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Abstract—Road accidents are one of the leading causes of 
mortality. While most accidents merely affect the exterior of the 
cars of the drivers involved, some of them have led to serious and 
fatal injuries. It is imperative that the Emergency Medical 
Services (EMS) are given as much information about the crash 
site as possible before their arrival at the scene. In this paper, a 
mobile phone application is developed that, when placed inside a 
car, intelligently classifies the type of accident it is involved in 
and notifies the EMS team of this classification along with the 
car’s GPS location. The classification mechanism is built through 
a collection of data sets from a simulation of three types of 
collisions, which creates a knowledge base for an artificial 
intelligence-based classifier software. The experimental setup for 
data collection and the functionality of the mobile phone 
application called ‘Crash Detect’ are explored. 
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I. INTRODUCTION 

Road accidents have been one of the top contributors 
towards human fatality for decades. Traffic accidents are the 
leading cause of mortality for individuals aged 19 to 25 around 
the world [1], and the second major cause of deaths in the UAE 
[2]. A series of events takes place from the time an accident has 
taken place until the patient has fully recovered. This paper 
proposes a method to increase the efficiency of one of the most 
vital parts of this sequence called the ‘emergency response.’ 
Emergency response is the process of medical personnel’s first 
response to the accident and consists of medical personnel 
arriving at the scene of the accident. In [3], the authors describe 
the importance of knowing the mechanics of a crash while 
paramedics attend to a crash site. Similarly, in [4], the authors 
also stress the importance of understanding the kinematics of 
an accident. Kinematics is an analytical processing of the scene 
of a crash to determine the injuries most likely to have been 
caused by the forces and movements involved. Such 
understanding may be employed to identify stable patients with 
seemingly no injury who might still carry the risk of later 
suffering severe conditions due to the high intensity of the 
accident they were involved in. This method also helps pre-
hospital healthcare professionals, or paramedics, carry out 
evaluations and identify injuries in cases where anatomical and 
physiological criteria for severity are inconclusive. This 
process also assists the paramedics in deciding which hospital 
is best equipped to handle the severity of the wounds incurred, 
prepare for extrication if necessary and gather other resources 
to conduct a complete and thorough evaluation of the victim.  

The research presented in this paper is motivated by the fact 
that emergency medical service personnel would perform 

better if equipped with the knowledge of the kind of accident 
they are dealing with before arriving at the accident scene. 

Several technology-based solutions have been proposed to 
reduce fatalities in road accidents during emergency response. 
For example, several vehicles now come with built in systems 
that detect crashes and notify Emergency Management 
Systems (EMS) within seconds of the incident. The Automatic 
Crash Notification (ACN) systems built into some vehicles 
provide paramedics with information regarding a crash before 
their arrival at the scene. Such systems are typically available 
in modern cars and are activated when the airbag is deployed 
(e.g., Ford SYNC 911 Assist system) or the emergency fuel 
pump shut-off is activated. In some instances, the system is 
activated even without the deployment of an airbag, using 
sensors placed around the vehicle (e.g., the GM OnStar 
system). Some of these systems send a distress message to the 
local police with the location of the victim when an accident is 
suspected [5]. In some cases, the car’s occupants are also 
connected via phone to local EMS hotlines until help arrives.  

Although built-in ACN systems offer a viable solution in 
notifying EMS personnel, there are a few drawbacks associated 
with such systems. Firstly, these systems are only available in 
newer models of cars only. For example, the Toyota company 
offers ACN in models from the year 2010 onwards. Secondly, 
most of these systems are on a subscription basis; monthly 
payments are required to order to keep the service running. 
Therefore, cost is a major concern when it comes to using ACN 
systems. In some cases, the occupants of the vehicle are not 
conscious enough after the accident to communicate their 
status to the EMS personnel via the phone connection 
established by the system. Furthermore, these systems could be 
rendered obsolete should the manufacturing company introduce 
a major change in their communication strategy.  

These potential drawbacks for current ACN systems call for 
a notification system that is cost-effective, portable, and can be 
extended to situations that do not involve vehicular collisions, 
places the burden of communication away from the injured 
party, and detects the kind of collision the victim is involved in.  

This paper proposes such a notification system 
implemented as an application on the driver’s mobile phone. A 
mobile phone is the good platform for such a system because 
most drivers today carry mobile phones. In addition, most 
mobile phones also come with built-in accelerometers and 
gyroscope sensors that can be used to help measure crash 
kinematics in case of an accident.  

