE package [20]. This
integration enables efficient group-theoretic operations on the results re-
turned by NAUTY and facilitates some of our proposed algorithms. In
1998, Manku et al. [16] claimed speed-ups over a pre-2.0 version of
NAUTY in the context of hardware verification. However, their code is
not generic (built into a larger system) and is no longer supported.

CNF SYMMETRIES VIA GRAPH AUTOMORPHISM. The prob-
lem of finding symmetries of a CNF formula is reduced to colored graph
automorphism, similarly to the reduction from the hypergraph automor-
phism outlined above. Every variable is represented by two vertices
that correspond to the positive and negative literals. Every clause is
represented by a vertex, and bipartite edges connect those vertices to
vertices of relevant literals. Clause vertices are painted with color 1

Figure 1: A CNF formula with three clauses A, B and C and three vari-
ables (a) is converted into a bipartite graph (b) for symmetry detection pur-
poses. The two-literal clause C is represented by one edge (bold) while larger
clauses A and B are represented by a vertex and three edges each. Any sym-
metry must map C!C therefore this instance has only one non-trivial sym-
metry (1 -1)(2 -3)(-2 3)(A B) shown in (c). The first cycle yields a symmetry-
breaking clause(1̄) which reduces the search space by half (d). Alternatively,
the clause (2 + 3) corresponding to the third cycle can be added.

and literal vertices are painted with color 2. To ensure Boolean consis-
tency, vertices of opposite literals are mated by direct edges. An addi-
tional simplification, motivated by [9, footnote 6], is to represent each
two-literal clause by an edge directly connecting their two literals rather
than by two edges and a vertex. In the final colored graph, 2�Vars
vertices represent the positive and negative literals and the remaining
Clauses�2�LitClausesvertices represent clauses. Figure 1 shows an
example. This reduction has the advantage of detecting phase-shift sym-
metries (a! ā) and their compositions with permutational symmetries.

3. SYMMETRY-BREAKING
Symmetries induce equivalence classes in the solution space (in group

theory, they are calledorbits). Given a satisfying truth assignment, all
other truth assignments to which it can be mapped by symmetries, must
also be satisfying. Similarly, symmetries always map unsatisfying as-
signments to unsatisfying assignments. Therefore, for a complete SAT
solver it suffices to reason about one representative from each such class.
This restriction can be implemented by selecting unique representatives
from every equivalence class and adding clauses that are only satisfied
on those representatives. An earlier construction of such symmetry-
breaking clauses [9] is based on a given ordering of variables. Its main
idea is (i) to order all elements from the solution space lexicographi-
cally, and (ii) to select the lexicographically smallest element from each
equivalence class as its representative.

The construction described in [9] is applied to every given symmetry
and generates many redundant clauses. To prune redundant clauses, the
authors propose the concept of a symmetry tree, but it is not well sup-
ported by efficient algorithms for permutation groups, does not always
prevent redundant clauses and is itself not always prunable to polyno-
mial size [9]. Phase-shift symmetries were not addressed in that work.

We compute symmetry-breaking clauses on a per-symmetry basis [9],
but consider only irredundant sets of symmetry generators, returned by
graph automorphism programs. By breaking generator symmetries only,
one does not necessarily break all symmetries, except for some cases
[9]. So far, the power of such partial symmetry-breaking has not been
evaluated, but we believe that a reasonable coverage is often achieved
because an irredundant set of generators contains “maximally indepen-
dent” symmetries — none of them can be expressed in terms of others.

Our construction is formulated in terms of cycles of a permutation
(cf. [9]). For the variable swap(ab) the construction in [9] entails
one additional variable and six symmetry-breaking clauses. Our con-
struction below entails only one clause. First observe that if the cy-
cle (ab) is a symmetry, whenever there is a satisfying assignment with
a= 0;b= 1, there should be a symmetric (equivalent) satisfying assign-
ment witha= 1;b= 0 and other variables unchanged. To allow only the
first assignment, we add the symmetry-breaking clause(ā+b), which
can also be interpreted as(a� b). Similarly, to “break” a cycle of length
three(abc), we add(ā+b)(b̄+c), i.e.,(a� b)(b� c). To prevent tran-
sitivity violations, one has to choose an ordering of all variables at the
beginning, and always use the� sign consistently with that ordering.

