
Breaking Instance-Independent Symmetries in Exact Graph Coloring

Arathi Ramani∗, Fadi A. Aloul†, Igor L. Markov∗ and Karem A. Sakallah∗
∗ Department of EECS, University of Michigan, Ann Arbor, USA

{ramania, faloul, imarkov, karem}@umich.edu
† School of Computer Engineering, American University in Dubai, UAE

Abstract
Code optimization and high level synthesis can be posed
as constraint satisfaction and optimization problems, such
as graph coloring used in register allocation. Naturally-
occurring instances of such problems are often small and
can be solved optimally. A recent wave of improvements
in algorithms for Boolean satisfiability (SAT) and 0-1 ILP
suggests generic problem-reduction methods, rather than
problem-specific heuristics, because (1) heuristics are eas-
ily upset by new constraints, (2) heuristics tend to ignore
structure, and (3) many relevant problems are provably in-
approximable. The NP-spec project offers a language to
specify NP-problems and automatic reductions to SAT.

Problem reductions often lead to highly symmetric SAT
instances, and symmetries are known to slow down SAT
solvers. In this work, we compare several avenues for
symmetry-breaking, in particular when certain kinds of
symmetry are present in all generated instances. Our sur-
prising conclusion is that instance-independent symmetries
should often be processed together with instance-specific
symmetries rather than earlier, at the specification level.

1 Introduction
Many techniques for code optimization and high-level syn-
thesis operate with relatively few objects at a time. For ex-
ample,graph coloringused for register allocation [7] is lim-
ited by small numbers of registers in embedded processors
as well as by the number of local variables and virtual reg-
isters. Optimal solutions may be desirable in commercial
and defense applications for competitive reasons, and can
often be found. Several useful combinatorial problems are
used in this context, e.g.,maximum independent set, graph-
coloring and vertex cover, but individual applications of-
ten imply additional constraints and non-trivial optimiza-
tion functions. These extensions may upset heuristics for
standard problems. Heuristics, particularly those based on
local search, often fail to use structure in problem instances
[17] and are inefficient when used with problem reductions.
In contrast, exact solvers based on branch-and-bound and
back-tracking tend to adapt to new constraints and can be
applied through problem reduction. There is a growing lit-
erature on handling structure in optimal solvers [1, 4], and
our work falls into this category as well.

The NP-spec project offers a framework for formulating
a wide range of combinatorial problems [5] and automati-
cally reducing their instances to instances ofBoolean sat-
isfiability. This approach is attractive because it circum-
vents problem-specific solvers and leverages recent break-
throughs in Boolean satisfiability [15]. However, this ap-
proach remains unexplored in practice, possibly because
the efficiency of problem-solving may be reduced when
domain-specific structure is lost during problem reduc-
tions. This potential drawback is addressed by recent work
on the detection of structure, particularly symmetry, in
SAT and0-1 Integer Linear Programming(ILP) instances
in order to accelerate exact solvers [1, 4]. Symmetry-
detection via thegraph automorphismproblem [8, 1] may
take time, but adding simple symmetry-breaking predi-
cates as new constraints significantly speeds up exact SAT
solvers [1]. This work can be viewed as a case study
of symmetry-breaking in problem reductions, as we focus
on graph coloringand its variants that can be reduced to
Boolean satisfiability and 0-1 ILP. Our main goals are to
(i) accelerate optimal solving of graph coloring instances,
and (ii) compare different strategies for breaking instance-
independent symmetries. There are two distinct sources of
symmetries in graph-coloring instances: colors can be ar-
bitrarily permuted (instance-independent symmetries), and
some graphs may be invariant under some permutations
(instance-dependent symmetries). Given that there may be
many instance-specific symmetries, one may process all
symmetries at once using techniques from [1, 3]. Alter-
natively, one may add symmetry-breaking predicates for
instance-independent symmetries early, hoping to speed-
up the processing of remaining symmetries. This type of
symmetry-breaking has not been discussed in earlier work
[1, 3], and in this paper we study its utility for the graph
coloring problem.

