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Abstract

The last few years have seen significant advances in Boolean satisfiability (SAT) solving. This has

lead to the successful deployment of SAT solvers in a wide range of problems in Engineering and

Computer Science. In general, most SAT solvers are applied to Boolean decision problems that are

expressed in conjunctive normal form (CNF). While this input format is applicable to some

engineering tasks, it poses a significant obstacle to others. One of the main advances in SAT is

generalizing SAT solvers to handle stronger representation of constraints. Specifically, pseudo-

Boolean (PB) constraints which are efficient in representing counting constraints and can replace an

exponential number of CNF constraints. Another significant advantage of PB constraints is its

ability to express Boolean optimization problems. This allows for new applications that were never

handled by SAT solvers before. In this paper, we describe two methods to solve Boolean

optimization problems using SAT solvers. Both methods are implemented and evaluated using the

SAT solver PBS. We develop an adaptive flow that analyzes a given Boolean optimization problem

and selects the solving method that best fits the problem characteristics. Empirical evidence on a

variety of benchmarks shows that both methods are competitive. The results also show that SAT-

based methods are very competitive with generic integer linear programming (ILP) solvers.
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1. Introduction

The Boolean Satisfiability (SAT) problem has been the topic of intensive research over
the past few decades. Given a set of Boolean variables and a set of constraints expressed in
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product-of-sum form (also known as conjunctive normal form (CNF)), the goal is to find a
variable assignment that satisfies all constraints or prove that no such assignment exists.
Despite the SAT problem’s worst-case exponential complexity [1], recent algorithmic
advances along with highly efficient solver implementations [2–6] have enabled the
successful deployment of SAT solvers to a wide range of application domains. Such
applications include formal verification [7], FPGA routing [8], global routing [9], timing
analysis [10], logic synthesis [11], and sequential equivalence checking [12]. SAT has also
been extended to a variety of applications in Artificial Intelligence including other well
known NP-complete problems such as graph colorability [13], vertex cover, Hamiltonian
path, and independent sets [14]. In general, SAT solvers require that the problem be
represented in CNF form. While this is applicable to some Engineering tasks, it poses a
significant obstacle to many others. In particular to tasks that need to express ‘‘counting
constraints’’ which impose a lower or upper bound on a certain number of objects.
Expressing such constraints in CNF cannot be efficiently done. Recently, SAT solvers were
extended to handle pseudo-Boolean (PB) constraints which can easily represent ‘‘counting
constraints’’ [9,15–19]. PB constraints are more expressive and can replace an exponential
number of CNF constraints [9]. Besides expressing Boolean decision problems, a key
advantage of using PB constraints is the ability to express Boolean optimization problems.
These problems were traditionally handled as instances of integer linear programming
(ILP). They represent 0–1 ILP problems that call for the minimization or maximization of
a linear objective function subject to a set of linear PB constraints.
In this paper, we describe two SAT-based techniques to solve Boolean optimization

problems. The algorithms we present can be adapted to any SAT solver. The first
technique is based on a linear sweep search and the second is based on a binary sweep
search. Both techniques are implemented on top of the SAT-based 0–1 ILP solver PBS [9].
Experiments are conducted on a variety of instances from FPGA routing, N-queens, and
graph coloring. The performance of both techniques is compared to the performance of the
generic commercial ILP solver CPLEX 7.0. We present experimental evidence showing
that (i) SAT-based Boolean optimization solvers can outperform generic ILP solvers and
(ii) both linear and binary sweep search techniques are competitive. Therefore, we propose
a simple flow that analyzes the instance’s properties and selects the type of search that is
best suited to the problem in question. We perform an empirical evaluation comparison of
linear vs. binary sweep search and point out that the adaptive flow we propose picks the
best configuration in many cases.
The paper is organized as follows. In Section 2 we review recent advances in Boolean

satisfiability. Pseudo-Boolean constraints are defined in Section 3. We then describe, in
Section 4, the two SAT-based techniques to solve Boolean optimization problems. Both
techniques are analyzed and compared against the performance of the generic ILP solver in
Section 5. We conclude in Section 6 with a summary of the paper’s main contributions.
2. Boolean satisfiability

The satisfiability problem involves finding an assignment to a set of binary variables that
satisfies a given set of constraints. In general, these constraints are expressed in conjunctive

normal form (CNF) or as is commonly known as product-of-sum form. A CNF formula j
on n binary variables x1; . . . ;xn consists of the conjunction (AND) of m clauses o1; . . . ;om
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each of which consists of the disjunction (OR) of k literals. A literal l is an occurrence of a
Boolean variable or its complement. We will refer to a CNF formula as a clause database.