Figure 2: Construction of difficult SAT instances: (left) two switch-boxes
in common FPGA architectures, (right) similar N-by-M switch-boxes are
used to build hard satisfiable instances.

Longer cycles require more complex symmetry-breaking clauses, but
one can always improve on the construction from [9]. We observed that
symmetry generators produced for CNF formulae often consist of just 2-
cycles and only rarely have 3-cycles. A cycle(āa) means that the value
of a can be fixed arbitrarily, and this can be expressed by a one-literal
symmetry-breaking clause. The construction in [9] does not address
such phase-shift symmetries and never results in one-literal clauses.

If no cycles generate single-literal clauses (which achieve maximal
pruning if all clauses have length�2), we can produce symmetry-breaking
clauses from any one 2- or 3-cycle of a symmetry. That significantly
speeds up SAT solvers in many cases. However, clauses of the form
(ā+ b) achieve no pruning in areas of the solution space where the
variables involved have identical values. A key idea in that case, sim-
ilar to that in [9] is to process another cycle. Namely, for a symme-
try (ab)(cd)(e f):::, we first add(ā+b), then(a= b)) (c� d), then
((a= b)(c= d))) (e� f), etc. This construction can be efficiently im-
plemented with one additional variable per cycle to indicate the equality
of all variables in the cycle. A sample clause with new variables looks
like (x̄a=b+ x̄c=d + ē+ f). To ensure consistency, we sort marks within
cycles and sort cycles by their first marks.

The construction of symmetry-breaking clauses is dwarfed by the
symmetry-detection time. However, with every cycle processed, we add
larger and larger symmetry-breaking clauses. Since large clauses typi-
cally do not have a great effect on the behavior of SAT solvers, we op-
tionally limit symmetry-breaking clauses to the first 10 cycles of every
symmetry. For the price of incomplete coverage, this technique con-
siderably reduces the overhead of symmetry-breaking clauses. In our
experiments it often performed better than the addition of symmetry-
breaking clauses for all cycles. Moreover, extending back-track algo-
rithms for SAT to dynamically check conditions of the form((a=b)(c=
d):::(u= v)) may lead to improvements over pure pre-processing.

4. DIFFICULT SAT INSTANCES
FPGA ROUTING INSTANCES. A recent comparative study of two

Boolean formulations of FPGA detailed routing constraints [19] showed
that problem encoding affects the difficulty of SAT instances. Our work
uses the better formulation, but still produces difficult instances. Two
such constructions are shown in Figure 2 in terms of FPGA switch-boxes
(see [19] for details on SAT formulations). The one on the left entails
routingN+k connections throughN tracks and yields unsatisfiable in-
stances that fork= 1 resemble the well-known pigeon-hole benchmarks.
Empirical results in Table 1 are shown for six routing configurations
(chnl) in which one tries to route (a) 11, 12 or 13 connections through
10 tracks, and (b) 12, 13 or 20 connections through 11 tracks. These in-
stances are extremely difficult for the leading-edge SAT solver CHAFF
[6] and also have many symmetries. They can appear as sub-instances in
larger routing instances, and such sub-instances may be difficult to find.

From the benchmarking point of view, it is natural to expectunsatis-
fiable instances among the most difficult to solve. Indeed, randomized
restarts used by CHAFF [6] typically allow it to avoid difficult regions
of the search space and to quickly find satisfying solutions if they exist.
However, our second construction is designed to create difficultsatisfi-
able instances that trap even the best solvers in hopeless regions of their
solution space for a long time before a satisfying solution can be found.
The main idea is to create a satisfiable instance with a large number of
hard-to-avoid unsatisfiable sub-instances. If the number of unsatisfiable

hi11

vi11

1 2 3
S

E

(a)

1

2

3

Tracks1

2

3

1 2 3

(b)

Figure 3: Construction of difficult SAT instances (global routing).

branches is much larger than the number of satisfiable branches, then
random restart will keep on jumping from one unsatisfiable branch to
another for a long time. Solvers without random restarts will, too, need
to prove the unsatisfiability of many branches.

