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Abstract. Tuberculosis (TB) is a pulmonary infectious disease causing morbidity and mortality in developing countries. In
2021, an estimated 10.6 million individuals were affected with TB, and 10% of these cases proved fatal. Due to socioeconomic
factors and the difficulty of diagnosis, this preventable and curable condition stays prevalent in many nations. With the advent
of automated public health clinical support systems aided by machine learning (ML), there is potential to triage and prioritize
at-risk strata of the population. In this work, we seek to assess the utility of algorithmic techniques applied to routinely available
electronic health records (EHR) in classifying three types of TB: active in the lung, non-active in the lung, and extrapulmonary. The
Light Gradient Boosting (CB) algorithm achieved the comparatively highest overall scores of accuracy: 77.4%, sensitivity: 56.1%,
specificity: 74.1%, and F1-score: 55.2% for the multi-class scenario. In addition, post-hoc clinical explainability is introduced
by means of Shapley values and permutation feature importance. We then employ Spline-based smoothing calibration to enable
uncertainty quantification and confer confidence levels to probabilistic predictions. This work highlights the role of ML approaches
in facilitating population-level screening for curbing the spread of TB in developing countries.

INTRODUCTION

According to the World Health Organization, approximately 1.6 million people died from Tuberculosis (TB) in 2021,
making it the second leading infectious condition with high mortality after the novel coronavirus (COVID-19) and
before Human Immunodeficiency Virus/ Acquired Immunodeficiency Syndrome (HIV/AIDS). Thus, bringing an end
to the TB epidemic, primarily endemic in the developing world, by 2030 is among the healthcare targets of the United
Nations Sustainable Development Goals [1].

Tuberculosis (TB) is a contagious pulmonary disease caused by the etiologic agent Mycobacterium tuberculosis.
The deposition of this bacteria initiates TB in aerosol droplets onto lung alveolar surfaces. The severity of progression
is determined by several factors such as the current state of the host immune system, age/gender, and genetics. Gen-
erally, it impairs the functioning of the lungs by moving through the lymphatic system/blood and leads to potential
respiratory failure, liver cirrhosis, and eventual death [2].

The timely detection of TB and identification of potential patients is instrumental in effectively treating the condi-
tion to avoid adverse effects [3]. Moreover, earlier recognition can forewarn the respective health authorities to take
action in order to prevent transmission. However, owing to the elusive nature of the condition and the lack of specific
clinical symptoms, it is considerably challenging to diagnose tuberculosis [4]. Also, several socioeconomic factors in
developing countries hinder large-scale screening due to limited infrastructure and trained staff [5].

Artificial intelligence and machine learning (ML) techniques can play an important role in screening and prognosis
of TB, given their success in using public health information such as electronic health records (EHR) and question-
naires responses to accurately identify at-risk patients for sleep apnea [6], Chronic Obstructive Pulmonary Disease
(COPD) [7] and COVID-19 [8] ahead of time of disease onset. Automated models can assist in the easing burden
on clinical staff, and help curb the incidence rate by analyzing and prioritizing at-risk patients at a quicker rate. In-
deed, several national strategies in many countries leverage automated clinical support models as the first phase in the
overall diagnosis loop, in order to triage the vulnerable strata of society [9].