A variable x is said to be assigned when its logical value is set to 0 or 1 and unassigned

otherwise. A literal l is a true (false) literal if it evaluates to 1 (0) under the current
assignment to its associated variable, and a free literal if its associated variable is
unassigned. A clause is said to be satisfied if at least one of its literals is true, unsatisfied if all
of its literals are set to false, unit if all but a single literal are set to false, and unresolved

otherwise. A formula is said to be satisfied if all its clauses are satisfied, and unsatisfied if at
least one of its clauses is unsatisfied.

As an example, the CNF instance f ða; b; cÞ ¼ ða _ bÞðb̄ _ cÞ consists of three variables,
two clauses, and four literals. The assignment fa ¼ 0; b ¼ 1; c ¼ 0g leads to a conflict,
whereas the assignment fa ¼ 0; b ¼ 1; c ¼ 1g satisfies f.

Most modern SAT solvers [2–6] are based on the original Davis–Putnam–Logemann–
Loveland (DPLL) backtrack search algorithm [20]. The algorithm performs a search
process that traverses the space of 2n variable assignments until a satisfying assignment is
found (the formula is satisfiable), or all combinations have been exhausted (the formula is
unsatisfiable). It maintains a decision tree to keep track of variable assignments and can be
viewed as consisting of three main engines: Decision, Deduction, Diagnosis engines.

Originally, all variables are unassigned. The algorithm begins by choosing a decision
assignment to an unassigned variable. After each decision, the deduction engine determines
the implications of the assignment on other variables. This is obtained by forcing the
assignment of the variable representing an unassigned literal in an unresolved clause,
whose all other literals are assigned to 0, to satisfy the clause. This is referred to as the unit

clause rule and the repeated application of the unit clause rule over the given clause
database is known as Boolean constraint propagation (BCP). If no conflict is detected, the
algorithm makes a new decision on a new unassigned variable. Otherwise, the diagnosis
engine backtracks by unassigning one or more recently assigned variables and the search
continues in another area of the search space.

Several powerful methods have been proposed to expedite the backtrack search
algorithm. These methods have focused on improving the DPLL engines or the data
structure used to represent the SAT instance. We review some of the best methods next.

2.1. Conflict diagnosis

In general, whenever a SAT solver encounters a conflict it unassigns all variable
assignments at the most recent decision level and flips the value of the most recent decision
variable. This is typically known as chronological backtracking. In 1997, the GRASP SAT
solver proposed the use of conflict diagnosis whenever a conflict is detected [4]. The idea is
to identify a set of variable assignments that cause one or more clauses to become
unsatisfied. These assignments can be used to construct a conflict-induced clause that once
added to the clause database will prevent regenerating the same conflict in future parts of
the search process. This form of clause learning has been shown to significantly prune the
search space.

Another advantage of conflict diagnosis is non-chronological backtracking. Rather than
backtracking to the previous level (i.e. chronological backtracking), the solver can
backtrack directly to the decision variable that led to the conflict. Backtracking to earlier
levels can help in potentially pruning large portions of the search space.
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2.2. Decision heuristics

Besides conflict diagnosis, recent studies have shown that decision heuristics can be very
effective in solving hard SAT instances. Decision heuristics work on selecting a sequence of
decision variables that are likely to identify a satisfying assignment faster. Several
researchers have proposed intelligent decision heuristics that can be classified as static
[21,4] or dynamic [4–6]. We briefly review some of the most common heuristics next. For a
comprehensive review of SAT decision heuristics, see [22].
A simple decision heuristic is to randomly select the next decision variable from among

the unassigned variables. This heuristic is commonly known as RAND. Other heuristics,
such as the maximum occurrences on minimum sized clauses (MOM) [23], employ greedy
algorithms that select the decision variable that satisfies the maximum number of clauses
or leads to the maximum number of implications. In 1997, the GRASP SAT [4] solver
proposed the use of the dynamic largest individual sum (DLIS) decision heuristic which
selects the literal that appears in the largest number of unresolved clauses. It also proposed
the dynamic largest combined sum (DLCS) decision heuristic which selects the variable that
appears in the largest number of unresolved clauses. With so many proposed heuristics, it
is difficult to determine which heuristic is the best. Each heuristic performs well on
different types of problems.
Recently, the Chaff SAT solver proposed the use of the variable state independent

decaying sum (VSIDS) heuristic [5]. This has been found to be cheap to maintain and quite
effective on a variety of problems. VSIDS keeps a counter for each literal in the clause
database. These counters are incremented as new conflict-induced clauses are added. The
counters are also periodically divided by a constant to emphasize variables identified in
recent conflicts.