Our second construction entails routing a number of wires through
four N-by-K FPGA switch-boxes of the type used in the first construc-
tion. The rightmost switch-box in the configuration in Figure 2 has sev-
eral redundant outgoing tracks that are divided into two channels. Each
channel is connected to a smaller switch-box with an insufficient num-
ber of outgoing tracks. The two groups of tracks that leave the smaller
switch-boxes are connected to the left-most switch-box. When rout-
ing connections through tracks right-to-left, connections must be split
between switch-boxes subject to the throughput constraints of switch-
boxes. However, to a SAT solver, the throughput constraints are ob-
scured by the pigeon-hole principle. SAT solvers first partition the con-
nections between the two channels and back-track from every partition
that does not lead to a satisfying assignment. If the capacities of the two
channels leading to the smaller switchboxes are greater than the through-
put of those switchboxes, an overwhelming majority of partitions will
lead to unsatisfiable pigeon-hole instances. On average, at least sev-
eral such instances must be solved before a good partition is found. SAT
solvers without random restarts will also need to solve many pigeon-hole
sub-instances before finding satisfying solutions. Empirical results for
these satisfiable instances (fpga) in Table 1 show that they are very diffi-
cult for CHAFF. We observe that these instances become more difficult
when the difference between the throughput of the small switchboxes
and the capacities of the channels that lead to them is increased. This is
consistent with our observations for the unsatisfiablechnl instances.

GLOBAL ROUTING INSTANCES. We propose a new construc-
tion of difficult randomizedsatisfiableinstances unrelated to pigeon-
holes. They express routing two-pin connections in a grid with edge ca-
pacity constraints. To ensure that an instance is satisfiable but difficult,
we userandomized flooding. Namely, we create a routing configuration
by adding shortest possible routes while unused routing resources (edge
capacities) remain. Shortest routes are created by breadth-first-search
between pairs of randomly chosen grid cells or, if that fails, by finding a
maximal shortest route starting at a given grid cell with unused routing
resources. After a routing configuration is created, routes are erased and
their end-points are used to formulate a SAT instance.

Our SAT encoding of routing instances has two components. One
deals withroute definitionand captures possible ways to route each con-
nection. The other addressescapacity constraintsand restricts the num-
ber of connections that can be routed across a grid cell boundary.

Route definition. Routes are specified in terms of edges across cell
boundaries in a grid. For each connection, there are routing tracks across
each cell boundary on the grid. In the SAT formulation, each track is
treated as a variable. Figure 3 (a) illustrates routing tracks in a 3-by-3
grid. Horizontal tracks for connectioni are labeledhir;c , wherer and
c are the row and column indices of the cell whose boundary the track
crosses. Vertical tracks are labeledvir;c . In Figure 3 (a), let the points
markedSandE be the terminals of some two-terminal connectioni. The
SAT formulation proceeds as follows. Consider the terminal markedS.
A route for this connection must pass throughhi1;1 or vi1;1. Therefore,
we add the clause(hi1;1 + vi1;1). Since these two track selections are
incompatible, we add the mutual exclusion clause(h̄i1;1 + v̄i1;1).

We now push the cells reachable from the possible tracks into a queue.

The queue contains cells reachable from those already visited. A list
of visited cells is also maintained so that a cell is not pushed on the
queue twice. While the queue is not empty, cells are popped off it and
new clauses are introduced for the route tracks across the cell bound-
aries. In our example, assume that the cell to the right ofS is popped off
the queue. Since this cell is not an endpoint of the connection, exactly
two of its boundaries must be selected. The cell boundaries in this case
arehi1;2;hi1;1 andvi1;2. We therefore introduce the clauses(hi1;1 + vi1;2),
(hi1;1+hi1;2), and(hi1;2+vi1;2). However, again it is not possible for more
than two tracks to be selected. Therefore, we add clauses of the form:
(hi1;1^vi1;2)) h̄i1;2. This procedure is repeated for every cell popped off
the queue until the queue is empty.