Motivated by previous work in this area, which explores different types of feature dimensions for the classifica-
tion of TB risk, we retrospectively analyze a dataset consisting of questionnaire responses, symptomatology, and
demographic factors using a variety of ML approaches. We summarize the findings of recent literature as follows.
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The authors in [10] utilize 7 primary variables of gender, age, socioeconomic background, location, the status
of HIV/AIDs, and status of antiretroviral treatment, to obtain scores of accuracy, sensitivity, and area under the
curve (AUC) of 85%, 93%, and 82% respectively with an Artificial Neural Network (ANN) when detecting TB
positive and TB negative. The work in [11] saw the combination of six different datasets across several nations and
demonstrated the ability of the J48 classifier to predict treatment failure with an average accuracy of 78% given 22
variables belonging to demographics and clinical categories. As a consequence of privacy and security concerns, [12]
assessed the utility of synthetic data for training ML algorithms based on 31 inflammatory antigen biomarker profiles.
They found that the real and optimal synthetic datasets had accuracy, sensitivity, and specificity scores of 90%. 89%,
100%, and 91%, 93%, and 77% respectively in classifying the outcomes of TB positive or TB negative. In a similar
vein, another study [9] sought to also evaluate the serological features (as multiple antibodies arising from variable
immune responses can be informative) and discovered that 23 antigens were robust enough to detect TB cases among
a mixed (sick vs healthy) population with a sensitivity of 90.5% and specificity of 100%. A more complex approach
in [13] examined the resistance of genes for TB drugs to determine drug resistance-associated mutations with ML
and obtained an average accuracy of 85% across all models. Another modality typically considered is also imaging,
where chest X-Ray radiographs are used to develop Computer-Aided Diagnostic (CAD) systems with deep learning
with promising results.

Aside from the first study mentioned, the rest involved the collection of blood, plasma, sputum, genetic samples, or
body imaging scans, which may not be possible in developing countries. We aim to contribute to the existing body of
work by studying the potential of routinely acquired data to infer the possibility of TB active in the lung, TB passive
in the lung (non-infectious), and extra-pulmonary (TB in other organs). Thereby, the contributions of this work are as
follows:

1. Evaluate machine learning methods using a routinely available questionnaire, symptoms, and demographic
variable for classifying three TB states.

2. Assessing variable relevance to outcomes by virtue of feature importance and explainable approaches.

3. Calibrating multi-class uncertainty to confer interpretable confidence to probabilistic outcomes.

This paper is organized in the following manner: Section 2 outlines the methodology, Section 3 presents the results,
Section 3 discusses the findings and Section 5 concludes the work.

Materials and Methods

The dataset acquisition procedure was carried out in a private hospital in Sudan. All persons with respiratory symp-
toms seen in the general health services were considered eligible for the study. A structured interview was conducted
to collect information on age, sex, residence, medical history, education, occupation, ethnicity, income, and the num-
ber of people living in the same room.

According to National Tuberculosis Programme (NTP) policy [14], all patients presenting with cough for 3 weeks
or more and/or other symptoms such as night sweats, fever, chest pain and haemoptysis, were designated suspects
for TB and referred for sputum examination. Direct microscopy for Acid-Fast Bacilli (AFB0 was performed on
three sputum specimens stained using the Ziehl-Neelsen method and graded according to standard classification. 6,23
Those who were found smear-positive for AFB in two or more samples were diagnosed as having smear-positive TB.
If one sample only was found to be smear-positive, three new sputum samples were examined. For those in whom all
specimens failed to demonstrate AFB (or only one out of six was smear-positive), a chest radiograph was performed
[5]. If this demonstrated abnormalities possibly associated with tuberculosis a course of ordinary antibiotics was
prescribed. If there was no response to the antibiotics, the patient was referred for evaluation by a medical officer.
If the medical officer judged that the patient was suffering from TB, the patient was registered as a case of smear-
negative TB and given treatment. Extra-pulmonary TB is a case proved by one culture-positive specimen from an
extra-pulmonary site, histo-pathological evidence from a biopsy or based on strong clinical evidence consistent with
active extra-pulmonary TB, followed by the decision by a physician to treat with a full course of antituberculosis
chemotherapy.

The features included in the dataset and subsequently used for classification are sex (male or female), age, marital
status, number of people in the room they reside in, presence of coughing, duration of cough, recent weight loss
status, recent weight loss duration, presence of tiredness, duration of tiredness, presence of fever, duration of fever,



presence of night sweats, duration of night sweats, presence of chest pain, duration of chest pain, shortness of breath,
duration of shortness of breath, loss of appetite, duration of loss of appetite, hemptosis, duration of hemptosis, dif-
ficulty in swallowing, duration of difficulty in swallowing, reduced vision, duration of reduced vision, presence of
skin lesions, duration of skin lesions, presence of diarrhoea, duration of diarrhoea, presence of buccal leucoplakia,
duration of buccal leucoplakia, fatigue, fatigue duration, headache, duration of headache, generalized pains, duration
of generalized pains, other symptoms, duration of other symptoms, presence of HIV/AIDS, contact with TB patient,
contact with coughing or sick family members, anonymous testing, number of injections, duration of first complaint,
general appearance, weight (kg), height (cm) and presence of BCG vaccination scar. Weight and height were used to
derive the composite measurement of body-mass index (BMI), with units kg/m2.