The system presented in this paper is a mobile phone 
application called ‘Crash Detect’ that detects collisions and 
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classifies the collision into one of two types: (1) car to non-
deformable or rigid object, and (2) car to human collision, and 
notifies local police, EMS and victim’s emergency contacts of 
the location and type of crash via SMS. The system also 
incorporates handling false positives like the phone dropping, 
sharp turns or uneven road conditions.  

The remainder of the paper is organized as follows. The 
next section describes previous work in detecting accidents 
using mobile phones. Section III describes the design of the 
system including an evaluation of the machine learning 
algorithms used. Section IV shows a comparison between 
algorithms and experimental results. Section V presents a 
description of the developed mobile application. Finally, 
Section VI concludes the paper. 

II. LITERATURE REVIEW 

This section provides a brief summary of works related to 
using mobile phones for detecting accidents. In 2010, a group 
of researchers from Vanderbilt University proposed the mobile 
phone application WreckWatch [6]. This application keeps 
track of accident/event data by recording the path, speed, forces 
of acceleration on a vehicle leading up to the accident. The 
research was conducted with the assumption that the phone is 
inside the user’s pocket at all times, and therefore any forces 
applied to the phone would have been applied to the user. This 
system is an Android application on the client and 
Java/MySQL and uses the Spring Framework on the server. 
This paper provides an in-depth analysis regarding their client 
server architecture and the use of what they refer to as ‘on 
board’ sensors; accelerometer and GPS sensors were used to 
detect collisions. False positives were prevented by using 
contextual information, speed and acceleration filters. Other 
challenges addressed in this research include excessive power 
consumption, possible destruction of the phone, and 
determining whether or not the user is inside the vehicle.  

Another implementation of a similar system was reported in 
[7]. The proposed system uses onboard sensors to collect 
dynamic data witnessed in vehicular motion and uses this raw 
data to categorize different collision events. The categorization 
is done through using different machine learning algorithms. 
The system is designed as a life-long learning system that 
records the driver’s driving style and may be used to detect the 
driver’s state (sleepy, intoxicated, etc).  

In a similar system [8], the authors devised a system that 
was 84% accurate in classifying accidents into different 
categories. Their work elaborates on the methods used in 
classifying car accidents into three classes; head-on collision, 
collision to a barrier, and collision to wall.  

Another system called iBump [9] continuously detects if an 
accident has taken place using the built-in accelerometer of the 
mobile phone. In case of an accident, the application sends an 
SMS with the victim's GPS coordinates to the listed emergency 
contacts and the GSM server. The research was conducted 
based on data taken from a simulation of accidents using a 
mechanical model. The simulation was done only for the case 
where a car collides with a rigid stationary object. The accident 
was classified based on severity.  

Finally, as [10] points out that implementation of the crash 
detection problem using a mobile device should not only 
distinguish between various types of accidents but should try to 
account for obvious false positives like dropping the phone, 
shaking, sudden breaks on a physical apparatus and data 
collected in actual vehicles engaged in behavior like sharp 
turns etc. 

III. TECHNICAL APPROACH 

This section discusses the process involved in 
implementing the proposed solution. The proposed system is 
an Android application that detects a road accident using the 
accelerometer and gyroscope in mobile phones. Based on 
sensor data, the system classifies the accident into one of two 
classes and notifies local police, EMS personnel and 
emergency contacts. The system was developed by simulating 
real life accidents in a controlled environment and recording 
data with sensors. Features were then extracted from this data 
and then used to train and test a number of algorithms. The 
performance of these algorithms was evaluated based on their 
ROC curves, precision, recall and F-Measures. The best 
performing algorithms were then integrated into the Android 
application for further testing. Each of the steps are described 
next.  

A. Experimental Setup and Accident Simulation 

The objective of the experimental setup was to generate 
forces involved in real life car accidents and collect the 
accelerometer and gyroscope signatures for these situations. 
The force involved in a high intensity accident is 
approximately 40g where g is the acceleration due to gravity. 
In order to generate this force, the apparatus shown in Figure 1 
was used where springs were attached to a vehicle of 2 kg 
payload comprising of sensors and pulled to a distance of 1.5 
meters and then released to simulate a collision. The spring 
constant k of these springs was calculated to ensure that a force 
of approximately 40g was generated upon impact.  

