
Network Intrusion Detection on the IoT Edge Using 
Adversarial Autoencoders

Fadi Aloul, Imran Zualkernan, Nada Abdalgawad, Lana Hussain, Dara Sakhnini
Department of Computer Science & Engineering

American University of Sharjah, UAE
{faloul, izualkernan, g00068826, g00071496, g00068368}@aus.edu

Abstract— Network intrusion detection systems have 
received a lot of attention in the computer security 
literature. As the number of IoT devices grows 
exponentially, intrusion detection on the back-end 
servers or indeed even the fog will become intractable. 
Consequently, there is a need to move intrusion 
detection closer to the IoT edge. Doing so will have a 
significant impact on the network as well as the compute 
required on the server-side. In this paper, we show how 
deep learning can be used to build state-of-the intrusion 
detection algorithms that can be executed on small 
routers near the IoT edge. Adversarial autoencoders 
with the K nearest neighbor algorithm were trained on 
the NSL-KDD intrusion data set to yield state-of-the-art 
results. The model had an accuracy of 99.991% and an 
F1-Score of 0.9990. On a Raspberry PI 3B (RPI) device, 
using TensorFlow Lite, the model achieved an average 
per-packet latency of less than 16ms which is sufficient 
for many IoT sensors on the edge giving a worst-case 
bandwidth of 3kibts/second.

Keywords—Network Intrusion Detection, Adversarial 
Autoencoder, K Nearest Neighbor, SMOTE, IoT, edge 
computing.

I. INTRODUCTION

Cyberattacks pose a significant threat in the digital world 
today and effective cybersecurity solutions are needed to 
detect such cyberattacks. Fortunately, with the continuous 
advancements in machine learning and especially deep 
learning, automated classification techniques to detect 
intruders have become more and more accurate. Internet of 
Things (IoT) represents unique challenges to intrusion 
detection because given the billions of IoT devices, 
intrusion detection in the back-end servers will require a 
large amount of network and computing resources. An 
obvious solution is to do intrusion detection near the edge. 
This will distribute the required resources towards the edge 
and save precious bandwidth and server’s computing 
resources. 

This paper presents the design and implementation of a 
deep learning-based intrusion detection system that can be 
deployed on small routers on the IoT edge. The feasibility of 
such a system is demonstrated by using the NSL-KDD [1].
dataset that contains around 100,000 training samples and 
10,000 testing samples for intrusion data. The data has 5 
classes including normal packets and for 4 types of common 
cyber-security attacks. This paper used an enhanced version 
of KDD99 dataset and eliminates the redundant records 

problem where models tend to learn the more frequent 
records than the non-frequent ones [2].

The paper used Adversarial Autoencoders (AAE) to train 
a deep learning model for intrusion detection. An 
Adversarial autoencoder is a probabilistic autoencoder 
based on the Generative Adversarial Networks (GAN); 
AAE’s can reduce the probability of overfitting because it 
can influence the distribution approximated by the hidden 
layer [3] [4]. The encoder tries to generate samples based on 
the chosen distribution, while the decoder tries to recreate 
the original data from the latent space. The discriminator 
tries to know if the sample, which was generated by the 
encoder, is in fact generated or from the chosen distribution. 
For example, in [4], an adversarial autoencoder was applied 
to a different intrusion dataset and the accuracy achieved 
was higher than that of normal autoencoder.

The paper contributes by using adversarial autoencoders 
to train the NSL-KDD data set and achieves a state-of-the-
art performance. The paper also evaluates the deployment of 
this intrusion detection model on a small Raspberry PI class 
of computers as a proxy for a small router. Background 
research on best prior performance on NSL-KDD is 
presented next. This is followed by a discussion about the 
methodology in Section III. The proposed architecture is 
presented in Section IV and the conclusion in Section V.

II. BACKGROUND

This section explores the various intrusion detection 
models built for the NSL-KDD intrusion dataset. The model 
development pipeline involves pre-processing the network 
data and then applying a classification model. 

