Search-Based SAT Using Zero-Suppressed BDDs

Fadi A. Aloul, Maher N. Mneimneh, Karem A. Sakallah
Department of EECS, University of Michigan, Ann Arbor 48109-2122
{faloul, maherm, karem} @eecs.umich.edu

Abstract

We introduce a new approach to Boolean satisfiability
(SAT) that combines backtrack search techniques and
zero-suppressed binary decision diagrams (ZBDDs). This
approach implicitly represents SAT instances using
ZBDDs, and performs search using an efficient implemen-
tation of unit propagation on the ZBDD structure. The
adaptation of backtrack search algorithms to such an
implicit representation allows for a potential exponential
increase in the size of problems that can be handled.

Introduction. Many efficient enhancements to the Davis-
Logemann-Loveland (DLL) backtrack-search procedure
have been proposed. These enhancements extended the ap-
plication of SAT solvers to large problem instances. Nev-
ertheless, despite these advances, the tremendous growth in
today’s designs is outpacing the capabilities of existing
SAT solvers as these tend to explicitly represent the clause
database and lead to time and memory explosion.

Rather than explicitly representing the clause database
using arrays or linked lists, an alternative is to implicitly
represent the clause database. Zhang et al. [3] introduced an
efficient implementation of the DLL procedure using a trie
to store the clauses. Tries allow sharing of nodes among
clauses beginning with identical sequences of literals. Re-
cently, Chatalic et al. [1] proposed a new implementation
of the resolution-based Davis-Putnam procedure using ZB-
DDs as the underlying data structure for clause encoding.
This approach succeeded in solving several SAT instances
that defied search-based methods. Unlike tries, ZBDDs al-
low the sharing of nodes among clauses with common lit-
erals regardless of the location of literals in the clauses. The
high compression power of this data structure resulted in
exponential reductions in space and time complexity for
certain instance classes.

More recently, enhancements to the implementation of
unit propagation were shown to yield significant perfor-
mance improvements [2], especially for problems contain-
ing large numbers of large clauses. The idea is to keep track
of any two unresolved literals in each clause as opposed to
all literals in the clause database.

In this paper, we present a new search-based technique,
where the focus is on the data structure used for encoding
sets of clauses. ZBDDs are used to implicitly represent the
clause database, and unit propagation is implemented by an
efficient procedure that processes sets of, instead of single,
clauses. Our algorithm involves manipulating pointers to

ZBDD nodes representing literals that are adjacent in the
clause database.

Experimental Results. We used a basic DLL implementa-
tion with a fixed variable decision order. We experimental-
ly compared four sets of results corresponding to ZBDDs,
tries, and two variants of lists. The ZBDD, trie, and first list
variant use two literal pointers per clause; the trie and list
implementations replicate SATO and Chaff, respectively.
The second list variant replicates the method implemented
in GRASP in which a pointer exists for every literal in the
instance. A fixed variable order is used for the ZBDD and
trie structures. Our benchmarks included various instances
from the bounded model checking and DIMACS sets.

Our results showed a correlation between compression
rates and search run times. Specifically, ZBDDs provided
speedups for instances that were highly compressed (i.e.
those that had a large literal count to ZBDD node ratio.)
This is easily explained by the fact that our implementation
of unit propagation is proportional to ZBDD size rather
than total instance size. We also observed that structured
instances typically yield higher compression ratios and
commensurately higher speedups.

Experimental results do indeed confirm the memory re-
duction advantages of ZBDDs over lists and tries. Further-
more, reduced memory consumption consistently
translates into faster run times despite the initial overhead
of building the ZBDD structure.

Conclusions. We described a new implementation of the
classic DLL search procedure that uses ZBDDs as the un-
derlying data structure. Compared to explicit lists and tries,
ZBDDs have the potential of significantly compressing a
clause database leading to faster search times and the pos-
sibility of tackling much larger instances. We believe that
the incorporation of clause recording, through conflict
analysis and recursive learning, will increase the perfor-
mance edge of ZBDDs over conventional data structures.
Furthermore, applying ZBDD variable reordering heuris-
tics can lead to even higher compression ratios, and hence,
faster run times.

References

[1] P. Chatalic and L. Simon, “Multi-Resolution on Compressed
Sets of Clauses,” in ICTAI, 2000.

[2] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,” in
Proc. of the Design Automation Conference, 2001.

[3] H. Zhang and M. Stickel, “Implementing the Davis-Putnam
Algorithm by Tries,” Tech. Report, Univ. of lowa, 1994.



	AbsHdr - Abstract
	HeadingRunIn - Introduction
	HeadingRunIn - Experimental Results
	HeadingRunIn - Conclusions
	Heading - References
	Reference - [1] P. Chatalic and L. Simon, “Multi-Resolution on Compressed Sets of Clauses,” in IC...
	Reference - [2] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an...
	Reference - [3] H. Zhang and M. Stickel, “Implementing the Davis-Putnam Algorithm by Tries,” Tech...



	Title - Search-Based SAT Using Zero-Suppressed BDDs
	Author - Fadi A. Aloul, Maher N. Mneimneh, Karem A. Sakallah
	Institution - Department of EECS, University of Michigan, Ann Arbor 48109-2122 {faloul, maherm, k...