 
Fig 1. Apparatus to simulate the 40g crash  

 



In order to collect accelerometer and gyroscopic data, a 
sensor box mimicking a mobile phone placed was placed on 
the apparatus as the payload. As show in Figure 2, this data 
collection sensor box consisted of the following components: 

 LilyPad Arduino - microcontroller used to store data 
collected by sensors 

 9 Degrees of Freedom Sensor Stick - contains an 
accelerometer (± 16g), gyroscope (± 2000°/s) 

 Accelerometer ADXL377 (± 200g) - to measure 
accelerations that exceed 16g 

 SD card breakout to store readings to an SD card  
 Power Supply – Polymer Lithium Ion battery with 7V 

nominal output voltage 
 Power Supply Stick – to bring down the voltage from 

7V to 3.3 volts. 
 

 
 

Fig 2. Sensor box to collect accelerometer and gyroscopic sensor data  

B. Data Collection and Cleaning 

Simulations were performed to collect sensor readings for 
data that belonged to each of the classes shown in Table 1.  

TABLE 1.  CLASSES OF DATA 

Scenario Type Collision Scenario No. Samples 

Accident 
 

Car to rigid wall  80 

Car to human being  80 

False Positive Phone being dropped 50 

Sharp Turns 28 

Driving on unpaved road 30 

 

As Table 1 shows, two types of conditions were simulated; 
actual accident and false positives. Two types of accidents 
were simulated; vehicle hitting a rigid object and vehicle 
hitting a person. The vehicle hitting a person was simulated by 
using a hot water bag filled with water. Similarly, three types 
of false positives were considered; phone being dropped, 
driving on unpaved road or taking sharp turns. Data for 
accidents were collected using the apparatus show in Figure 1 
while the data for false positives was collected in a real car. 
The sensor box was used in each case to collect the data. 
Sensor readings were taken every five milliseconds in each 
instance. The readings were stored and then retrieved from the 
SD card installed in the sensor box. Each text file was then 
individually cleaned; approximately 700 readings were 
recorded for each sample from which the point of impact was 
manually found and extracted. A window of 32 readings 
around the crash was then used as the actual data showing a 
particular condition (e.g., rigid crash). This served as the raw 
data for training the system.  

C. Feature Extraction 

The next step in the process is the extraction of features 
from the raw data. For example, in [7], mean, standard 
deviation, entropy, energy and maximum peaks from 
accelerometer sensor readings were used as features and then 
directly used for attribute selection. Similarly, in [11] feature 
extraction was carried out incorporating the discriminating 
ability of features. The measurements used to evaluate the 
performance of the features were the Bhattacharyya distance, 
Fisher’s discriminant ratio and divergence. The conclusion was 
that classification with extracted features yielded a higher 
performance accuracy when compared to classification with 
raw data alone.  

In [12], Discrete Wavelet Transforms (DWT) based lossy 
compression was used to overcome challenges of storage and 
computation time. Another study [13] also illustrated how 
DWTs were useful in defining new sets of features used in 
classification and similarity search applications from wavelet 
coefficients. These usually result in better defined features due 
to the reduction in noise or irrelevant data, increasing the 
accuracy of classification and similarity search. The authors in 
[11] also detail the need to identify appropriate features that 
differentiate textures (or in our case, signals) for classification. 
The authors found the application of DWT to a set of statistical 
features extracted from raw data provided a precise and 
unifying framework for the analysis and characterization of a 
signal at different scales.  

Based on prior research, the research reported here applied 
Discrete Wavelet Transforms (DWT) to the selected features to 
extract time-frequency information and to achieve noise 
suppression. A wavelet is an orthogonal function that is applied 
to an infinite group of data. The following equation describes a 
typical DWT decomposition: 
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Where s(n)g is the original signal, N is the number of 
samples in the windowed signal (in our case N= 32), m is the 
decomposition level index while a and b are scaling and 
translation parameters respectively. The DWT can be 
interpreted as a multi-stage filter banks with HP (high pass 
resulting in approximate coefficients) and LP (low-pass 
resulting in detail coefficients) filters performing series 
dilations [14].  

At each level the approximate/detail coefficients represent a 
filtered signal that spans only half the frequency of the band. 
This improves the frequency resolution as the frequency 
uncertainty is reduced by half. A schematic representation of 
the working of DWT is shown in Figure 3 where A1, A2 and 
A3 represent sequences of approximate coefficients and D1, 
D2 and D3 represent sequences of detailed coefficients.  