A surprising empirical observation is that, among the
possibilities we considered, the best one was to ignore the
generic nature of instance-independent symmetries. The
most plausible explanation is that instance-independent
symmetry-breaking predicates that we tried are too compli-
cated as constraints and do not facilitate additional learning
in the solver. In contrast, when all symmetries are detected
at the instance level, symmetry-breaking predicates auto-

1

matically generated by known techniques [3, 4] are simpler.
The remaining part of the paper is structured as fol-

lows. Section 2 covers background on graph coloring,
SAT and 0-1 ILP, as well as previous work on symmetry-
breaking. Instance-independent symmetry-breaking pred-
icates are discussed in Section 3. Section 4 presents our
empirical results and Section 5 concludes the paper.

2 Background
Given an undirected graphG(V,E), a vertex coloring of
the graph is an assignment of a label (color) to each node
such that the labels on adjacent nodes are different. A min-
imum coloring uses the smallest possible number of colors
(chromatic number). Thedecision versionof graph color-
ing (K−coloring) asks whether vertices in a graph can be
colored using≤ K colors for a givenK.

A clique is a set of mutually adjacent vertices. Graph
coloring is related to themaximum clique problem which
seeks a clique of maximal size. Namely, the max-clique
size is a lower bound on the chromatic number of the graph.
Both problems are NP-hard for general graphs [12] and
even finding near-optimal solutions with good approxima-
tion guarantees is NP-hard [11]. The inapproximability of
graph coloring suggests that it may be more difficult to
solve heuristically than, say, the Traveling Salesman Prob-
lems for which Polynomial-Time Approximation Schemes
(PTAS) are known for Euclidean and Manhattan graphs.
For this and a number of other reasons, we study optimal
graph coloring, and many application-derived instances are
solvable in reasonable time. Several applications are out-
lined below (for more details see [16]).

TIME-TABLING AND SCHEDULING problems often dis-
allow performing certain tasks in parallel due to dependen-
cies between computations. Scheduling with minimal hard-
ware can often be formalized as a graph coloring problem.

REGISTER ALLOCATION: The register allocation prob-
lem seeks to assign variables to a limited number of hard-
ware registers during program execution. Two variables
cannot be assigned to the same register if they are “live” at
the same time. Assigning more variables leads to faster ex-
ecution as fewer variables need to be fetched from memory.
To formalize this, one creates a graph where nodes repre-
sent variables and edges represent conflicts between vari-
ables. A coloring maps to a conflict-free assignment, and
if the number of registers exceeds the chromatic number, a
conflict-free register assignment exists [7].

Applications of graph coloring in circuit design and lay-
out have included printed circuit board testing [12], circuit
clustering, scheduling for signal flow graphs, and many oth-
ers. Benchmarks from these applications are not publicly
available, and therefore do not appear in this paper. How-
ever, all the symmetry-breaking techniques described here
extend to instances from any application. The benchmarks
we use here do include register allocation,n−queens, and
several other applications discussed in more detail in Sec-

tion 4. The literature on graph coloring includes generic
algorithms and specialized algorithms for a particular ap-
plication, such as Chaitin’s register allocation algorithm [7].
Online surveys [16, 9] contain more details and examples.

Published algorithms for finding optimal graph colorings
are mainly based on implicit enumeration. A recent optimal
coloring algorithm expresses graph coloring using ILP-like
constraints [14]. It relies on an auxiliary independent set
formulation, where each independent set in a graph is rep-
resented by a variable. There can be prohibitively many
variables but in practical cases this number may be reduced
by column generation, a method that first tries to solve a
linear relaxation using a subset of variables and then adds
more where needed. This approach inherently breaks prob-
lem symmetries, and thus rules out the use of symmetry-
breaking predicates (SBPs) as a way to speed up the search
process. Our ILP construction differs considerably from
the one described above, since it does not rely on an in-
dependent set formulation, but assigns colors to individual
vertices by using indicator variables. The construction is
described in more detail later in this section.