A. Preprocessing of Data

In terms of preprocessing, study Olusola et al. [5] found 
the most relevant features in the dataset, the dependency 
ratio and the most discriminating features of each class. 
Others used one-hot encoding for non-numeric data. For 
example, Ieracitano et al. [6], Wu et al. [7], and Xiao et al.
[8] used one-hot encoding to encode the non-numeric data, 
whereas Zhang et al. [9] used dummy variable encoding. 
Sezari et al. [10], Wu et al. [7] and Xiao et al. [8]
normalized the data. Xiao et al. [8] also applied data 
reduction using Principal Component Analysis (PCA) and 
Auto-Encoders (AE) then ran a convolutional neural 
network (CNN) on the processed data.

Intrusion datasets like NSL-KDD tend to be unbalanced 
leading to either eliminating some features or attempts to 
balance the datasets. For example, Chuang et al. [11] used 
variational autoencoders to balance the data and to avoid 
overfitting. Sezari et al. [10] removed 5 features out of 41

Fadi
Typewritten Text
 10th IEEE International Conference on Information Technology (ICIT), Jordan, July 2021



input features based on regressions analysis. Similarly, the 
system proposed by Ieracitano et al. [6] first pre-processed
the data by eliminating outliers and null values and 20 out of 
the resulting 38 features were discarded. Finally, Tesfahun 
et al. [12] used Synthetic Minority Oversampling Technique 
(SMOTE) to balance the data set.

B. Classification Models

Tang et al. [13] used a deep neural network (DNN) 
model proposed with 3 hidden layers with three, six and 
three neurons respectively. The hyper-parameters chosen 
were the following: a batch size of 10, 100 epochs and a 
learning rate of 0.001. The DNN achieved an accuracy of 
75.75%.

Ieracitano et. al [6] used a deep autoencoder (AE) and a 
multilayer perceptron (MLP) that classified the dataset into 
4 classes; normal, DoS, R2L and Probe where the U2R class 
was removed due to the unbalanced nature of the dataset. 
The deep autoencoder consisted of one input layer, one 
output layer and one hidden layer. The shallow MLP 
architecture one the other hand had a single hidden layer 
with 50 hidden neurons followed by a SoftMax output layer. 
Their model achieved an accuracy of up to 87%. The F1-
score results for the class Normal, DoSm Probe and R2L 
were 90.27%, 97.61%, 80.14% and 56.83% respectively, 
which showed that class R2L still performed poorly when 
compared with other classes. 

Javaid et al. [14] proposed using Self-taught Learning 
technique based on sparse autoencoder evaluated on the 
NSL-KDD dataset. The system was implemented on three 
different types of classifications, the first being anomaly 
detection, second being normal versus 4 different attack 
categories, and the third was normal and 22 different 
attacks. Evaluating the performance of all the two first 
models, the 2-class model achieved an accuracy of 88.39%
which outperformed previous work at that time. 

Shone et al. [15] proposed a novel deep learning 
approach of non-symmetric deep autoencoder (NDAE) for 
unsupervised feature learning to enable Network intrusion 
detection system operation with modern networks. The 
model proposed used a combination of deep and shallow 
learning by stacking Non-symmetric deep Auto-Encoder. 
Their model had an average accuracy of 89% with the 
results for “R2L” and “U2L” attack classes being 
anomalous.

Wu et al. [7] converted the data into an 11×11 array and 
used a CNN to achieve best accuracy of 79%. 

Resende et al. [16] surveyed different Random Forest 
approaches in network intrusions systems using machine 
learning. Cleetus et al. [17], Tesfahun et al. [12] and Kim et 
al. [18] used Random Forest to achieve accuracies of 91%,
96%, and 96% respectively. Chauhan et al. [19], Hota et al.
[20] achieved accuracies of 99.7% using Random Forest as 
well. Using 15 features and Random Forest and forward 
selection ranking, Al-Jarrah et al. [21] were able to achieve 
an accuracy of 99.8%. The same accuracy was achieved by 
Tama et al. [22] using feature selection and Random Forest.