2.3. Random restarts

Random restarts have played an important role in enhancing SAT solvers performance
[24,5]. A SAT solver often selects a sequence of decision assignments that gets it stuck in a
hard region of the search space. Random restarts can extract the solver from such regions
by periodically halting the search process, resetting all decisions and implications made,
and randomly selecting a new sequence of decision variables that will explore a new region
in the search space. Although the current search space is abandoned, the SAT solver keeps
all previously learned clauses. Hence, the SAT solver avoids repeating earlier analysis of
the search space.

2.4. Optimized Boolean constraint propagation

In practice, most of the SAT solver’s runtime (almost 90%) is spent in the BCP
procedure. Therefore, an efficient BCP procedure is crucial to any SAT solver. A simple
and intuitive implementation for BCP is to traverse all clauses containing a literal of a
variable that got assigned [4]. The clause is checked if it has become unit or unsatisfied.
This implication step requires time bounded by the number of existing literals of the
assigned variable. In 2001, the authors of the SAT solver Chaff [5] noted that there is no
need to traverse a clause with N literals until N � 1 literals are assigned to 0. They
proposed the use of watched literals that keep track of any two unassigned literals in each
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clause. The idea is that the clause can never be unsatisfied or unit as long as the two
watched literals are unassigned. Hence, the clause can only be visited when either of the
two watched literals is assigned to 0. Empirical results show that the watched literals
method can lead to great improvements over conventional BCP implementations,
especially for problem instances containing large numbers of large clauses.

3. Pseudo Boolean constraints

Boolean satisfiability problems can also include PB expressions, which are expressions of
the form

a1x1 þ a2x2 þ � � � þ anxnpb, (1)

where ai; b 2 Zþ and xi are literals of Boolean variables. Note that any CNF clause can be
expressed as a PB constraint, e.g. clause ða _ b _ cÞ is equivalent to ðaþ bþ cX1Þ. Using
the relations:
�

Ta

Tw

Co

#1

#2

E
ij

eac
x̄
i
¼ ð1� x

i
Þ,
�
 ðAx ¼ bÞ3ðAxpbÞðAxXbÞ,

�
 ðAxXbÞ3ð�Axp� bÞ,
any arbitrary PB constraint can be converted to the normalized form of Eq. (1) consisting
of only positive coefficients. This normalization facilitates more efficient SAT algorithms.

Table 1 shows an example of a scheduling problem expressed using CNF and PB
constraints. The problem assumes a company that manages three employees and offers
three working shifts per day. The goal is to identify a valid schedule for one day that
satisfies the following two conditions: (i) At least one employee must be working during
each shift and (ii) each employee can work up to one shift per day. Variable E

ij
denotes

employee i working during shift j. Clearly, the PB encoding, consisting of six PB
constraints and 18 literals, is more efficient than the CNF encoding, consisting of 12
clauses and 27 literals. Hence, significant memory savings can be achieved by using PB
instead of CNF encodings.
ble 1

o possible encodings of the scheduling problem consisting of three employees and three working shifts per day

nstraint CNF encoding PB encoding

ðE11 _ E21 _ E31Þ

ðE12 _ E22 _ E32Þ

ðE13 _ E23 _ E33Þ

ðE11 þ E21 þ E31X1Þ

ðE12 þ E22 þ E32X1Þ

ðE13 þ E23 þ E33X1Þ

ðĒ11 _ Ē12ÞðĒ11 _ Ē13Þ

ðĒ12 _ Ē13ÞðĒ21 _ Ē22Þ

ðĒ21 _ Ē23ÞðĒ22 _ Ē23Þ

ðĒ31 _ Ē32ÞðĒ31 _ Ē33Þ

ðĒ32 _ Ē33Þ

ðE11 þ E12 þ E13p1Þ

ðE21 þ E22 þ E23p1Þ

ðE31 þ E32 þ E33X1Þ

denotes employee i working during shift j. Constraint #1 indicates that at least one employee is working during

h shift. Constraint #2 indicates that each employee can work up to 1 shift per day.
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4. Boolean optimization problems

