Shatter: Efficient Symmetry-Breaking for Boolean Satisfiability

Fadi A. Aloul, Igor L. Markov, Karem A. Sakallah
Department of EECS, University of Michigan
{faloul, imarkov, karem} @eecs.umich.edu

Abstract

Boolean satisfiability (SAT) solvers have experienced dramatic im-
provements in their performance and scalability over the last several
years [5, 7] and are now routinely used in diverse EDA applications.
Nevertheless, a number of practical SAT instances remain difficult
to solve [9] and continue to defy even the best available SAT solv-
ers [5, 7]. Recent work pointed out that symmetries in the Boolean
search space are often to blame. A theoretical framework for detect-
ing and breaking such symmetries was introduced in [2]. This
framework was subsequently extended, refined, and empirically
shown to yield significant speed-ups for a large number of bench-
mark classes in [1].

Symmetries in the search space are broken by adding appropri-
ate symmetry-breaking predicates (SBPs) to a SAT instance in con-
junctive normal form (CNF). The SBPs prune the search space by
acting as a filter that confines the search to non-symmetric regions
of the space without affecting the satisfiability of the CNF formula.
For symmetry breaking to be effective in practice, the computation-
al overhead of generating and manipulating the SBPs must be sig-
nificantly less than the run time savings they yield due to search
space pruning. In this paper we present several new constructions of
SBPs that improve on previous work. Specifically, we give a linear-
sized CNF formula that selects lex-leaders (among others) for single
permutations. We also show how that formula can be simplified by
taking advantage of the sparsity of permutations. We test these im-
provements against earlier constructions and show that they yield
smaller SBPs and lead to run time reductions on many benchmarks.

Categories and Subject Descriptors
T0.1 Fundamental CAD Algorithms

General Terms
Algorithms, Experimentation, Verification, Routing

Keywords
SAT, CNF, backtrack search, symmetries, clause learning, logic
simplification, graph automorphism

1. Introduction

Many search, synthesis, and optimization problems arising in algo-
rithmic applications exhibit symmetries. The presence of multiple,
symmetric solutions may slow down known algorithms for such
problems. Symmetries can make it more difficult to conclude that a
a given instance of a search problem has no solutions because sym-
metric sub-instances may be independent. However, once the sym-
metries are identified, it is often easy to eliminate parts of the search
space and, thereby, simplify the solution process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2003, June 2-6, 2003, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-688-9/03/0006...$5.00.

In this paper we study the Boolean satisfiability problem—one
of the most important in Computer Science—in the presence of
symmetry. Crawford et al. [2] laid the theoretical foundation for
generating symmetry-breaking predicates for CNF formulas that
possess permutational symmetries. The basic idea is to detect all
such symmetries using a reduction to graph automorphism. For
each such symmetry, an SBP—whose CNF representation is qua-
dratic in the number of problem variables—is constructed. A SAT
solver is then applied to the conjunction of the original formula and
the SBPs created from each permutation in the group of symme-
tries. This approach breaks al/l permutational symmetries and will
be referred to as full symmetry breaking. The downside is that the
number of symmetries in the symmetry group is usually exponential
in the number of problem variables making such full symmetry
breaking impractical. They reduce the number of symmetries that
need to be considered by building a symmetry tree and pruning it to
remove unnecessary duplication. This, unfortunately, still does not
preclude the need to consider an exponential number of permuta-
tions in order to break all symmetries.

This general framework was extended in [1] to handle phase-
shift symmetries and their composition with permutational symme-
tries. Additionally, more efficient, albeit still quadratic, CNF con-
structions of the symmetry-breaking predicates were introduced.
Finally, symmetry-breaking was only applied to the generators of
the symmetry group as opposed to the entire set of symmetries.
They argued, and presented strong empirical evidence, that full
symmetry breaking is unnecessary and that such partial symmetry
breaking is often quite effective.

In this paper we present a computational framework for generat-
ing optimized SBPs that improves on previous work [1, 2]. Specifi-
cally, we describe SBP constructions for single permutations that
yield a CNF formula whose size is linear, rather than quadratic, in
the number of variables in the SAT problem. We also show how
that formula can be simplified by taking advantage of the sparsity of
permutations. We test these improvements against earlier construc-
tions and show that they yield much smaller SBPs and lead to sig-
nificant run time reductions on many benchmark families.

The remainder of the paper is organized as follows. Section 2
presents the necessary definitions and notation. Section 3 covers
previous work. The proposed efficient SBP constructions are de-
scribed in Section 4. We show experimental results in Section 5,
and the paper concludes in Section 6.