One can solve the decision version of graph coloring
by reducing it to Boolean satisfiability, and the optimiza-
tion version to 0-1 Integer Linear Programming (ILP). The
Boolean satisfiability (SAT) problem involves finding an
assignment to a set of0-1 variablesthat satisfies a set of
constraints, calledclauses, expressed in conjunctive nor-
mal form (CNF). A CNF formula onn binary variables,
x1, . . . ,xn consists of a conjunction of clauses,ω1, . . . ,ωm.
A clause consists of a disjunction ofk literals. A literal l is
an occurrence of a Boolean variable or its complement. In
addition to CNF constraints, a 0-1 ILP problem can include
pseudo-Boolean(PB) constraints, which are linear inequal-
ities with integer coefficients and can be normalized [2] to:
a1x1 + a2x2 + . . . anxn ≤ b whereai,b∈ Z+ andxi are lit-
erals of Boolean variables.1 In some cases a single PB con-
straint can replace an exponential number of CNF clauses
[2]. Subject to given constraints, one may request the min-
imization of an objective function which must be a linear
combination ofxj variables.

Reducing Graph Coloring to 0-1 ILP. We express an
instance of the minimal graph coloring problem as a 0-1
ILP optimization problem, consisting of (i) CNF and PB
constraints that model the graph (ii) An objective function
to minimize the number of colors used.

Consider a graphG(V,E). Let n = |V| be the number of
vertices inG. An instance of theK−coloring problem for
G is formulated as follows.

• For each vertexvi , indicator-variablesxi,1, . . . ,xi,K , de-
note possible color assignments tovi . Variablexi, j in-
dicates that vertexvi is using colorj.

1Using the relations(Ax≥ b) ⇔ (−Ax≤ −b) andxi = (1− xi), any
arbitrary PB constraint can be expressed in normalized form with only
positive coefficients.

2

• For each vertexvi , a PB constraint of the formxi,1 +
. . . + xi,K = 1 ensures that each vertex is colored with
exactlyone color.

• Each edgeei in E connects two vertices:(vm,vn). For
each edgeei , we define CNF constraints of the form
VK

j=1(xm, j ∨ xn, j) to specify that no two vertices con-
nected by an edge can be given the same color.

• To track unused colors, we definek new variables,
y1, . . . ,yk. Variableyi is trueif and only ifat least one
vertex uses colori. This is expressed using the follow-
ing CNF constraints:

VK
j=1 (yj ⇔ (

Wn
i=1xi, j)).

• The optimization objective is to minimize the number
of yi variables set to true.

The total number of variables in the formula isnK+ K.
An interesting observation is that instance symmetries in
graph coloring survive the above reduction to 0-1 ILP.
Therefore we can apply known techniques for symmetry-
detection in 0-1 ILP.

Detecting and breaking symmetries in 0-1 ILPs.Re-
cent work [8, 1] showed that breaking symmetries in CNF
formulas effectively prunes the search space and can lead
to significant runtime speedups. The main idea is to de-
tect symmetries in the CNF formula using graph automor-
phism. The formula is expressed as an undirected graph
such that the symmetry group of the graph is isomorphic to
the symmetry group of the CNF formula. Symmetries in-
duce equivalence relations on the set of truth assignments
of the CNF formula. All assignments in an equivalence
class result in the same truth value for the formula (satis-
fying or not). Therefore, it is only necessary to consider
at least one assignment from each such class. Both [8, 1]
propose adding symmetry-breaking predicates (SBPs) that
choose lexicographically smallest assignments (lex-leaders)
from each equivalence class. We will refer to such SBPs as
instance-dependent SBPs, since the symmetries are first de-
tected and then broken. Aloul et. al. [3] describe efficient
tautology-free SBP construction, whose size is linear in the
number of problem variables.

In [4], symmetry detection and breaking was extended
to optimization problems that include both CNF and PB
constraints, and an objective function. As before, symme-
tries are detected by reduction to graph automorphism. A
PB formula for an optimization problem is represented by
an undirected graph. Graph symmetries are detected us-
ing graph automorphism tools such as Nauty [13] or Saucy
[10]. The efficient symmetry-breaking predicates described
in [3] are appended to the formula as CNF clauses. The
empirical results in [4] show that the addition of symmetry-
breaking predicates to PB formulas results in considerable
search speedups for the specialized 0-1 ILP solver PBS [2].