Besides solving decision problems, handling PB constraints expands the ability of SAT
solvers to solve Boolean optimization problems that were traditionally handled as
instances of ILP. These so-called 0–1 ILP problems call for the minimization or
maximization of a linear objective function:

Xn

i¼1

aixi (2)

subject to a set of m linear PB constraints Axpb where b 2 Zn, A 2 Zm � Zn, and
x 2 f0; 1gn. We describe two common SAT-based techniques to solve Boolean optimization
problems. Both techniques convert the objective function to a PB constraint with a sliding
right-hand-side (RHS) goal and proceed to solve a sequence of SAT instances that differ
only in the value of that goal. The first technique is based on a linear sweep search and the
second technique is based on a binary sweep search. Both techniques are described next.

4.1. Linear sweep search algorithm

The technique performs a linear sweep search on the possible values of the objective
function, starting from the initial goal, requiring at each step that the computed solution
have a better value than the last computed value. To illustrate, assume a minimization

scenario, denote the sequence of SAT instances by I0; I1; I2; . . . and let gi be the goal for the
ith instance. Initially the goal of I0 is set to be

g
0
¼

Xn

j¼1

aj

 !
þ 1, (3)

where n is total number of literals in the objective function. The process proceeds to solve
all I i instances starting with instance I0. If the ith instance is satisfiable, a new goal value ~gi

is identified by substituting the instance’s solution in the objective function constraint.
Note that the resulting goal ~gipgi. The goal for instance I i þ 1 is now set to ~gi � 1 and the
instance is passed to the SAT solver. The process is repeated until the SAT solver proves
unsatisfiability. The goal reached in the last satisfiable instance is returned by the SAT
solver as the optimal value of the objective function. Note that most SAT-based 0–1 ILP
solvers use the linear sweep search method [9,15–19].

4.2. Binary sweep search algorithm

Another concept that can be used for solving Boolean optimization problems is the
binary sweep search algorithm. The technique is based on the idea of testing the SAT
instance I i whose goal gi is the mean value of all possible optimal values of the objective
function. Two variables, bestSat and bestUns, are maintained that store the best identified
satisfiable value and the best identified unsatisfiable value, respectively. Assuming a
minimization scenario, the approach solves a sequence of SAT instances I0; I1; I2; . . . .
Initially the goal and bestSat are set to the value computed in Eq. (3) and bestUns is set to
�1. If the instance is satisfiable, its solution is substituted in the objective function
constraint yielding a new goal value ~gipgi. The bestSat variable is set to ~gi. On the other
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hand, if the instance is unsatisfiable, the bestUns variable is set to gi. The goal for the
instance I i þ 1 is then set to ((bestSat + bestUns)/2) and the process is repeated. The
optimal value of the objective function is bestSat whenever (i) bestSat is equal to 0 or (ii)
the difference between bestSat and bestUns is equal to 1.

5. Experimental evaluation

In this section, we empirically evaluate the two proposed techniques for solving Boolean
optimization problems. Our benchmarks include optimization instances from

Graph coloring [25]: minimize the number of colors used to color each node in an
undirected graph such that no two nodes sharing the same edge have the same color. Initial
number of colors in all instances is set to 20.

N-queens [26]: maximize the number of queens that can be placed on an N �N chess
board as long as no two queens can attack each other.

FPGA routing (SAT) [27]: minimize the number of wires used to route a given number
of nets.

FPGA routing (UNS) [27]: maximize the number of routable nets in an unsatisfiable
FPGA instance.

In order to speed up the search process, all instances were pre-processed with ShatterPB
[28] which augments the SAT instance with symmetry-breaking predicates (SBPs). The
work in [27–30] show that the use of SBPs can significantly prune the search space and
speed up the SAT search process. Pre-processing time was negligible in most cases. We use
the recent SAT solver PBS [9] which incorporates modern SAT techniques described in
Section 2 and also handles PB constraints. PBS was modified to solve Boolean
optimization problems using the linear and binary sweep search. We also compare the
performance of PBS against the generic ILP solver CPLEX version 7.0. All experiments
are performed on a 750MHz Sun-Blade 1000 workstation with 2GB RAM running the
Solaris operating system. All time-outs are set to 1000 s.