 
Fig. 3. The DWT model 

 
The coefficients produced by the application of DWT 

however are useable only up until a certain level of 
decomposition. Lei et. Al. [14] demonstrated the impact of 
choosing the appropriate level of decomposition (DL) in DWT 
on its performance. They quantified the degree of sparseness in 
wavelet coefficients by evaluating the percentage of zero/near-
zero coefficients among the entire transformed coefficients. To 
determine the number of levels of DWT to be performed, the 
sparseness of the coefficients in each level was calculated. The 
percentage of zero/near-zero coefficients among the 
transformed data was evaluated. The following equation was 
used in this calculation: 
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where sp’ represents the sparseness, N is the window size (32 
in this case) and No is the number of zero/near zero coefficients 
at that particular level. This was done to constrain the value of 
sparseness between [0, 1]. The average of the sparseness of 
wavelet coefficients in different classes of data collected was 
plotted against their respective level. The graph so obtained in 
Figure 4 shows that sparseness of the transformed data 
diminishes and becomes almost saturated as the decomposition 
level reaches 4. Therefore, decomposition was stopped at level 
3. 

After the DWT encoding, following prior research, Mean, 
Standard Deviation, Kurtosis, Linear Weighted Average, 
Quadratic Weighted Average, and Skewness was calculated for 
each approximate (i.e., A1, A2, and A3) and detailed 

coefficient (i.e., D1, D2, and D3) sequence as the primary 
features for each 32-point raw data sequence collected earlier 
for each scenario (i.e., Rigid Crash). This resulted in one 
feature vector per instance which was used in the next stage of 
training classifiers.  

 
Fig. 4. Sparseness of Coefficients 

D. Classification Algorithms 

Various modelling techniques have been explored in 
classifying accident data collected from mobile devices. For 
example, the iBump application used a hybrid of Hidden 
Markov Models (HMM) and Dynamic Time Warping (DTW) 
for classifying accidents. The Hidden Markov Model is a 
modeling tool that can be employed for modeling and 
analyzing time series with spatial or temporal variability [9]. 
This technique has been employed in various speech and 
gesture recognition systems. The authors in [15], described in 
detail the application of HMM for very large vocabulary 
speech recognition. The sensing process is basically collection 
of data from the mobile phone’s sensors. As today’s mobile 
phones are only sensitive to forces between -4g and + 4g, the 
sensor data is clipped from its original value into this range. 
iBump used Weighted Moving Average (WMA) to clean the 
data. The data was then passed into a Vector Quantization Unit 
in order to translate the three dimensional data into a single 
dimensional sequential vector. These vectors were then used to 
train the HMM model and as data for accident classification. 

Dynamic Time Warping (DTW) is another algorithm used 
in machine learning. This algorithm measures similarity 
between two temporal sequences in a time series that may have 
different speeds. For example, this algorithm used gesture 
recognition based on accelerometer data to create a wireless 
system for cricket training [16]. In the iBump system, this 
algorithm was used to detect accidents alongside HMM due to 
low false positive rates of HMM and an inability to tell 
different levels of severity apart. Baum-Welch algorithm was 
used for HMM training. This algorithm automatically estimates 
the parameters of a HMM and determines the probability of 
occurrence of a test set. It then uses this test set as a learning 
mechanism for the model.  

A number of traditional classification algorithms have also 
been used to solve similar problem [7]. These methods 
included Bayes Network, Random Forests, Logistic Regression 
and Radial Basis Function. The algorithms were evaluated 
based on their accuracy, F-Measure and low error on 



misclassification. The evaluation revealed the random forest 
classifier to be the best one with an accuracy of 78.44% and an 
F-Measure of approximately 0.8. The same platform was used 
by the researchers in [7] whilst testing the following 
algorithms: REPTree, Random Forest, JRIP and RBF Classifier 
of which REPTree outperformed the rest with an evaluation 
performance accuracy of 84.3%. 

Based on prior research, this paper applied the following 
classification algorithms for classifying the WDM-coded 
sensor data: 

 Naïve Bayes 
 Bayesian Networks 
 Logistic Regression 
 Random Forest 
 REPTree 
 J48 

 
The Wrapper Sub Set Selection feature selection method 

was used for each classifier which resulted in different sub-set 
of attributes for training each of the classifiers tested. The 
attributes selected in both the aforementioned methods were 
trained and tested after applying the SMOTE filter for 
underrepresented classes. A 10-fold cross-validation was used 
to train and test each algorithm.  

IV. RESULTS AND EVALUATION 

Results for the top three best performing classifiers are 
presented in this section.  

A. Naïve Bayes 

The Naïve Bayes algorithm performed best in terms of the 
‘Sharp Turn’ and ‘Unpaved Road’ classes with a True Positive 
rate of over 97%. However, this algorithm significantly 
misclassified the Phone drop class with only 60% accuracy. 
There were also a number of instances where an accident case 
was classified as a non-accident case. The complete 
performance of the Naïve Bayes classifier is displayed in 
Table 2 below. 