3 Instance-Independent SBPs
In the context of problem reductions from Section 2, we
found that adding instance-dependent SBPs improves per-
formance on many DIMACS graph coloring benchmarks.
Empirical results for these experiments are reported in Sec-
tion 4. The question addressed here is whetherinstance-
independentSBPs, added during the reduction can pro-
vide even greater speedups, possibly by accelerating the de-
tection of instance-dependent symmetries. To answer this
question, we propose four provably-correct SBP construc-
tions of varying relative strength, sophistication and com-
pleteness. Each of them is implemented and empirical re-
sults are reported in Section 4.

We use the following notation. Consider an instance
of the K−coloring problem, which asks whether a graph
G(V,E) can be colored using≤ K colors and further mini-
mizes the number of colors. Assume the colors are num-
bered 1. . .K. We denote a valid color assignment by
(n1,n2, . . . ,nK), whereni is the number of vertices colored
with color i, and|V| = ∑K

i=1ni .
Null-Color Elimination (NU). Consider aK−coloring

problem with colors 1. . .K for a graphG(V,E). As-
sume thatG can be minimally colored usingK − 1 col-
ors. Consider an optimal solution where colori is not used:
(n1,n2, ..ni−1,0,ni+1, . . . ,nK). This assignment is equiva-
lent to another assignment,(n′1,n′2, ..n′ j−1,0,n′ j+1...n′K),
where i 6= j and n′i = nj . For example, the assignment
(1,0,2,3) is equivalent to(1,3,2,0), (0,1,2,3), (1,2,0,3).
This is due to the existence ofnull colors, which create sym-
metries in an instance ofK−coloring because any color can
be swapped with a null color. We propose a construction
that enforces an ordering on null colors: null colors may ap-
pear only at theendof a color assignment, after all non-null
colors. In the example above, only one of the four symmet-
ric assignments(1,3,2,0) would be allowed.

Assume that under the original formulation, an optimal
solution for graphG(V,E) usesm colors, and with null-
color elimination, there is adifferentoptimal solution that
usesm′ colors, wherem 6= m′. The only colors used in this
solution are 1. . .m′, since null colors cannot occur before
non-null colors. Since our construction adds SBPs with-
out changing the original constraints, any legal solution that
satisfies the SBPs will satisfy all constraints in the original
formulation. The solution to the original satisfies all con-
straints in the new formulation except the SBPs. Ifm< m′,
we can re-order the solution so that all null colors are placed
last. This will satisfy all SBPs and usem colors, where
m< m′, violating the assumption that them′-color solution
was optimal. Ifm′ < m, we already have a solution that
satisfies all the original constraints and uses fewer colors,
which again violates assumptions of optimality.

Cardinality-Based Color Ordering (CA). Null-color
elimination is usefulonly in cases where null colors exist.
For aK−coloring problem where all colors are needed, the
construction breaks no symmetries. Even when null col-

3

ors exist, several symmetries go undetected. In the example
used above, null-color elimination permits both(1,2,3,0)
and(1,3,2,0), and also(3,2,1,0), which are symmetric to
each other. A solution to an instance ofK−coloring is a par-
tition of the vertices of the graph into independent sets. All
the vertices in an independent set are given the same color.
The previous construction places restrictions on null colors,
but none on the ordering of non-null colors. A stronger con-
struction would distinguish between the independent sets
themselves. We propose an alternate construction, which
assigns colors based on the cardinality of independent sets.
This subsumes null-color elimination (null colors can be
viewed as coloring sets of cardinality 0). The cardinality
rule is implemented as follows: the largest independent set
is assigned the color 1, the second-largest the color 2, etc. In
the example above,only the assignment(3,2,1,0) is valid.

Assume an optimal solution under this construction uses
m < K colors: (n1,n2, . . . ,nm), where (n1 ≥ n2 . . . ≥ nm).
Colors> mare not used on any vertex, Assume there exists
an optimal solution to the original formulation that usesm′
colors: (n′1,n′2, . . . ,n′m′), (wheren′1, etc. are not arranged
in descending order). Without loss of generality, assume
thatm′ < m. We can sort the numbersn′1, . . . ,n′m′ and reas-
sign colors in descending order. We would have a solution
with m′ colors satisfying cardinality constraints. However,
m′ < m, which is not possible if them−color solution was
optimal. A similar argument applies whenm< m′.