Support Vector Machine (SVM) and Random Forest 
were used by Chand et al. [23] to achieve an accuracy of 
97.5%. Panda et al. [24] used Intelligent Decision 
Technologies to classify 2 classes (i.e., attack or normal), 

achieving an accuracy of 99.5%. Farnaaz et al. [25] used 
feature selection and Random Forest to classify only the 
attacks (vs. no attack) achieving 99.6% accuracy.

Semi-Booted Network (SBN) model was proposed by 
Mikhail et al. [26] to classify 5 classes and achieved 99.8%
accuracy. However, the metrics achieved the class U2R 
were not sufficient to detect anomalies at all times.

Table I summarizes the previous state-of-the-art for the
NSL-KDD dataset.

TABLE I. PREVIOUS STATE-OF-THE-ART FOR NSL-KDD.

Paper Model Accuracy 
(%)

Tang et al. [13] Deep Learning 75.75
Wu et al. [7] Convolutional 

Neural Network
79

Ieracitano et al. [6] Autoencoders 87
Javaid et al. [14] Self-Taught 

Learning
88.39

Shone et al. [15] Non-symmetric 
Autoencoders

89

Cleetus and A [17] Random Forests 91
Tesfahun and Bhaskari [12] Random Forests 96
Kim and Kim [18] Randim Forests 96
Chand et al. [23] Support Vector 

Machine + Random 
Forest

97.5

Panda et al. [24] Intelligent Decision 
Technologies

99.5

Farnaaz and Jabbar [25] Random Forest 99.6
Chauhan et al. [19] Random Forest 99.7
Stefanova and Ramachandran 
[27]

2 step classification 
process

99.7

Hota and Shrivas [20] Random Forest 99.7
Mikhail et al. [26] Semi-Boosted 

Nested model
99.8

Al-Jarrah et al. [21] Random Forest 99.8
Tama and Rhee [22] Random Forest 99.8

III. METHODOLOGY

A. Dataset description

This section describes some aspects of the NSL-KDD
data set. 

1) Dataset Classes: The main task of this dataset was to 
classify network traffic into 5 classes, 4 of which represent 
traffic generated due to malicious network attacks and one 
representing normal network traffic. The four attacks 
include:

a) Denial of Service (DoS) is an attack where 
legitimate users are denied network resources. This attack
disrupts the network by reducing its efficiency and its 
services [28]. DoS attacks targets services such as emails 
and websites by flooding the network server with traffic and 
overloading it deeming it unresponsive. This can be done in 
various ways. Some examples of DoS attacks are:

∑ Smurf Attacks where an attacker sends an Internet
Control Message Protocol ICMP broadcast packet to 
several hosts using a spoofed IP address which is the
IP target of the victim. The victim will then be
flooded with ICMP replies and becomes
unresponsive.

∑ SYN flood attacks involve the attacker sending a
request to connect to the target using the TCP/IP three



way handshake method without completing the 
connection. As can be seen, detecting DoS attacks 
detection depends thoroughly on network monitoring 
and analyzing.

b) Probe attacks are generally carried out to gain 
more information, or to perform reconnaissance about the 
target through surveillance and finding weak points. Probing 
a computer typically involves issuing commands from a 
local computer to computers on a network shared with that 
computer. These commands are used to learn information 
about other computers on the same network. Learning 
information about a computer can be done through port 
scanning, for instance [29].

c) User to Root attack (U2R is an attack where the 
attacker tries to get root’s privilege when accessing the 
machine. These include buffer overflow, rootkits and SQL 
attacks [30].

d) Remote to Local attack (R2L) is an attack where 
the attacker gets unauthorized access to a machine. Such an 
attack sends packets to the machine over a network, then 
exploits the machine’s vulnerability to illegally gain local 
access as a user. Those attacks exploit vulnerabilities in 
misconfigured systems [31]. Below are some examples of 
R2L attacks:

∑ IMAP attack, which causes buffer overflow through
exploiting a bug in the authentication procedure of
the IMAP server on some versions of Linux giving
the attacker root privileges.

