An Experimental Sudy of Satisfiability Search Heuristics

Fadi A. Aloul
Department of EECS
University of Michigan
Ann Arbor, M| 48109-2122
faloul @eecs.umich.edu

Jodo P. Marques-Silva
IST/INESC
Cadence European Laboratories
R. Alves Redal, 9
1000 Lishoa, Portugal

Karem A. Sakallah
Department of EECS
University of Michigan
Ann Arbor, M| 48109-2122
karem@eecs.umich.edu

jpms@inesc.pt

Abstract

Interest in propositional satisfiability (SAT) has been on
the rise lately, spurred in part by the recent availability of
powerful solvers that are sufficiently efficient and robust to
deal with the large-scale SAT problems that typically arisein
electronic design automation application. A frequent ques-
tion that CAD tool developers and users typically ask is
which of these various solversis“ best;” the quick answer is,
of course, “it depends.” In this paper we attempt to gain
some insight into, rather than definitively answer, this ques-
tion.

Introduction. Most modern SAT algorithms can be classi-
fied as enhancements to the basic Davis Putnam (DP) back-
track search approach. The DP procedure performs a depth-
first search in the n-dimensional space of the problem vari-
ables and can be viewed as consisting of three main engines:
1) a decision engine that makes elective assignments to the
variables, 2) a deduction engine that determines the conse-
quences of these assignments, typically yielding additional
forced assignments to, i.e. implications of, other variables;
and 3) adiagnosis engine that handles the occurrence of con-
flicts (i.e. assignments that cause the formula to become un-
satisfiable) and backtracks appropriately. An important
distinction that will be critical in explaining performance dif-
ferences between various SAT agorithmsis whether they are
formula or function satisfiers. A formula satisfier performs
the search for a satisfying assignment assuming a fixed set of
input clauses; it attemptsto satisfy afunction f based on aspe-
cificformula ¢ . The DP algorithmisan example of aformula
satisfier. A function satisfier, on the other hand, may modify
theformula ¢ representing the function being satisfied to im-
prove search efficiency. Function satisfiers can be classified
based on when and how they modify their input formula. Stat-
ic function satisfiers pre-process the input formula, augment-
ing it with extra prime implicates and removing from it any
subsumed clauses. In contrast, dynamic function satisfiers
identify “useful” clauses adaptively during the search, either
by the deduction or the diagnosis engines. These clauses help
generate further implications and may optionally be stored in
the clause database for possible future use.

In the context of the DP deduction rules, different formu-
las representing the same function may possess different
“reasoning powers’ and may yield vastly different implica-

tions. Indeed, it is easy to show that a “complete” formula
contains all possible implications to any set of decisions and
will not lead to conflicts and backtracking. Unfortunately, a
complete formulawill generally have an exponential number
of clauses, and will likely yield no run time savings. Identify-
ing the “right” formula for a given function, i.e. the formula
that consists of just the right number and type clauses to min-
imize search time, isa clearly desirable but unfortunately un-
attainable goal.

Experimental Results. We examine the performance of the
basic DP search on variants of the input formulathat are aug-
mented statically, in a pre-processing step, with additional
consensus clauses generated using a truncated iterative con-
sensus procedure. Our experimental results indicate that the
addition of consensus clauses to a formula leads to a reduc-
tion in the number of decisions and conflicts. On the other
hand, the total run time tends to initially decrease then dra-
matically increase as more clauses are added. Pre-processing
necessarily has no knowledge of how the search process will
evolve and may create “useless’ clauses. On the other hand,
dynamic search can augment the clause database with more
“useful” clauses than blind pre-processing. We experimental -
ly compare two dynamic function satisfiers: recursive learn-
ing (RL) which can be viewed as adding “what-if” analysisto
the deduction engine to derive more variable assignmentsfol -
lowing each decision assignment; and conflict analysis (CD)
which generates implicates related to the occurrence of con-
flicts, essentially adding “why” analysis to the diagnosis en-
gine. Both RL and CD outperform the DP procedure. Y et, CD
was more successful than RL. This may be explained by the
fact that RL was too time consuming during the search be-
causeit was executed after each decision. In contrast, CD was
executed only after each conflict.

Conclusions. The broad conclusions of the study are that
supplanting the input formula with more clauses has the po-
tential of significantly reducing the search effort. This gain,
however, must be weighed against the extraeffort required to
generate the additional clauses. Dynamic clause identifica-
tion, therefore, is generally more effective than a static pre-
processing scheme. Furthermore, clauses identified from
conflicts seem generally to be more useful in reducing overall
search time than those found by RL. A combination of RL
and CD may, ultimately, be the most effective approach for
dealing with difficult problems.