Lowest Index Color Ordering (LI). Cardinality-based
ordering also does not completely break symmetries for the
case where different independent sets have the same car-
dinality. Consider a graphG whereV = {v1, . . . ,v8}, and
an optimal solution, satisfying cardinality-based ordering,
that partitionsV into 4 independent sets:S1 = {v4,v6,v7},
S2 = {v1,v5}, S3 = {v3,v8}, S4 = {v2}. A solution that as-
signs colors 2 and 3 toS2 andS3 is symmetric to one that
assigns colors 2 and 3 toS3 andS2. Both are legal under
cardinality-based ordering. To improve upon cardinality-
based ordering, we propose a set of predicates to enforce the
lowest-index ordering. This requires that the lowest vertex
index colored with colori be greater than the lowest vertex
index colored withi+1. Lowest-index ordering is complete
and breaks all instance-independent symmetries. Indepen-
dent sets in a partition are disjoint and each set has aunique
lowest-index vertex. An assignment of sets to colors based
on smallest vertex index is unique. In the above example,
the only permissible assignment is: color 1 toS1, 2 toS3, 3
to S4, and 4 toS2. Since the LI ordering completely breaks
symmetries between independent sets, it subsumes earlier
constructions. The proofs of correctness and optimality out-
lined above extend to this construction as well.

Selective Coloring (SC).In addition to the preceding
constructions, we also propose a simple “heuristic” con-
struction to break as many symmetries between vertices as
possible while adding very few additional constraints. To
impact as many vertices as possible, we find the vertexvl

Instance #V #E K
anna 138 986 11
david 87 812 11
DSJC125.1 125 1472 5
DSJC125.9 125 13922 >20
games120 120 1276 9
huck 74 602 11
jean 80 508 10
miles250 128 774 8
mulsol.i.2 188 3885 >20
mulsol.i.4 185 3946 >20
myciel3 11 20 4
myciel4 23 71 5
myciel5 47 236 6
queen55 25 320 5
queen66 36 580 7
queen77 49 952 7
queen812 96 2736 12
zeroin.i.1 211 4100 >20
zeroin.i.2 211 3541 >20
zeroin.i.3 206 3540 >20

Table 1:DIMACS graph coloring benchmarks

with the largest degree of all vertices in the graph. We then
color vl with color 1. This is achieved by simply adding
the unary clausexl ,1. We searchvl ’s neighbors to find the
vertexvl ′ with the highest degree out of all vertices adjacent
to vl . We colorvl ′ with color 2, by adding the unary clause
xl ′,2. This construction has the effect of simplifying color
assignment for all vertices adjacent tovl andvl ′ . No vertex
adjacent tovl can be colored color 1, and no vertex adjacent
to vl ′ can be colored color 2. Moreover, all vertices in an
independent set withvl (vl ′) mustbe colored color 1 (color
2). If vl andvl ′ have sufficiently large degree, this construc-
tion can restrict many vertex assignments. We refer to this
construction asselective coloring.

The extent to which selective coloring breaks symmetries
is instance-dependent. It fails to completely break symme-
tries for almost all graphs. However, it is a simple construc-
tion, adding just two constraints as unary clauses. These are
easily resolved in pre-processing by most SAT solvers, so
any symmetry-breaking achieved by this construction has
virtually no overhead.

4 Empirical Results
Here we discuss our experiments and present empiri-
cal results on 20 medium-sized instances from the DI-
MACS graph coloring benchmark suite. The bench-
marks include random graphs (DSJ), ”book” graphs, where
edges represent interaction between characters in a book
(anna, david, huck, jean), mileage graphs repre-
senting distances between cities (miles), college football
game graphs (games), n−queens graphs (queen), register
allocation (mulsol, zeroin), and triangle-free graphs
based on the Mycielski transformation (myciel). Table 1
gives the name, size (number of vertices and edges) and the
chromatic number for each benchmark. We use a maximum
value ofK = 20 for K−coloring, therefore for benchmarks
with chromatic number> 20, we do not find the exact value.