∑ FTP server attack, which is done when an attacker
uploads an illegal software that can be downloaded
by others to gain access to their machines

Table II shows a breakdown of the number of training 
and testing samples per class. As can be seen, the dataset is 
imbalanced with more than 60 thousand data points 
belonging to class Normal, in comparison to only 52 data 
points for the U2R class.

TABLE II. NUMBER OF TRAINING SAMPLES PER CLASS IN NSL-KDD.

Class Training Testing
Normal 67,343 4,329
DoS 45,927 3,332
Probe 11,656 1,053
U2R 52 87
R2L 995 1,199
Total 125,973 10,000

2) Dataset Attributes: Each row in the dataset is 
described by a total of 42 traffic attributes. Those attributes 
contain information such as the protocol type where it could 
be either TCP, UDP, or ICMP. The dataset also contains the 
number of failed logins, number of sudo attempts, how 
many files were accessed, and many others. Table IV shows 
the full list of the attributes in the dataset, where xAttack is 
the class label to be classified. As can be seen, all attributes 
are numerical values except for the protocol type and 
Attack.

B. Dataset Visualization

Fig. 1 shows the distribution of the attack classes. As 
mentioned earlier, the dataset is imbalanced. Such 

imbalanced dataset can cause the model to be biased 
towards the classes with higher number of records, also 
known as majority classes; therefore, classifying most of the 
incoming requests as Normal or DoS.

C. Data Pre-processing

1) Balancing: In order to balance the dataset Synthetic 
Minority Over-sampling Technique (SMOTE) was used. 
This technique duplicates the records of the minority classes 
so that they are equal to that of the majority classes. Normal, 
has a total of 67,343 records. SMOTE was used so all 
classes had equal number of records.

Fig. 1. Distribution of the attack classes.

TABLE III. ATTRIBUTES IN THE NSL-KDD DATA SET.

# Column Dtype
0 duration int64
1 protocol_type object
2 service int64
3 flag int64
4 src_bytes int64
5 dst_bytes int64
6 land int64
7 wrong_fragment int64
8 urgent int64
9 hot int64
10 num_failed_logins int64
11 logged_in int64
12 num_compromised int64
13 root_shell int64
14 su_attempted int64
15 num_root int64
16 num_file_creations int64
17 num_shells int64
18 num_access_files int64
19 num_outbound_cmds int64
20 is_host_login int64
21 is_guest_login int64
22 count int64
23 srv_count int64
24 serror_rate float64
25 srv_serror_rate float64
26 rerror_rate float64
27 srv_rerror_rate float64
28 same_srv_rate float64
29 diff_srv_rate float64
30 srv_diff_host_rate float64
31 dst_host_count int64
32 dst_host_srv_count int64
33 dst_host_same_srv_rate float64
34 dst_host_diff_srv_rate float64
35 dst_host_same_src_port_rate float64
36 dst_host_srv_diff_host_rate float64



37 dst_host_serror_rate float64
38 dst_host_srv_serror_rate float64
39 dst_host_rerror_rate float64
40 dst_host_srv_rerror_rate float64
41 xAttack object

2) Normalization: the dataset has been normalized 
between 0 and 1 using the MinMaxScalar from the sklearn 
library.

D. Model

1) Adversarial Autoencoder: As adversarial autoencoder
[3] was used for creating a latent representation of the input 
data. All the 41 features are used and reduced to a latent 
dimension of size 16 using the autoencoder. 1000 epochs 
were run with batch size of 10. Adam optimizer was used 
with a learning rate of 10ସ. Table V, Table VI and Table 
VII show the characteristics of the layers of the encoder, 
decoder and discriminator respectively. On the 1000th 
epoch, the loss of the autoencoder was 0.00092866.

TABLE IV. ENCODER'S LAYERS CHARACTERISTICS.