In accordance with recent literature [6], the commonly used traditional and ensemble machine learning methods
were considered. These are Support Vector classifier (SVC), Logistic Regression (LR) and K-Nearest Neighbors
(KNN), Light Gradient Boosting (LGB), eXtreme Gradient Boosting (XGB), Categorical Boosting (CB), and Random
Forest (RF).

For conferring a notion of interpretability to the outputs predicted by the various models, we apply both Shapley
values [15] and post-hoc permutation feature importance [16]. The latter is a global view, dependent on the decrease
in model performance, i.e., ranks features whose exclusion will cause in an increase in model prediction error, either
by its relation with the target or other predictor variables. Shapley values are rooted in additivity and monotonicity,
which means i) the sum of local feature attributions equals the difference between base values and average values of
the features, and ii) ignores features whose contributions to the final classification outcome are negligible. A summary
plot obtained with Shapley values combines feature importance with an instance-based view. This allows for some
insight into the local behavior of each feature, and its magnitude of attribution to each instance across target classes
[15]. A certain level of agreement between both approaches can provide value to clinicians in defining which features
were determined to be important by the model for a single classification outcome. This reduces the black-box nature
of the deployed model and ensures that desirable or plausible patterns are mined instead of picking up on spurious
relations or hidden biases.

Uncertainty estimation is vital to identify erroneous samples during training and mitigate confounding due to out-
of-distribution samples during inference [17]. Essentially, if a sample has a predicted probability p, then based on
its observed frequency in the dataset, its likelihood of belonging to its predicted class must also be p. Calibration
is a model-agnostic point-estimation approach that lets the predicted probabilities be interpreted with an inherent
confidence level. In this work, we use the non-parametric Spline-based probability calibration method [18] which
relies on smoothing cubic splines instead of piecewise constants or sigmoid functions. This method was shown to be
a better fit for multi-class problems, and dampen overconfident prediction probabilities in imbalanced datasets. The
total uncertainty in any TB prediction depends on both data (aleatoric) and model (epistemic) uncertainty. As EHR
data is prone to incompleteness and irregular values, it is beneficial to quantify the epistemic uncertainty as a baseline
first, keeping the quality of the data consistent.

RESULTS

After employing a five-fold cross-validation approach, accuracy, sensitivity, specificity, F1-score, and Matthew’s Cor-
relation Coefficient [19] [20] were the performance measures used to ascertain the models’ objective quality. The first
three metrics and standard diagnostic measures used by clinicians, the latter two are used to note the balance between
the cause of type-1 errors and the cause of type-2 errors, and aggregate score across true positives, true negatives, false
positives, and false negatives in proportion to the number of samples respectively. The One-Versus-Rest classification
process for all models was followed to elicit multi-class outcomes [21].

From Table 1, it can be seen that the highest accuracy, sensitivity, specificity, and MCC are obtained by CB, and
F1-score is obtained by XGB. The accuracy sensitivity, specificity, F1-score, and MCCranges for almost all models
are above 70%, 55%, 70%, 50%, and 25% with the standard deviations obtained being lesser than ∼ ±5%.. If three
classes are considered with equal weight, then the baseline scores would be roughly 33%, which is the act of random
prediction with no patterns learned. As such, it appears that the models have internalized a satisfactory knowledge
representation for this dataset. In the interest of keeping a good trade-off between false positives and false negatives,
based on the F1 score, we select CB for further post-hoc analysis.