To solve instances of 0-1 ILP, we used the academic 0-
1 ILP solvers PBS [2] and Galena [6], and the commercial

4

SBP CNF Stats Sym. Stats (SAUCY)
Type #V #CL # PB #S #G Time

no SBPs 437K 777505 3193 1.1e+168 994 185
NU 437K 777885 3193 5.0e+149 614 49
CA 437K 777505 3630 5.0e+149 614 49
LI 870K 4019980 3193 2.0e+01 0 84
SC 437K 777545 3193 3.0e+164 941 167
NU+SC 437K 777925 3193 5.0e+148 597 47

Table 2: CNF formula sizes, symmetry detection results and
runtimes, totaled for 20 benchmarks from Table 1, withK = 20.
NU = null-color elimination; CA = cardinality-based; LI =
lowest-index; SC = selective coloring. For the LI SBPs, one
instance of the “do-nothing” symmetry is counted in each case,
giving a total of 20 symmetries and 0 generators.

ILP solver CPLEX version 7.0. PBS is implemented in C++
and compiled using g++. Galena binaries were provided by
the authors. PBS was run using the VSIDS decision heuris-
tic option [15]. Galena was run using default options: linear
search with CARD (cardinality reduction) learning. Experi-
ments with PBS and CPLEX run on Sun-Blade-1000 work-
stations with 2GB RAM, CPUs clocked at 750MHz and the
Solaris operating system. Galena binaries run on Linux-
based Intel Xeon workstations with 1GB RAM and CPUs
clocked at 2GHz. Time-out limits for all solvers are set at
1000 seconds. We use the symmetry-breaking flow from [4]
to detect and break symmetries in our original ILP formu-
lation from Section 2. This flow uses the tool Shatter [3],
which uses the SAUCY [10] graph automorphism program
and the efficient SBP construction from [3]. We also check
for unbroken symmetries in formulations produced by each
of the instance-independent constructions described in Sec-
tion 3. Table 2 shows symmetry detection results and run-
times. The numbers reported in the table are sums of indi-
vidual results for all 20 benchmarks used. The first column
in the table indicates the type of construction: we useno
SBPsfor the basic formulation,NU for null-color elimina-
tion,CA for cardinality-based ordering,LI for lowest-index
ordering, andSC for selective coloring (the row shows NU
and SC in combination). The next three columns show the
number of variables, CNF clauses, and PB constraints in
the problems. The last three columns show the number of
symmetries, number of symmetry generators, and symme-
try detection runtimes for SAUCY. The top row is separated
because it shows number of symmetrieswithout addition of
any of the instance-independent SBP constructions. Hence-
forth, we will refer to instance-dependent SBPs asexternal,
because they are added to an instanceafter symmetries are
detected and are not part of the problem formulation.

Table 3 shows the effect of symmetry-breaking on run-
times for PBS, CPLEX, and Galena. The first column in
the table specifies the construction type, followed by the
number of instances solved for the construction and the to-
tal runtime for each solver, with and without the addition
of instance-dependent SBPs. For each solver, the best per-
formance among all configurations (largest number of in-
stances solved and corresponding runtime) is boldfaced. We
observe the following trends:

1. All benchmarks possess large numbers of symmetries.
Different instance-independent SBPs achieve varying de-
grees of completeness: the lowest-index ordering (LI) is
complete and breaks all symmetries, while the selective col-
oring (SC) SBP breaks the fewest symmetries.
2. On most SBP-free instances, the solvers PBS and Galena
perform very poorly, but CPLEX performs well, solving 14
out of 20 instances within the time limit.
3. Both PBS and Galena benefit considerably from
instance-dependent symmetry-breaking. Whenonly
instance-dependent SBPs are used, both solvers solve all
20 instances. However, CPLEX is hampered by addition of
SBPs, and solves only 7 instances in this case.
4. Adding only instance-independent SBPs improves per-
formance for PBS and Galena over the SBP-free version.
The best performance is seen for the NU+SC construction.
For CPLEX, the performance is largely unaffected (except
for the LI construction, where it is noticeably worse). In
general, the LI and CA constructions produce the worst per-
formance out of instance-independent SBPs.
5. Adding instance-independent SBPs alone does not solve
as many instances as adding instance-dependent SBPs to
the SBP-free formulation. The best performance seen with
instance-independent SBPs is 12 (PBS) and 13 (Galena) in-
stances respectively, for the NU+SC construction.
6. For the cases where instance-dependent (external) SBPs
were added on top of instance-independent constructions,
the best performance for PBS and Galena was still obtained
using the NU and SC constructions. For the SC construc-
tion with external SBPs added, both solvers solved all 20
instances faster than it took withonlyexternal SBPs.
7. PBS and Galena exhibit the same performance trends
with respect to the constructions used (Galena solves more
instances because it is executed on a 4.5x faster machine
with the same timeout limit as PBS). This indicates that the
variations in performance are due to the different SBPs, not
due to differing solver implementations. Both solvers are
independent implementations based on the same algorith-
mic framework (the Davis-Logemann-Loveland backtrack
search procedure).
8. Adding external SBPs to any construction usually ad-
versely affects the performance of CPLEX. A similar effect
has been observed for CPLEX in [4]. Since the CPLEX al-
gorithms and implementation are not available in the public
domain, it is difficult to account for this effect. However,
PBS and Galena with symmetry-breaking significantly out-
perform CPLEX without symmetry-breaking.
Overall, the results suggest that for graph coloring, adding
instance-independent SBPs alone is not as good as adding
instance dependent SBPs alone, and the best results are
achieved using a combination of both types. This is true
even when symmetry detection runtimes are taken into
consideration. This result is somewhat surprising, and
may perhaps be attributed to the complexity of instance-
independent SBPs we use.

5

SBP PBS, SunBlade1000, 750MHz CPLEX, SunBlade1000, 750MHz Galena, P4 Xeon, 2GHz
Type Original w/inst.-dep. SBPs Original w/inst.-dep. SBPs Original w/inst.-dep. SBPs

Time #solved Time #solved Time #solved Time #solved Time #solved Time #solved

no SBPs 20000 0 647 20 6371 14 13805 7 18978 2 794 20
NU 10719 10 10897 10 5949 15 6555 15 11339 9 10091 11
CA 20000 0 19717 1 10904 11 10900 10 14134 7 13349 7
LI 18141 2 18141 2 16673 4 16681 4 15827 5 15825 5
SC 17216 3 177 20 5323 15 12748 8 16061 4 274 20
NU+SC 8293 12 8263 12 4546 16 6419 14 8594 13 7771 13

Table 3:Runtimes before and after SBPs are added for all constructions using PBS, CPLEX, and Galena; PBS and CPLEX are run a
SunBlade 1000 @750MHz, Galena on a Intel P4 Xeon @2GHz. Timeouts for all solvers were set at 1000s. We observe a speedup of
4.5x for the P4 Xeon compared with the SunBlade. This is not a comparison of solvers. We wish to solve ILP formulations with equal
optimal values using different solvers to weed out solver-specific issues. Best results for a given solver are shown in boldface.

5 Conclusions

Our work shows that problem reduction to 0-1 ILP is a vi-
able method for optimally solving combinatorial problems
without investing into specialized solvers. This approach is
likely to be even more successful as the efficiency of 0-1
ILP solvers improves in the future, and as they are able to
better handle problem structure. In particular, problem re-
ductions may produce highly-structured instances making
the ability to automatically detect and exploit structure very
important. In the case of graph coloring we demonstrate
that the generic symmetry-breaking flow from [4] signifi-
cantly improves empirical results in conjunction with ILP
solvers PBS [2] and Galena [6]. These two solvers sig-
nificantly outperform the commercial solver CPLEX 7.0,
which is known not to benefit from symmetry-breaking.