Layer 
Number

Neurons Input 
Dimension

Activation 
Function

1 128 41 Relu
2 128 - Relu
3 16 - -

TABLE V. DECODER'S LAYERS CHARACTERISTICS.

Layer 
Number

Neurons Input 
Dimension

Activation 
Function

1 128 16 Relu
2 128 - Relu
3 41 - Sigmoid

TABLE VI. DISCRIMINATOR'S LAYERS CHARACTERISTICS.

Layer 
Number

Neurons Input 
Dimension

Activation 
Function

1 128 16 Relu
2 128 - Relu
3 1 - Sigmoid

2) Classifier: To classify the test dataset, the trained 
encoder from the Adversarial Autoencoder was used to 
predict the sample and produce a representation in the latent 
space. As shown in Fig. 2, this latent space was then input to 
a classifier like the Nearest Neighbor (KNN) algorithm to 
predict the attack type.

Fig. 2. Adversarial Autoencoder and classifier (e.g., kNN Classifier).

Fig. 3 shows the t-SNE [32] represention of the 
manifolds in the original 41 dimensions. As the Figure 
shows, the normal data represnted by the blue dots is split 
into various islands of data. The corresponding t-SNE 
representation of the 16-dimensional encoded space is give 
in Fig. 4. While the representations looks different, it is 
difficult to tell if there is any fundamental difference 
between the original and the reduced space except that now 
the dimensionality has been reduced from 41 to 16 
dimensions.

Fig. 3. t-SNE plot of the test data in the original 40 feature space.

Fig. 4. t-SNE plot of the latent space of the test data.

IV. PROPOSED IOT ARCHITECTURE

Fig. 5. IoT Architecture Diagram.

Fig. 5 shows the proposed IoT architecture. The 
intrusion detection is carried out on the edge router hence 
obviating the need for doing intrusion detection on the back-
end servers or in the fog layer. A router is connected to 
several sensors such as temperature, light, motion and to an 
IP camera. Such devices can be targeted by network attacks.



A. Evaluation

The encoder model trained on the data was saved as a 
TensorFlow model and a Raspberry Pi 3 B+ (RPI) was used 
as a proxy for a small edge router to run this model. RPI 
uses the Cortex-A53 processor which is used in several 
small routers. This means that it is reasonable to assume that 
the results achieved on RPI will generalize to similar 
smallish edge routers.

As shown in Fig. 2, once the encoder is trained, the 
output of the encoder (latent space) can then be used as 
input to train various types of classification models. Based 
on previously successful models shown in Table I, kNN 
[33], XGBoost [34], SVM [23] and Random Forest [25]
were evaluated as alternative classifiers. The models were 
evaluated on non-SMOTED test data of the NSL-KDD
which consisted of 10,000 points.

B. Results

1) Model Comparison
Table VII shows a comparison between different models 

arranged in the ascending order of the F1-score. The first set 
of comparison used the input space (41 dimensions) directly 
and as expected does not perform well. The best 
performance was the RF with a very bad F1-score of 
0.4489. Using AAE followed by a classification technique
yielded much better results. The best performer was 
AAE+KNN which beat the state-of-the-art in the literature 
as shown in Table I. 

TABLE VII. COMPARISON OF THE VARIOUS ALTERNATIVE MODELS.

Model Accuracy Precision Recall F1-score
Input Space only (41-dimensional)

SVM (RBF) 43.29 0.0865 0.2 0.1208
KNN 23.05 0.2020 0.1854 0.1344
XGBoost 61.81 0.4073 0.3683 0.3598
RF 73.25 0.4731 0.4524 0.4489

Embedded Space (16 dimensions)
AAE+SVM 62.87 0.4769 0.3482 0.3154
AAE + XGBoost 95.15 0.9413 0.8598 0.8880
AAE + RF 99.90 0.9990 0.9987 0.9989
AAE + KNN 99.91 0.9989 0.9991 0.9990

2) The Best Model
Table VIII shows the confusion matrix for the best model

(AAE+KNN). The model performed exceptionally well, and 
the only errors were with the R2L class which is expected as 
this was one of the minority classes in the original data with 
only 52 data points. 