TABLE 2. PERFORMANCE OF THE NAÏVE BAYES CLASSIFIER 

TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

Class 

0.7 0.083 0.667 0.7 0.683 0.919 Wall  
Crash 

0.888 0.068 0.755 0.888 0.816 0.96 Human 
Crash 

0.6 0.041 0.667 0.6 0.632 0.886 Phone 
Drop 

0.972 0 1 0.972 0.986 1 Sharp 
Turn 

0.981 0.003 0.981 0.981 0.981 0.996 Unpaved 
Road 

 

B. Logistic Regression 

Logistic Regression performed slightly better than the 
Naïve Bayes. This algorithm did a relatively better job of 
differentiating between accident and non-accident cases. For 
example, the Phone Drop was classified correctly 74% of the 

time. The overall performance of the Logistic Regression 
classifier is shown in Table 3 below. 

TABLE 3. PERFORMANCE OF THE LOGISTIC REGRESSION CLASSIFIER 

TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

Class 

0.663 0.098 0.616 0.663 0.639 0.917 Wall  
Crash 

0.925 0.048 0.822 0.925 0.871 0.971 Human 
Crash 

0.74 0.036 0.74 0.74 0.74 0.918 Phone 
 Drop 

0.958 0.017 0.92 0.958 0.939 0.988 Sharp 
Turn 

0.852 0.011 0.92 0.852 0.885 0.974 Unpaved 
Road 

 

C. Random Forest 

Random Forest algorithm performed the best among those 
tested. As Table 4 shows, like others, the algorithm was not 
able to identify the Phone Drop very accurately. However, it 
was fairly successful in identifying the human crash class and 
the other false positives like sharp turn and unpaved road.  

TABLE 4. PERFORMANCE OF THE RANDOM FOREST CLASSIFIER 

TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

Class 

0.7 0.098 0.629 0.7 0.663 0.917 Wall 
Crash 

0.925 0.045 0.831 0.925 0.876 0.975 Human 
Crash 

0.6 0.019 0.811 0.6 0.69 0.926 Phone 
Drop 

0.986 0.015 0.934 0.986 0.959 0.999 Sharp 
Turn 

0.907 0.006 0.961 0.907 0.933 0.998 Unpaved 
Road 

 
The ROC curve for Random Forest is shown in Figure 5. The 
Random Forest classifier with the wrapper method for 
attribute selection was subsequently implemented in the 
Android application.  
 

 
 

Fig. 5. ROC Curves for Random Forest Classifier 



V. ANDROID APPLICATION 

The android application is called ‘Crash Detect’. The 
application has been design to ensure ease of use with little or 
no training. The application currently supports only the 
English language although in the future, it can be modified to 
support other languages.  

 

 
Fig. 6. Sample screenshots of the Android application 

Upon first run of the application, the user is requested to 
register his/her details. On this registration page, the user is 
asked to enter an e-mail address, full name, phone number and 
password. Personal details requested are so that the Police will 
be able to identify the user in case of a collision. The user is 
then asked to enter details regarding medical history and add a 
number of emergency contacts. The insurance details and date 
of birth are so that the EMS will be able to directly contact the 
insurance provider if necessary.  

As a service running in the background, the application 
takes readings of the phone’s accelerometer and gyroscope 
every 5 milliseconds, feeds this date to the trained model and 
determines if an accident has taken place. The application 
automatically sends out a notification to local police, EMS and 
emergency contacts in case of an accident. This SMS 
notification contains the type and location of the accident. The 
user has the option of cancelling the notification in case of a 
misclassification by the algorithm. Figure 6 show the user 
interface of the application. 

VI.  CONCLUSIONS 

Road accidents are a major cause for concern in the 
present times. Despite rules and regulations and fines, the 
death toll and casualty rate caused by road accidents alone are 
still astounding. There is an urgent need for solutions that 
increase efficiency of emergency response in these situations. 
Although car manufacturing companies offer viable solutions 
with their built-in accident notification systems, these are 
expensive and could be rendered obsolete with changing 
technology. This paper presents a solution that is affordable, 
portable and needs little to no effort on the user’s part. The 
solution is an Android application that uses an Artificial 
Intelligence classifier. The application constantly monitors 
phone sensor data, feeds this data into the classifier model to 
detect if an accident has occurred. In case of an accident, the 
application notifies emergency contacts, local police and local 

emergency medical response teams of the location and 
classification of the accident.  

The model was trained using data collected from 
laboratory simulations and real cars. Some false positives like 
Phone Drop were not identified well and need more work. 
However, this application is a stepping stone towards 
improving road accident responses in a cost-efficient manner. 
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