2. Definitions and Notation

Intuitively, a symmetry of a discrete object is a transformation, e.g.,
permutation, of its components that leaves the object intact. Symme-
tries are studied in abstract algebra in terms of groups [4]. A group
is a set with a binary associative operation defined on it such that
there is a unit element and every element has a unique inverse. In
general, a set of group elements such that any other group element
can be expressed as their product is called a generating set. The size
of any irredundant generating set is no greater than the binary loga-
rithm of the group size and in general is much smaller. A group G

is cyclic if it consists of an element x and all elements of G are pow-
ers of x ; x is known as the cyclic group generator.

The symmetric group S(Q2) on a finite set QO is the group of all
permutations of Q. If Q = {1, ..., n}, the group is commonly de-
noted by Sn . For an element of Q , its G-orbit is the set of elements
of Q to which it can be mapped by elements of G. Orbits define an
equivalence relation on Q.

Permutations of Q, often denoted by lower-case Greek letters,
can be written in tabular form where the elements of Q are written
in the first row and their images in the second row. For example, the
image of element i under the permutation © will be denoted i" and
written below i. We also use cycle notation, which can be produced
from the tabular notation by (i) constructing directed edges from el-
ements of Q to their images, and (ii) listing the disjoint cycles of
this directed graph. Single-element cycles are implicit and never
listed. For example, (12)(456) can denote a permutation that swaps
elements 1 and 2, and maps 4 to 5, 5 to 6 and 6 to 4. Cycle notation
is preferable to tabular notation for sparse permutations that map
most elements of Q) to themselves.

A symmetry (automorphism) of a graph is a permutation of its
vertices that maps edges to edges. If vertices are labeled by integers
(colors), we may additionally require symmetries to preserve labels.

Consider the set of Boolean variables Xps oo X, A literal is ei-
ther a variable or its negation. A clause is a disjunction of literals,
eg., (x3 txg +x7) , and a CNF formula is a conjunction of claus-
es, e.g., (x3+txg Tx7)(xq+x{1)(xy) . A binary clause has two
literals and can be viewed as an implication between variables, e.g.,
(xq7 = x;0) - The CNF-SAT decision problem seeks to find a truth
assignment that satisfies a given CNF formula or to prove that the
formula is unsatisfiable.

We will assume a total ordering on the variables X5 X and
consider the induced lexicographic ordering of the 2" ‘truth assign-
ments, i.e., 0-1 strings of length n. We now assume that a group acts
on the set of literals, subject to the Boolean consistency constraint,
which requires that if @ — b then @'+ b’ for any literals a and b.
Such an action unambiguously induces a corresponding action on
the set of truth assignments. We focus on orbits of this action. The
lex-leader of an orbit is defined as the lexicographically smallest el-
ement. A lex-leader predicate (LL-predicate) for the action is a
Boolean function on Xy, ..., X, that evaluates to true only on lex-
leaders of orbits.

Consider a permutation on the set of literals. Given a CNF for-
mula, we can permute literals in it, potentially changing the formu-
la. A permutation of literals is a symmetry of a given CNF formula
if Boolean consistency is observed and the formula is preserved un-
der the permutation (in other words, every clause must map into a
clause with the same polarities of literals). In particular, we consider
simultaneous negations of sets of variables (phase-shifts) and com-
positions of permutations and phase-shifts (mixed symmetries) [1].
Given a CNF formula, we consider its group of symmetries and its
corresponding action on truth assignments. A symmetry-breaking
predicate (SBP) is a Boolean function that evaluates to true on at
least one element from each orbit of the group of symmetries. In this
work, we will consider SBPs that are expressed by CNF formulae,
and the size of an SBP is taken to be the number of literals in its
CNF formula. Observe that adding an SBP to the original CNF for-
mula does not affect the satisfiability, but restricts the possible solu-
tions to those selected by the SBP.

A full SBP is an SBP that selects exactly one element from each
orbit; otherwise we call an SBP partial. A lex-leader SBP (LL-SBP)
is an SBP that selects lex-leaders only. An LL-SBP is a full SBP.
For SBPs that are not full, it is often important that they select lex-
leaders, among other elements. We call such SBPs partial lex-lead-
er SBPs (PLL-SBPs).