TABLE VIII. CONFUSION MATRIX OF THE BEST MODEL AAE + KNN.

Classes
Predicted

Normal DoS Probe U2R R2L
Normal 4324 0 0 0 5
DoS 0 3,332 0 0 0
Probe 0 0 1053 0 0
U2R 0 0 0 87 0
R2L 4 0 0 0 1,195

The original TensorFlow model was converted to 
TensorFlow Lite and run on a Model 3B+ RPI. On RPI, the 
model took a total of 15.75 ms (sd = 0.98 ms) on average 
per inference. It took 0.51 ms (sd = 0.05 ms) on average for 
the encoder and 14.86 ms (sd = 1.72 ms) for the KNN to 

generate a prediction (e.g., U2R, Probe, etc.). Table IX
shows the best and worst-case capacity of the model to 
handle the TCP/UDP traffic. When running the experiment, 
if every TCP/UDP packet was a maximum size then the 
total bandwidth an RPI can support is 4.1 Mbits/sec. 
Similarly, if all the packets were empty while running the 
experiments, then the worst-case performance would be 3.3-
4 kbits/sec.

TABLE IX. BANDWIDTHS OF THE BEST AND WORST CASE SCENARIOS 
FOR BOTH UDP AND TCP PACKETS.

Cases byte/packet bit/s kbit/s
Best 65,507 4159174.6 4159.1746
Worst (UDP) 52 3301.5873 3.3015873
Worst (TCP) 64 4063.49206 4.06349206

For example, an IP camera with compression of MPEG4 
(low quality) and 32 fps, resolutions (640 × 360), HD and 
Full HD will require network bandwidths of 0.4 Mb/s, 1.5 
Mb/s and 3.4 Mb/s respectively. Cameras with such 
characteristics will be suitable for our best-case scenarios 
but not the worst scenarios. Other IoT sensors like motion 
sensors, for example, have maximum 1 or 2 bytes of data, 
and a typical maximum sampling rate of 200 bytes/min. 
This means the required bandwidth is about 0.02 kbits/s 
which is suitable for our worst-case scenarios. While the 
RPI cannot handle live video or streaming audio (e.g., 
256Kbs), Field Programmable Gate Arrays (FPGA) can be 
used to address this problem. For example, Watanabe et al.
[35] ran several neural network algorithm on (FPGAs) and 
found that the FPGA could run at least 1000 inferences per 
second and as high as 10,000 inferences per second. 
Similarly, Liu et al. [36] showed that neural networks
implemented on an FPGA had a speed up of 5.2x compared 
to a GPU.

Table X shows the CPU utilization when running the 
10,000 test cases on the Raspberry Pi continuously. The 
maximum %CPU utilization was 55.5% which means that 
the RPI had most than enough spare computer capacity 
while running. This capacity is required to handle other 
router functions. 

TABLE X. %CPU UTILIZATION.

CPU User% Sys% Wait% Idle% CPU%
Avg 15.0 2.1 0.0 82.9 17.1
Max 49.7 6.2 0.0 99.9 55.5

V. CONCLUSION

In this paper, we proposed a new model combining 
Adversarial Autoencoders and K-Nearest Neighbor to be 
applied on the NSL-KDD dataset, a famous network 
intrusion dataset. Before running the model, Synthetic 
Minority Over-sampling Technique (SMOTE) was used to 
balance the training dataset. The accuracy achieved was 
99.91% and the F1-score was 0.9990 which is state-of-the-
art. The trained model was run on a Raspberry Pi 3 B+ 
where the time for the inference per packet was 15.75 
ms/packet which is a reasonable result for IoT sensor 
processing. These results show that for many IoT 
applications this model can be run on an edge device instead 
of a server or the fog to reduce the workload and to scale the 
network.



REFERENCES

[1] NSL-KDD Intrusion Detection Dataset. Available at: 
https://www.kaggle.com/what0919/intrusion-detection.