Capacity constraints. Each grid cell boundary has a capacity asso-
ciated with it to restrict the number of connections that can be routed
through it. The capacity limits are intended to prevent congestion. IfC
is the capacity limit for an edge of a grid cell, we includeC variables per
edge for each connection. In other words, each connection can be routed
through one ofC tracks across a cell boundary as shown in Figure 3 (b).

Consider two connectionsi and j . Consider horizontal route tracks
for each connections,hir;c , andhjr;c for some rowr and columnc. Let
ir;c1

; ir;c2
; : : : ir;cC

and jr;c1
; jr;c2

; : : : jr;cC
be theC extra variables intro-

duced in the SAT formulation for the horizontal track in question. Then
clearly, for anyir;ck

;1� k�C, ir;ck
) hir;c , and alsohir;c) (ir;c1

+ : : :+
ir;cC

). Clauses of this form are added to the SAT instance. Another re-
striction is that a route cannot pass through two tracks in the same chan-
nel (edge of a grid cell), i.e., if for somek;1� k�C, if ir;ck

is true, then
for all l ;1� l �C; l 6= k;(ir;ck

)�ir;cl)
. These clauses are also added.

Finally, two connections cannot be routed through the same track, i.e.
for all k;1� k�C, (ir;ck

)� jr;ck
) for all j 6= i, where j represents an-

other connection. By combining the aforementioned techniques, we are
able to express routing instances as SAT problems.

We created ten routing configurations by randomly flooding a 3-by-
3 routing grid with connections subject to edge capacity constraints of
3. Then we applied the SAT encoding above. Table 1 shows empirical
results for the five most difficult instances (grout).

5. THE EFFECT OF SYMMETRY-BREAKING
Our computational experiments were performed on PCs with AMD

Athlon processors @1.2GHz and 1Gb of RAM. All codes were com-
piled with g++ 2.95.4 -O3 and ran on Debian Linux. In addition to
the instances described in Section 4 (chnl andfpga) and (grout), Ta-
ble 1 lists six standard pigeon-hole instances (hole), five families of ar-
tificially constructed randomized Urquhart benchmarks (Urq) [24] and
seven recent benchmarks from the micro-processor verification domain
[25]. CHAFF runtimes in Table 1 are averages of (up to) 20 independent
starts because CHAFF uses randomization internally and results of dif-
ferent runs may vary significantly. All runs that did not complete in 1000
seconds were aborted and did not contribute to averages. The percent of
time-outs is shown for each instance.

To detect symmetries in CNF formulae, we converted them into col-
ored graphs (see Section 2). We then used the NAUTY program [17,
18]. At each run, the result was a list of permutation generators of the
group of symmetries. Permutation generators are specified by cycles.
For each SAT instance, Table 1 lists NAUTY runtime in seconds exclud-
ing I/O. the total number of symmetries and the number of permutation
generators. Those symmetry detection implementations are determinis-
tic and not affected by re-ordering of vertices in the input graph. For
some benchmarks we built symmetry-breaking clauses only for ten cy-
cles per symmetry. The first ten cycles typically capture most of the
speed-up provided by “breaking” a given symmetry. After new clauses
were added, the preprocessed CNF instance was solved with CHAFF.
Table 1 lists average runtimes of 20 independent runs of CHAFF for
each instance. Pre-processed CNFs never timed out in our experiments.

The last column in Table 1 shows relative speed-up ratios due to the

Table 1: CHAFF runtime on original SAT instances is compared to the combined runtime of symmetry detection and CHAFF on instances with
symmetry-breaking clauses (the right-most column). The full name of benchmark2dlx ca mc is 2dlx ca mc ex bp f . The numbers of symmetry
generators and max cycles used per generator are shown (10 or all). Pure search speed-up (that does not take symmetry detection into account) is also
given. Results for opportunistic window-based symmetry-finding are also given and in most cases discover all or a large fraction of all symmetries.
All benchmarks that we generated for these experiments are available athttp://www.eecs.umich.edu/~faloul/benchmarks.html

Instance Satis- #variables Plain Time Symmetries Speed-up ratios:
fiable? and Chaff -out Finding Number #generators Chaff total ;