3. Previous Work
3.1 CNF Symmetries via Graph Automorphism

Given a CNF formula, a graph is constructed such that the group of
CNF symmetries is isomorphic to the group of graph automor-
phisms. A simple construction [1] represents every clause by a ver-
tex of color 2, and every variable by two vertices of color 1 (one for
the positive and one for the negative literal) connected by Boolean
consistency edges. Every literal in the CNF formula is then repre-
sented by a bi-partite edge. The construction in [2] treats binary
clauses differently. It leaves out their clausal vertices and connects
their literal vertices by double-edges. Since some graph automor-
phism programs (e.g. GAP/NAUTY - http://www.gap-system.org/)
do not allow double-edges, the work in [1] uses a model with single
edges which can result in spurious graph automorphisms (one-sided
error) if the original CNF formula contains binary clauses forming
circular chains of implications. Fortunately, this rarely happens in
CNF applications and spurious graph symmetries can be easily test-
ed for [1]; in our experiments, we did not find any.

Note that the graph automorphism problem is believed to be out-
side P, yet not NP-complete. In general, finding CNF symmetries is
often easier than solving SAT. Furthermore, excellent graph auto-
morphism software is currently available [6] and typically returns a
small set of irredundant generators, rather than the complete set of
permutations, which ensures exponential compression.

3.2 The Lex-Leader Formulae

The entire construction of symmetry-breaking predicates rests on
the notion of lex-leader formulae introduced by Crawford et al. [2].
Given a group of symmetries I1 = {n,...,n, } fora CNF formu-
la defined over a set of totally-ordered variables x; <x, <...<x,,
the LL-SBP is defined as follows:

PP(m)= A | A (xj :x}r) —(x;<x7))]
1<i<n|1<j<i-1

LL-SBP(ID = A PP(m) @)
1<i<m

In the sequel we will refer to PP(m) as the permutation predicate
for permutation mw. By introducing auxiliary variables
e. = (x.=x"), each PP can be translated to a CNF formula with
5n clauses and 0.5722 + 13.5n literals.

In general, the CNF representations of the PPs defined in (1)
tend to have duplicate clauses and even tautologies. In addition, the
PPs of different permutations may have identical clauses leading to
duplication in the LL-SBP defined in (2). Recognizing the existence
of such redundancies, Aloul el al. [1] introduced a more efficient
version of (1) that eliminates duplicate clauses and tautologies.
They also noted that the LL-SBP in (2) can be replaced by a much
smaller partial LL-SBP that uses only an irredundant set of genera-
tors G(I1) for the group I1, i.c.,

A PP(m) (3)

meGD

PLL-SBP(G(ID) =

4. Improved SBP Constructions
In this section we present several improvements to the constructions
in[1,2].

4.1 Linear-Sized Permutation Predicates

The first improvement we present is a CNF formula for PPs whose
size is linear, rather than quadratic, in the number of variables. To
facilitate t;tle following ~ derivation let [/, = (x;< xlT.E) R
g; = (x;2x;), and g, =1. Noting that e; = /;g;, the PP in (1)
can now be expressed as:

(8o > 11)(gol181 > 1) (gply -1, _18,_1>1) 4)
Factoring out the common prefix g and simplifying yields:
gyl (g >0 (gyly !, 18, 11)] 5)

The recursive structure of the formula is now revealed by compar-
ing (4) and (5). Let py, ..., p, be a sequence of bit predicates de-

fined by:
i=1,..,n

=1 (6

Note that predicate p; represents the entire formula (4). The satisfi-
ability of (4) can, thus, be determined by checking the satisfiability
of the following equivalent, but simpler formula:

PPy =g > hpy) W, =g, 1L, 1))

P =& 172hpi Pp+i

One final simplification replaces the equalities in (7) with implica-
tions since we are only interested in satisfying each of the predi-
cates. We thus obtain:

PPy =g >l 28, 1 2L, 1) ®)

The CNF representation of (8) consists of 2n 3-literal and 2n 4-lit-
eral clauses for a total size of 14n literals. Schematically, (8) can be
viewed as a multi-level logic circuit (see Figure 1). Hence, the truth
assignments that satisfy (1) are those assignments that set the circuit
output p; to 1. Itis also interesting to note that bit predicates form
a chain that is reminiscent of carry chains in ripple adders.