[2] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A detailed 
analysis of the KDD CUP 99 data set,” in IEEE Symposium on 
Computational Intelligence for Security and Defense Applications, 
July 2009.

[3] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, 
“Adversarial Autoencoders,” ArXiv151105644 Cs, May 2016. 
Available at: http://arxiv.org/abs/1511.05644.

[4] S. Puuska, T. Kokkonen, J. Alatalo, and E. Heilimo, “Anomaly-
Based Network Intrusion Detection Using Wavelets and Adversarial 
Autoencoders,” in Innovative Security Solutions for Information 
Technology and Communications, Cham, Springer, 234-246, 2019.

[5] A. Olusola, A. Oladele, and D. Abosede, “Analysis of KDD ’99 
Intrusion Detection Dataset for Selection of Relevance Features,” in 
World Congress on Engineering and Computer Science, 20-22, 2010.

[6] C. Ieracitano et al., “Statistical Analysis Driven Optimized Deep 
Learning System for Intrusion Detection,” ArXiv180805633 Cs, Aug. 
2018. Available at: http://arxiv.org/abs/1808.05633.

[7] K. Wu, Z. Chen, and W. Li, “A Novel Intrusion Detection Model for 
a Massive Network Using Convolutional Neural Networks,” IEEE 
Access, vol. 6, 50850–50859, September 2018.

[8] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An Intrusion Detection 
Model Based on Feature Reduction and Convolutional Neural 
Networks,” IEEE Access, vol. 7, 42210–42219, March 2019.

[9] L. Zhang, M. Li, X. Wang, and Y. Huang, “An Improved Network 
Intrusion Detection Based on Deep Neural Network,” in IOP Conf.
Ser. Materials Science and Engineering, 563 (5), 052019, Aug. 2019.

[10] B. Sezari, D. Möller, and A. Deutschmann, “Anomaly-Based 
Network Intrusion Detection Model Using Deep Learning in 
Airports,” in IEEE International Conference On Trust, Security And 
Privacy In Computing And Communications/ 12th IEEE 
International Conference On Big Data Science And Engineering 
(TrustCom/BigDataSE), 1725–1729, Aug. 2018.

[11] P. Chuang and D. Wu, “Applying Deep Learning to Balancing 
Network Intrusion Detection Datasets,” in IEEE International 
Conference on Advanced Infocomm Technology, 213-217, Oct. 2019.

[12] A. Tesfahun and D. Bhaskari, “Intrusion Detection Using Random 
Forests Classifier with SMOTE and Feature Reduction,” in 
International Conference on Cloud Ubiquitous Computing Emerging 
Technologies, 127–132, Nov. 2013.

[13] T. Tang, L. Mhamdi, D. McLernon, S. Zaidi, and M. Ghogho, “Deep 
learning approach for Network Intrusion Detection in Software 
Defined Networking,” in International Conference on Wireless 
Networks and Mobile Communications, 258-263, Oct. 2016.

[14] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A Deep Learning 
Approach for Network Intrusion Detection System,” Security and 
Safety, 3(9), Dec. 2015.

[15] N. Shone, T. Ngoc, V. Phai, and Q. Shi, “A Deep Learning Approach 
to Network Intrusion Detection,” IEEE Transactions on Emerging 
Topics in Computational Intelligence, 2(1), 41–50, Feb. 2018.

[16] P. Resende and A. Drummond, “A Survey of Random Forest Based 
Methods for Intrusion Detection Systems,” ACM Computing Survey, 
51(3), May 2018.

[17] N. Cleetus and K. Dhanya, “Multi-objective functions in particle 
swarm optimization for intrusion detection,” in Int'l Conference on 
Advances in Computing, Communications and Informatics, Sep. 
2014.

[18] E. Kim and S. Kim, “A Novel Hierarchical Detection Method for 
Enhancing Anomaly Detection Efficiency,” in Int'l Conference on 
Computational Intelligence and Communication Networks, Dec. 
2015.