#clauses sec % sec of cycles sec search only
hole07 UNS 56;204 0.37 0% 0.1 2.03e8 all 13 0.01 3.32; 36.50
hole08 UNS 72;297 1.27 0% 0.07 1.46e10 all 15 0.01 15.22; 94.15
hole09 UNS 90;415 3.79 0% 0.1 1.32e12 all 17 0.02 32.00; 204.97
hole10 UNS 110;561 22.44 0% 0.15 1.45e14 all 19 0.02 132; 1122
hole11 UNS 132;738 212.73 0% 0.18 1.91e16 all 21 0.03 1229.6; 7090.9
hole12 UNS 156;949 >1000 100% 0.24 2.98e18 all 23 0.04 — ; —
Urq3 5 UNS 46;470 232.44 10% 0.48 2.32e6 all 29 0.0 484.16; —
Urq4 5 UNS 74;694 250.01 25% 1.35 2.50e6 all 43 0.0 185.18; —
Urq5 5 UNS 121;1210 >1000 100% 13.15 >1e7 all 72 0.0 —; —
Urq6 5 UNS 180;1756 >1000 100% 62.93 >1e7 all 109 0.0 —; —
Urq7 5 UNS 240;2194 >1000 100% 176.62 >1e7 all 143 0.0 —; —

grout3.3-01 SAT 864;7592 19.01 0% 4.79 8.71e9 10 26 0.67 3.48; 28.37
grout3.3-03 SAT 960;9156 44.35 0% 8.94 6.97e10 10 29 0.40 4.75; 110.89
grout3.3-04 SAT 912;8356 19.36 0% 6.81 2.61e10 10 27 0.36 2.70; 53.79
grout3.3-08 SAT 912;8356 21.30 0% 7.14 3.48e10 10 28 0.67 2.73; 31.80
grout3.3-10 SAT 1056;10862 28.18 0% 10.65 3.48e10 10 28 0.85 2.45; 33.15
chnl10x11 UNS 220;1122 22.17 0% 0.45 4.20e28 all 39 0.11 39.91; 210.13
chnl10x12 UNS 240;1344 81.88 0% 0.61 6.04e30 all 41 0.12 111.63; 663.00
chnl10x13 UNS 300;2130 657.61 25% 1.28 4.50e37 all 47 0.17 454.78; 3961.4
chnl11x12 UNS 264;1476 207.37 0% 0.75 7.31e32 all 43 0.15 231.31; 1415.5
chnl11x13 UNS 286;1742 788.32 20% 1.08 1.24e35 all 45 0.16 633.45; 4792.2
chnl11x20 UNS 440;4220 >1000 100% 4.4 1.89e52 all 59 0.31 —; —
fpga10.08 SAT 120;448 7.56 0% 0.63 6.00e71 all 62 0.05 11.15; 157.56
fpga10.09 SAT 135;549 3.80 0% 0.88 6.33e77 all 68 0.03 4.16; 113.39
fpga12.11 SAT 198;968 694.00 50% 3.76 7.18e77 all 95 0.06 181.63; 11377.0
fpga12.12 SAT 216;1128 80.20 0% 5.31 7.44e77 all 104 0.13 14.74; 616.92
fpga12.08 SAT 144;560 246.70 10% 1.23 8.41e77 all 72 0.08 188.39; 3103.14
fpga12.09 SAT 162;684 885.00 80% 1.7 2.25e77 all 79 0.05 504.56; 16388.8
fpga13.09 SAT 176;759 550.00 85% 2.57 2.56e77 all 84 0.06 208.81; 8593.75
fpga13.10 SAT 195;905 >1000 100% 4.04 5.76e77 all 93 0.08 — ; —
fpga13.12 SAT 234;1242 >1000 100% 6.9 8.85e77 all 110 0.08 — ; —

2dlx ca mc* UNS 3250;24640 6.54 0% 38.36 9.36e77 10 66 6.30 0.15; 1.04
2pipe.cnf UNS 892; 6695 2.08 0% 10.74 2.26e45 10 38 1.56 0.17; 1.33

2pipe 1 ooo UNS 834; 7026 2.55 0% 9.37 8 10 3 1.80 0.23; 1.41
2pipe 2 ooo UNS 925; 8213 3.43 0% 11.14 32 10 5 2.82 0.25; 1.22