Table 2 lists the results of solving 35 instances. For each instance the table lists the
instance name and family, its objective type (e.g. Min for minimization and Max for
maximization),1 the maximum theoretical value of the objective function (i.e. g0 � 1 or
initial upper bound), the initial solution (i.e. ~g0) when solving the instance using PBS, and
the optimal value of the objective function. The remaining columns show the run times and
the best reached objective value of PBS (using the linear and binary sweep search methods)
and CPLEX solvers, respectively. We observe the following:
�

1

Fo

ðx̄
Except for the N-queens instances, PBS outperforms CPLEX and in some cases with a
substantial margin (e.g. FPGA instances).

�
 Even when the solver times-out, the obtained value of the objective function is
substantially smaller than the maximum theoretical value of the objective function.

�
 Both the linear and binary sweep search techniques are competitive.

�
 The linear sweep search tends to beat the binary sweep search for instances whose initial
solution, ~g0, is relatively close to the optimal solution. For example, the SAT solver’s
All maximization instances were converted to minimization instances using the process described in Section 3.

r example, the following maximization objective ðxþ yþ 2zX0Þ is expressed as the minimization objective

þ ȳþ 2z̄p4Þ.
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initial solution for all the FPGA-SAT and N-queens instances is equal to the optimal
value of the objective function. These instances are solved faster using the linear sweep
search method.

�
 The binary sweep search tends to beat the linear sweep search for instances whose initial
solution, ~g0, is relatively far from the optimal solution. For example, the SAT solver’s
initial solution for all the FPGA-UNS and Graph coloring instances is far from the
optimal value of the objective function. On average, these instances achieve better
search runtimes using the binary sweep search method.

Overall, the above results show that SAT-based 0–1 ILP solvers, e.g. PBS, are in general
faster than generic ILP solvers, e.g. CPLEX, since SAT-based 0–1 ILP solvers are expected
to take advantage of the Boolean nature of the problem. The only exception, in Table 2,
was the N-queens set which was solved with CPLEX in a fraction of a second. Given the
black-box nature of the CPLEX solver it was hard to justify its exceptional performance
on these instances. However, analysis of the constraints in these instances showed that they
are highly structured. We conjecture that CPLEX incorporates advanced algorithms that
detect and simplify certain structured instances, such as the N-queens instances.
In terms of selecting whether to use a linear or binary sweep search, we propose to use

the linear (binary) method whenever the initial solution is relatively close (far) from the
lower bound of the optimal solution. This poses the question of how to estimate the lower
bound of the optimal solution for an optimization instance? A simple solution is to use the
information provided with the instance to guess the lower bound. For example, the 8-

queens instance consists of an 8� 8 grid and is likely to fit up to 8 queens only. The SAT
solver’s initial solution is 8. The remaining processing time is spent on proving that 8 is the
optimal solution. Another example is the FPGAi_j which represents an FPGA instance
with j nets. According to Table 2, each FPGA-SAT instance needs at least two wires per
net. Hence, the FPGA20_15 instance is likely to use at least 30 wires which turns out to be
the initial and optimal solution. In all other instances, the gap between the upper and
estimated lower bound was large. Accordingly, the binary sweep search method was, on
average, faster than the linear sweep search. An alternative solution to estimate the lower
bound is to use some form of branch-and-bound. Other solutions can use a hybrid system
that combines both binary and linear sweep search methods.
6. Conclusions

This work is motivated by the observation that SAT solvers can be extended to handle
Boolean optimization problems, which is useful in many applications. We describe two
methods to solve Boolean optimization problems using SAT solvers. One method is
based on a linear sweep search and the other is based on a binary sweep search. Both
methods can be easily adapted to any SAT solver. Empirically, we observe that both
approaches are competitive. Therefore, we propose a simple adaptive flow that picks either
the linear or binary search configuration, depending on the instance’s characteristics, to
achieve the most effective Boolean optimization for a given instance. We also show that
SAT-based methods can outperform generic ILP solvers in many cases. Our on-going
work deals with identifying new metrics (e.g. branch-and-bound) that can help improve
our adaptive flow.
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