[19] H. Chauhan, V. Kumar, S. Pundir, and E. Pilli, “A Comparative 
Study of Classification Techniques for Intrusion Detection,” in Int'l 
Symposium on Computational and Business Intelligence, Aug. 2013.

[20] H. Hota and A. Shrivas, “Data Mining Approach for Developing 
Various Models Based on Types of Attack and Feature Selection as 
Intrusion Detection Systems (IDS),” Intelligent Computing, 
Networking, and Informatics, 845–851, 2014.

[21] O. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P. Yoo, S. Muhaidat, and 
K. Kim, “Machine-Learning-Based Feature Selection Techniques for 
Large-Scale Network Intrusion Detection,” in IEEE Int'l Conference 
on Distributed Computing Systems Workshops, Jul. 2014.

[22] B. Tama and K. Rhee, “A Combination of PSO-Based Feature 
Selection and Tree-Based Classifiers Ensemble for Intrusion 
Detection Systems,” Advances in Computer Science and Ubiquitous 
Computing, Singapore, 489–495, 2015.

[23] N. Chand, P. Mishra, C. Krishna, E. Pilli, and M. Govil, “A 
comparative analysis of SVM and its stacking with other 
classification algorithm for intrusion detection,” in Int'l Conference 
on Advances in Computing, Communication, Automation, Apr. 2016.

[24] M. Panda, A. Abraham, and M. Patra, “A Hybrid Intelligent 
Approach for Network Intrusion Detection,” Procedia Eng., 30, 1–9, 
2012.

[25] N. Farnaaz and M. Jabbar, “Random Forest Modeling for Network 
Intrusion Detection System,” Procedia Computer Science, 89, 213–
217, 2016.

[26] J. Mikhail, J. Fossaceca, and R. Iammartino, “A Semi-Boosted 
Nested Model With Sensitivity-Based Weighted Binarization for 
Multi-Domain Network Intrusion Detection,” ACM Transactions on 
Intelligent Systems and Technology, 10(3), Apr. 2019.

[27] Z. Stefanova and K. Ramachandran, “Network attribute selection, 
classification and accuracy (NASCA) procedure for intrusion 
detection systems,” in IEEE International Symposium on 
Technologies for Homeland Security, Apr. 2017.

[28] R. Singh, A. Prasad, R. Moven, and H. Sarma, “Denial of service 
attack in wireless data network: A survey,” in Devices for Integrated 
Circuit (DevIC), Mar. 2017.

[29] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Incremental 
Approaches for Network Anomaly Detection: Existing Solutions and 
Challenges,” International Journal of Communication Networks and 
Information Security, Aug. 2011.

[30] S. Bahl and S. Sharma, “Performance Analysis of User to Root 
Attack Class Using Correlation Based Feature Selection Model,” in 
International Joint Conference, Cham, Springer, 177–187, 2015.

[31] I. Ahmad, A. Abdullah, and A. Alghamdi, “Remote to Local attack 
detection using supervised neural network,” in Int'l Conference for 
Internet Technology and Secured Transactions, Nov. 2010.

[32] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” 
Journal of Machine Learning Research, 9(86), 2579–2605, Nov. 
2008.

[33] G. Shakhnarovich, T. Darrell, and P. Indyk, “Nearest-Neighbor 
Methods in Learning and Vision: Theory and Practice,” MIT Press, 
March 2006. 

[34] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting 
System,” in ACM SIGKDD International Conference on Knowledge 
Discovery and Data, 785–794, Aug. 2016.

[35] D. Watanabe et al., “An Architectural Study for Inference 
Coprocessor Core at the Edge in IoT Sensing,” in IEEE International 
Conference on Artificial Intelligence Circuits and Systems, Sep. 
2020.

[36] X. Liu, D. Kim, C. Wu, and D. Chen, “Resource and data 
optimization for hardware implementation of deep neural networks 
targeting FPGA-based edge devices,” in ACM/IEEE Int'l Workshop 
on System Level Interconnect Prediction, Jun. 2018.