3pipe UNS 2468;27533 36.44 0% 463.57 7.29e77 10 85 19.65 0.08; 1.85
4pipe UNS 5237;80213 337.61 0% >1000 — — — — —; —
5pipe UNS 9471;195K 325.92 0% >1000 — — — — —; —

WINDOW-BASED SYMMETRY FINDING (1000 variables per window)
2dlx ca mc* UNS 3250;24640 6.54 0% 3.17 2.34e77 10 64 5.42 0.76; 1.21

2pipe UNS 892; 6695 2.08 0% 10.47 2.26e45 10 38 1.30 0.18; 1.63
2pipe 1 ooo UNS 834; 7026 2.55 0% 9.02 8 10 3 1.80 0.24; 1.41
2pipe 2 ooo UNS 925; 8213 3.43 0% 11.09 32 10 5 2.80 0.25; 1.23

3pipe UNS 2468;27533 36.44 0% 3.63 1.42e77 10 78 36.20 0.91; 1.01
4pipe UNS 5237;80213 337.61 0% 9.32 1.03e78 10 142 334.00 0.98 ; 1.01
5pipe UNS 9471;195K 325.92 0% 29.42 3.64e78 10 227 290.50 1.02; 1.12

use of symmetry-breaking clauses. For a given CNF instance, the first
number is the ratio of (i) CHAFF runtime on original instance, and (ii)
the total runtime of symmetry detection and CHAFF on preprocessed in-
stances. The second number is produced similarly, except that symmetry
detection runtime is ignored. This is the maximal possible speed-up if
symmetries are detected instantaneously or provided as domain-specific
knowledge. We make several observations:(1) the proposed SAT in-
stances are only a fraction of the size of recent micro-processor verifica-
tion benchmarks [25], but are more difficult to solve;(2) some difficult
SAT instances have astronomical numbers of symmetries; this includes
the randomizedUrq and grout benchmarks;(3) symmetry-breaking
clauses often speed up the best available SAT solver CHAFF [6];(4)
symmetry-breaking clauses typically do not slow down CHAFF and of-
ten speed it up, even when few symmetries are present;(5) CHAFF
runtime and symmetry detection runtime are not correlated; either step
may be a bottleneck.(6) among thechnl instances, the hardest to solve
was routing of 20 connections through 11 tracks. Adding extra unrouted
connections consistently increased difficulty.

6. OPPORTUNISTIC SYMMETRY-FINDING
The use of symmetry-breaking clauses does not require findingall

symmetries; symmetry detection can be performedopportunistically.
An algorithm that does not guarantee to find all symmetries may finish
sooner. Some symmetries may be found using domain-specific knowl-
edge, and new clauses can be added during the creation of SAT in-
stances. This may speed up the detection of other symmetries.

Window-based Symmetry Finding. We observed that a variable
would sometimes be symmetric to another variable connected by a clause
(one hop) or through a chain of two clauses (two hops). When this is not
true for all symmetries of a CNF formula, many symmetries may be
composable from permutation generators of that kind. We therefore fo-
cus on “local” symmetries that permute small subsets of variables and
fix all other variables. We define the subsets by sliding a window of
fixed size along a given linear ordering of the variables — either original
variable ordering of the CNF formula or the connectivity-based MINCE
ordering [1]. For a window, we consider the left and right cuts, as in
Figure 4 (b). To find symmetries local to a given window, the standard

Figure 4: (a) window-based opportunistic symmetry detection for a CNF
instance with ten variables and four clauses; (b) a colored graph for detecting
only symmetries local to a window; (c) the “local” symmetry (6 7) (-6 -7).

construction of colored graph is applied to clauses and literals that are
entirely inside the window. Each cut clause is represented by a vertex
of unique color that is connected to literals inside the window. Since
the size of this graph increases with cut size, a min-cut ordering im-
proves runtime. We concatenate lists of permutation generators pro-
duced for different windows, consider the group generated by all those
and use GAP [22] to produce an irredundant list of generators of this
“global” group. Symmetry-breaking clauses are constructed from those
generators. Producing symmetry-breaking clauses independently from
each window and concatenating them may cause considerable redun-
dancy. The trade-off between runtime, coverage and redundancy among
windows depends on their overlap. Similarly, the window size affects
the trade-off between runtime and coverage. We observe good empir-
ical performance with windows of size 1000. Results in Table 1 show
that our window-based technique found all or a significant portion of
all symmetries for the micro-processor verification benchmarks [25] in
a fraction of the runtime spent by complete symmetry-finding. If a ran-
domized variable ordering is used, one could combine local permutation
generators found for different orderings.