We are particularly interested in comparing strategies for
breaking symmetries that are present in every ILP instance
produced by problem reduction (instance-independent sym-
metries). Such symmetries may be known even before the
first instances of the original problem are delivered (i.e.,
symmetries may be detected at the specification level), and
one has the option to use them during problem reduction.
Intuitively, this may prevent discovering these symmetries
in every instance and thus improve the overall CPU time.
However, this does not happen, apparently because most
instance-independent SBPs are rather complicated. It is
well known that the syntactic structure of CNF and PB con-
straints may dramatically affect the efficiency of SAT and
ILP solvers. Shorter clauses and PB constraints are much
preferable as they are easier to resolve against other con-
straints and are more useful in recursive learning.

In the context of generic combinatorial problems defined
in the NP-spec language [5], our empirical data suggest
that new theoretical breakthroughs are required to make
use of instance-independent symmetries during problem re-
ductions to SAT or 0-1 ILP. At our current level of un-
derstanding, the simple strategy of processing instance-
independent and instance-dependent symmetries together
produces smallest runtimes for graph coloring benchmarks.

Acknowledgments. This work was funded in part by
NSF ITR Grant #0205288. Also, we thank Donald Chai
and Andreas Kuehlmann from UC Berkeley for providing
us with binaries of the Galena solver.

References
[1] F. A. Aloul et. al, “Solving Difficult SAT Instances In The

Presence of Symmetry”,IEEE Trans. on CAD, vol. 22(9),
1117-1137, 2003.

[2] F. A. Aloul et. al, “Generic ILP versus Specialized 0-1 ILP:
An Update”,in Proc. Intl. Conf. on CAD, 450-457, 2002.

[3] F. A. Aloul, I. L. Markov, K. A. Sakallah, “Shatter: Ef-
ficient Symmetry-Breaking for Boolean Satisfiability”,in
Proc. Intl. Joint. Conf. on AI, 271-282, 2003.

[4] F. A. Aloul et. al, “Symmetry-Breaking for Pseudo-Boolean
Formulas”, in Intl. Workshop on Symmetry in Constraint
Satisfaction Problems (SymCon), 1-12, 2003.

[5] M. Cadoli et. al, “NP-SPEC: An Executable Specification
Language for Solving All Problems in NP”,Proc. Practical
Aspects of Declarative Languages, 16-30, 1999.

[6] D. Chai, A. Kuehlmann, “A Fast Pseudo-Boolean Constraint
Solver”, in Proc. Design Autom. Conf., 830-835, 2003.

[7] G. J. Chaitin et. al,“Register allocation via coloring”,in
Computer Languages, 6:47-57, 1981.

[8] J. Crawford et. al, “Symmetry-breaking predicates for
search problems”,in Proc. of the Intl. Conf. on Principles of
Knowledge Representation and Reasoning, 148-159, 1996.

[9] J. Culberson, “Graph coloring page”,http://web.cs.
ualberta.ca/˜joe/Coloring/index.html

[10] P. Darga, “SAUCY: Graph Automorphism Tool”,
http://www.eecs.umich.edu/˜pdarga/
pub/auto/saucy.html

[11] U. Feige et. al, “Approximating clique is almost NP-
complete”,IEEE Symp. Foundations Comp. Sci., 2-12, 1991.

[12] M. R. Garey, D. S. Johnson, “Computers and Intractability:
A Guide to the Theory of NP-Completeness”, 1979.

[13] B. McKay, “NAUTY User s Guide, Version 1.5”,TR-CS-
90-02, Dep. of Comp. Sci., Australian Nat. Univ., 1990.

[14] A. Mehrotra, M. A. Trick, “A column generation approach
for graph coloring”,in INFORMS Journal on Computing,
8(4):344-354, 1996.

[15] M. Moskewicz et. al, “Chaff: Engineering an Efficient SAT
Solver”,Proc. Design Autom. Conf., 530-535, 2001,

[16] M. Trick, “Network Resources for Coloring a Graph”,
http://mat.gsia.cmu.edu/COLOR/color.html

[17] S. Prestwich, “Supersymmetric Modelling for Local
Search”,SymCon ‘02, 21-28, September 2002;
http://user.it.uu.se/˜pierref/astra/SymCon02/

6