4.2 FElimination of Tautologies in PPs

For a given permutation, choosing an SBP with fewer literals is also
important for empirical success. Since the permutations are typical-
ly sparse, the size of the CNF representation of (8) can be further re-
duced by eliminating all tautologies. We illustrate our approach
with an example. Consider the permutation:

n= (yly4)(J’5y6)(y7y8y9) ©)

expressed in cycle notation. The permutation can be expressed in
tabular form as follows:

€1y2y3y4y5y6y7y8y9] a0
4Y2V3V1Y6Y5Y8V9V7
We proceed to create a sequence of bit predicates py, p,, p3, ... us-

ing (7). The only difference is that we eliminate the predicates of the
variables that do not move. For such variables note that
l; = g; = 1.Inthis example, /, = g, = /3 = g3 = 1. Thisim-
mediately simplifies the predicates of those variables to:

Py = 8> hpy =8 P an

Py = &>y =y

which allows us to express p, directly in terms of p,, :

pnﬂ p
I_I—I: é > ®ee pi P,
n] 1])21
2 &q 1] i
1 £0
Figure 1. Circuit representation of (8).
P =8y 11(g > pry) (12)

and p, reduces to:
Dy = l4p5 (13)

The pattern should now be clear. Given a permutation, where vari-
ablgs Y; .and y; moveand y; , |, e Vil do not move, the PP can
be simplified fo:

.= g. —>l(g.>p.
P =8 1~>1g—>r) (14
Pp = Py
All other bit predicates, representing variables that move, use the
format described in (6).

4.3 Options for Partial Symmetry Breaking
Breaking a/l symmetries may not speed up search because there are
often exponentially many of them and their PLL-SBPs may be re-
dundant [2]. Breaking enough symmetries, whose SBPs are short
CNF clauses, may provide a better trade-off. Irredundant generators
are good candidates for symmetries to be broken because they can-
not be expressed in terms of each other, which minimizes redundan-
cies. Alternatively, we can use the powers or compositions of
generators as candidates for symmetry breaking.

Additionally, we can reduce the size of SBPs by considering
only the first & bits from each permutation. This is achieved by gen-
erating the SBPs up to the & -th predicate and setting the last used
predicate to 1.

5. Experimental Results

In this section, we empirically show the advantage of using the pro-
posed SBP constructions. The experiments were performed on an
AMD Athlon 1.2 GHz machine with 1 GB of RAM running Linux.
The run time limit for all experiments was set to 1000 seconds. The
benchmarks included pigeon-hole [3], randomized Urquhart (URQ)
[10], global routing (s3) [1], FPGA routing (fpga, chan) [8], and
xor-chains [9]. We used the best available backtrack SAT solver
Chaff [7]. Since Chaff is randomized, its run time varies, and we av-
eraged all results over 200 independent runs.

Table 1 lists symmetry detection run times, number of symme-
tries, symmetry generators, and phase shifts. We use the reduction
to graph automorphism from [1] which detects a wider range of
symmetries than that from [2]. The table clearly shows the signifi-
cant savings obtained when generators are used to represent the
complete set of symmetries. Note that all generators consisted of cy-
cles of size 2 only. The table also shows the percentage of bits that
map to themselves (shown as “%RB”). Clearly, more than 80% of
the bits in all instances are redundant and can lead to significant
savings in run time and memory if removed from the SBPs.

Table 1 also compares SAT-solving run times for the original
CNF instance and the instances augmented with generator SBPs us-
ing the construction in equation (3), reference [1], and the proposed
constructions in Sec. 4.1 and 4.2. Clearly, the addition of SBPs sig-

Table 1. Search run times of CNF-SAT instances with and without PLL-SBPs (for generators only). Symmetry statistics including
symmetry detection run time, number of symmetries, generators, and phase shifts are also provided.

Instance v C Symmetry statistics

Chaff run time (sec) Sec. 4.2 speedup over

Find (sec)| #Sym |#Gen |#P.S.| %RB || Orig | (3) | [1] |Sec.4.1]Sec. 4.2 Orig [1]
holell 132 738 0.09 1.9E+16 21 0 83 219 543 0.03 3.52 0.02 11K 1.5
holel2 156 949 0.12 2.9E+18 23 0 84 1000 11.0 0.04 8.65 0.02 >50K 2
Urq3_4 36 220 0.10 52E+05 19 19 97 0.85 0.16 0.01 0.08 0.01 85 1
Urq3_9 37 236 0.04 1.1E+06 20 20 97 12.8 0.05 0.01 0.02 0.01 1280 1
§3-3-3-3 960 9156 8.92 6.9E+10 29 0 95 44.4 200 2.85 65.3 0.50 89 5.7
s3-3-3-8 912 8356 6.95 3.5E+10 28 0 95 21.3 141 2.61 138 0.93 23 2.8
fpgal3_10 | 195 905 0.25 1.9E+17 28 0 88 1000 517 0.09 7.70 0.03 >33K 3
fpgal3_12 | 234 1242 0.81 9.0E+20 32 0 89 1000 | 1000 0.08 25.8 0.05 >20K 1.6
chnlll_13 | 286 1742 0.96 1.2E+35 45 0 90 788 882 0.16 108 0.05 16K 3.2
chnlll_20 | 440 4220 4.48 1.9E+52 59 0 92 1000 | 1000 0.30 92.6 0.09 >11K 3.3
xorl_32 94 250 0.17 43E+09 32 32 98 830 12.6 1.7 1.73 1.7 488 1
xorl 36 106 282 0.34 6.9E+10 36 36 99 938 0.61 0.01 0.1 0.01 94K 1
Total 3588 28296 23 1.9E+52 372 107 - 6854 | 3770 7.9 452 3.4 - -
Table 2. Total size of generator-only SBPs using various SBP 1000
constructions for the instances presented in Table 1. _
6)] Sec.4.1 | Sec.4.2 ¢ o
Var 120K 8.6K 120K 8.6K E
Cl 599K 44K 478K 34K H
Lit 36M | 404K 1.7M 119K 3
nificantly reduces the search run time, and the approach in Sec. 4.2 e
leads to the greatest savings in run time. h 10 100