Improving SAT Formulations One way to reduce the runtime of
symmetry finding is to learn how to detect (or predict) symmetries from
domain-specific knowledge. Given the well-understood structure and
symmetries of thehole, chnl andfpga benchmarks, we evaluated this
approach on (randomized)grout benchmarks. We noticed that per-
muted variables in many cases correspond to neighboring tracks, e.g.,
if two connections are routed in parallel through several grid cells, there
is considerable freedom (symmetry) in track assignment. To break this
symmetry, we added clauses that preserve the relative order of tracks
taken by every pair of connections routed through the same two edges
of a grid cell. In other words, if one connection is routed through track
2 when entering the cell, and another connection is routed through track
3 when entering the cell, then the connections are allowed to leave the
cell through tracks 2 and 3 resp., 1 and 2 resp. or 1 and 3 resp. Such
constraints speed-up CHAFF: eachgrout instance is now solved in
0.50-0.80 seconds versus 19-45 seconds. More dramatic speed-ups are
achieved forgrout instances built with larger routing grids.

7. CONCLUSIONS
We describe an automated flow that finds symmetries in CNF in-

stances and uses them to speed up SAT search. This flow dramati-
cally speeds up the solution of two well-known provably-difficult bench-
mark families — pigeon-hole problems and Urquhart benchmarks. We
propose constructions of realistic satisfiable and unsatisfiable SAT in-
stances, arising in routing applications, that are unusually difficult for
their size. Unlike most existing SAT benchmarks, our benchmark fami-
lies enable studies of the asymptotic performance of SAT solvers.

Since symmetry-finding is a bottleneck, we speed it up using oppor-
tunistic approaches. In one, we only look for symmetries that permute
small groups of variables. Those groups are determined by sliding a
fixed-sized window along a given variable ordering. The second ap-
proach attempts to improve the construction of SAT instances by de-
tecting symmetries in domain-specific terms so that new clauses can be
added during construction. We find astronomically many symmetries in
randomized Urquhart andgrout benchmarks, showing that randomiza-
tion is compatible with symmetries. We explain symmetries ingrout

benchmarks and break them using domain-specific knowledge.
Our proposed flow does not require source code modifications and

should work with all complete SAT solvers. In experiments described
in Table 1 but performed with GRASP [23] instead of CHAFF [6], our
flow demonstrated speed-ups 1.5-5 times even for the micro-processor
verification benchmarks. The proposed flow may not give improvement
on arbitrary SAT benchmarks — many difficult SAT instances do not
have symmetries [8]. While many DIMACS benchmarks [10] have large
numbers of symmetries, they are easy and can be solved faster than their
symmetries can be detected.

Acknowledgements.This work is funded by an Agere Systems/SRC
Research fellowship, a DAC fellowship and DARPA/MARCO GSRC.

8. REFERENCES
[1] F. Aloul, I. Markov and K. Sakallah, “Faster SAT and Smaller BDDs via

Common Structure”,ICCAD 2001, pp. 443-448.
[2] P. Beame, R. Karp, T. Pitassi and M. Saks, “The efficiency of Resolution

and Davis-Putnam Procedure”, to appear inSIAM Journal on Computing.
http://www.cs.washington.edu/homes/beame/papers/resj.ps

[3] B. Benhamou and L. Sais, “Tractability through symmetries in
propositional calculus”.Journal of Autom. Reasoning, vol. 12, (no.1), Feb.
1994. pp. 89-102.

[4] L. Brisoux, E. Gregoire, L. Sais, “Improving backtrack search for SAT by
means of redundancy”,Foundations of Intelligent Systems. 11th Intl.
Symp., ISMIS’99. Warsaw, Poland, June ‘99. Berlin, Germany: Springer
1999. p.301-9.