Metrics to evaluate calibration quality estimated the differences between true confidence and predicted confidence.
For the multi-class case, the quantification metrics are Log-Loss, Expected Calibration Error (ECE), Adaptive Cali-
bration Error (ACE), and Static Calibration Error (SCE) [22]. 10% of the data was held out for testing with the rest



TABLE 1. Quantitative performance metrics across five-fold cross-validation.

Model Accuracy Sensitivity Speci f icity F1−Score MCC
LGB 75.0 54.6 73.7 55.5 25.3
RF 77.1 55.3 74.1 54.6 30.5

XGB 76.5 56.1 74.2 56.3 29.1
KNN 70.8 44.1 71.0 45.7 14.1
SVC 76.3 54.9 72.5 49.4 28.9
LR 74.3 54.9 72.5 54.8 23.0
CB 77.4 56.1 74.1 55.2 32.0

being saved for calibration.
In Table 2, the calibration performance of the models is reported (lower the better). Reduction in error between

predicted and observed probability estimates is obtained. Thus, given a new data instance for classification, statements
such as "CB predicted chance of TB active in lungs with 60% accuracy", can be alleged with reasonable confidence.

TABLE 2. Uncertainty quantification measures before and after Spline-based calibration for CB.

Metric Before Calibration After Calibration
Log-Loss 0.96 0.87

ECE 0.08 0.05
ACE 0.18 0.16
SCE 0.13 0.09

Correlating both Figure 1 and Figure 2 in this cohort reveals the presence of BMI (kg/m2), coughing, duration of
cough, age, contact with TB patient, headache, duration of headache, recent weight loss status, recent weight loss
duration, presence of night sweats, duration of night sweats, and a number of people in the room they reside in to be
pertinent factors for classifying each of the three classes. There are also trace amounts of value given to a few other
variables, but they could be inconclusive and as such, we consider only the primary indicators.

FIGURE 1. Permutation feature importance with CB.



FIGURE 2. Shapley feature attributions with CB.

DISCUSSION

It is interesting to observe that despite the generality of the questions asked, the models are able to produce discernible
classifications. Since there is a considerable overlap between the pathology of TB and other infections itself, differ-
entiating between subtypes of TB with minimal physical examination samples like blood/sputum shows promise for
public health monitoring. We hypothesize that ensemble models tended to fare better than traditional models because
there appears to be no implicit linearity, and higher dimensional interactions are present among multiple predictor
variables. Tree-based or iterative learning models handle perturbations better and are less affected by confounding ef-
fects of outliers [23]. Empirically, high duration of cough, younger ages, lower BMI, contact with confirmed patients,
severe duration of headaches, long periods of night sweats, and a large number of people per room along with weight
loss emerged as markers of active pulmonary distress owing to TB.

While coughing is not necessarily always an accompanying symptom of TB, the respiratory nature of the condition
and the airborne transmission medium lend themselves to the prevalent general consensus that cough and prolonged
contact with TB patients/dense crowds will increase the odds of infection [24] [25] [26]. Recently, [27] and [28] found
the incidence of TB was higher in underweight individuals, which concurs with our findings (lower BMI). Lastly, both
chronic headaches and increased night sweats are frequent dominant symptoms of TB, particularly when coupled with
the previous symptoms [29] [30] [31]. However, other common TB factors such as fever, fatigue, and chest pain [32]
were not deemed as vital as the aforementioned predictors. It is likely that this particular cohort did not experience
them as strongly as otherwise recorded.

In terms of limitations, we mention that data collection procedures might not be standardized across developing
countries, thereby limiting the application of the model. There is also the homogeneity of ethnicity, nation, and so-
cioeconomic background which might hinder the generalizability of the model. Lastly, it is unknown if the participants
were recovering or had medical conditions beyond what was reported, rendering them more susceptible to TB.



CONCLUSION

To the best of the authors’ knowledge, this work is one of the first to explore the clinical utility of EHR containing
routinely acquired questionnaires, symptoms, and demographic information to discriminate between multiple sub-
types of TB through an interpretable view. The limitations in this work stem from the region-specific nature of the
dataset which can minimize the generalizability. Future work can explore the harmonization of site-agnostic data and
synthetic sampling to boost the utilization of the available records.
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