Table 2 compares the size of SBP predicates produced by the
above four constructions. The construction proposed in Sec. 4.2 en-
tails the smallest number of variables, clauses, and literals for all an-
alyzed instances.

In order to further reduce the size of SBPs, we tested all present-
ed instances after considering only the first & bits from each permu-
tation. Figure 2 plots the total search run time for all instances as a
function of & . The construction proposed in Sec. 4.2 was used in the
experiment. Interestingly, the total search run time decreases as ad-
ditional bits are considered. Nevertheless, the performance im-
provements fade after considering 10 bits per permutation for
almost all instances. This confirms the intuition that breaking all
symmetries does not necessarily speed up the search process. In
fact, breaking the symmetries for only a subset of permutations, i.e.
irredundant sets of generators, and considering a limited number of
bits from each permutation seems to be sufficient to significantly re-
duce the search run times in all cases.

Our final experiment compares the search run time and memory
requirements of different choices of permutation sets to break. We
considered three such sets: generators, powers of generators, and
compositions of generators. Since all generators produced by the
graph automorphism program were expressed as products of length-
2 cycles, the set of their powers did not yield additional permuta-
tions. However, the set of permutations obtained by composing the
372 generators yielded a total of 5402 permutations. Using the con-
struction proposed in Sec. 4.2, the SBPs for these permutations con-
sisted of 326K variables, 1.3M clauses, and 4.5M literals. This
significant increase in the size of the SBP was reflected in a much
larger search run time: 29 seconds as opposed to 3.4 seconds for the
generator-only SBP. This provides further empirical evidence for
the use of generator-only SBPs to speed up satisfiability search.

6. Conclusions
In this work we extended and improved the framework of symme-
try-breaking predicates for solving Boolean Satisfiability by con-

of bits considered in each permutation

Figure 2. Total search run times of instances shown in Table 1
when only % bits are considered from each generator.

structing more efficient CNF representations of symmetry-breaking
predicates. The proposed techniques lead to empirical speed-ups in
backtrack search and smaller memory requirements for the best
available SAT solvers. Additionally, we gave new justifications of
partial symmetry-breaking by generators.

Acknowledgments
This work was funded by the DARPA/MARCO Gigascale Silicon
Research Center and an Agere Systems/SRC Research fellowship.

7. References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Solving Difficult
SAT Instances in the Presence of Symmetries,” in Proc. of the Design
Automation Conference (DAC), 731-736, 2002.

[2] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-breaking
predicates for search problems,” in Proc. of the Intl. Conference Prin-
ciples of Knowledge Representation and Reasoning, 148-159, 1996.

[3] DIMACS Challenge benchmarks in fip.//Dimacs.rutgers. EDU/pub/
challenge/sat/benchmarks/cnf.

[4] I Gessel and R. Stanley, “Algebraic Enumeration,” in R. Graham, M.
Grotschel and L. Lovasz, eds, Handbook of Combinatorics, vol. 2,
MIT Press, 1021-1061, 1995.

[5] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT-
solver,” in Proc. of DATE, 142-149, 2002.

[6] B. McKay, “Practical Graph Isomorphism,” in Congressus Numeran-
tium, vol. 30, 45-87, 1981.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” in DAC, 530-535, 2001.

[8] G Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative
Study of Two Boolean Formulations of FPGA Detailed Routing Con-
straints,” in Proc. of Intl. Symp. on Physical Design, 222-227,2001.

[9] SAT 2002 Competition, Attp://www.satlive.org/SATCompetition/sub-
mittedbenchs.html

[10] A. Urquhart, “Hard Examples for Resolution,” in Journal of the ACM,
34(1),209-219, 1987.