[5] C. A. Brown, L. Finkelstein, and P. W. Purdom. “Backtrack searching in
the presence of symmetry”. (T. Mora, editor),Applied algebra, algebraic
algorithms and error correcting codes, 6th intl. conf., pages 99– 110.
Springer-Verlag, 1988.

[6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, “Chaff:
Engineering an Efficient SAT Solver”,DAC 2001.

[7] E.M. Clarke et al., (Edited by: Hu, A.J.; Vardi, M.Y.) “Symmetry
Reductions in Model Checking”, CAV’98, pp.159-71.

[8] S. A. Cook, D. G. Mitchell, “Finding Hard Instances of the Satisfiability
Problem: A Survey”,DIMACS Ser. Discr. Math. & Theor. Comp. Sci., ‘97.

[9] J. Crawford, M. Ginsberg, E. Luks and A. Roy, “Symmetry-breaking
predicates for search problems”,5th Intl Conf. Principles of Knowledge
Representation and Reasoning (KR’96), Cambridge, MA, pp. 148-159.

[10] DIMACS Boolean Satisfiability Challenge Benchmarks:
ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf

[11] C.A.J. van Eijk, E.T.A.F. Jacobs, B. Mesman and A.H.Timmer,
Identification and Exploration of Symmetries in DSP Algorithms,DATE
‘99, March 1999, pp. 602-608.

[12] L. Babai, “Automorphism Groups, Isomorphism, Reconstruction”,
Chapter 27, pp. 1447-1541, In (R. L. Graham, M Gr¨otschel and L. Lov´asz,
eds, Handbook of Combinatorics, vol. 2, MIT Press, 1995).

[13] C. Norris Ip and D. L. Dill, “Better verification through symmetry” ,
Formal Methods in System Design, 9(1/2):41-75, 1996.

[14] V. Kravets and K. Sakallah, “Generalized Symmetries of Boolean
Functions”,ICCAD 2000, pp. 526-532.

[15] V. Kravets and K. Sakallah, “Constructive Library-Aware Synthesis Using
Symmetries”,DATE 2001, pp. 208-213.

[16] G.S. Manku, R. Hojati and R. Brayton, “Structural symmetry and model
checking”,Proc. Intl. Conf. Comp.-Aided Verific. (CAV ’98), pp. 159-171.

[17] B. D. McKay, “Practical Graph Isomorphism”,Congressus Numerantium,
30 (1981), pp. 45-87.

[18] B. D. McKay, “Nauty user’s guide” (version 1.5), Technical report
TR-CS-90-02, Australian National University, Computer Science
Department, ANU, 1990.http://cs.anu.edu.au/~bdm/nauty/

[19] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of
Two Boolean Formulations of FPGA Detailed Routing Constraints”, in
Proc. Intl. Conf. on Physical Design (ISPD 2001), pp. 222-227.

[20] L. H. Soicher, “GRAPE: A System For Computing With Graphs and
Groups”,in ”Groups and Computation”(L. Finkelstein and W.M. Kantor,
eds),DIMACS Ser. in Discr. Math. & Theor. Comp. Sci.11, pp. 287-291.
www-groups.dcs.st-andrews.ac.uk/~gap/Share/grape.html

[21] M. Prasad, P. Chong, K. Keutzer, “Why is ATPG easy?”,DAC ‘99.
[22] E. L. Spitznagel, “Review of Mathematical Software, GAP”,Notices

Amer. Math. Soc., 41 (7), (1994), pp. 780–782.
http://www-groups.dcs.st-andrews.ac.uk/~gap/gap.html

[23] J. P. M. Silva and K. A. Sakallah, “GRASP: A New Search Algorithm for
Satisfiability”, IEEE Trans. On Computers, vol. 48, no. 5, May 1999.

[24] A. Urquhart, “Hard Examples for Resolution”,JACM, vol. 34, 1987.
[25] M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability

Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors”,DAC 2001, pp. 226-231.
http://www.ece.cmu.edu/~mvelev/#BENCHMARKS

