
Intelligent Accident Detection Classification using
Mobile Phones

Imran A. Zualkernan, Fadi Aloul, Fayiz Basheer, Gurdit Khera, and Shruthi Srinivasan

Department of Computer Science & Engineering
American University of Sharjah, UAE

Abstract—Road accidents are one of the leading causes of
mortality. While most accidents merely affect the exterior of the
cars of the drivers involved, some of them have led to serious and
fatal injuries. It is imperative that the Emergency Medical
Services (EMS) are given as much information about the crash
site as possible before their arrival at the scene. In this paper, a
mobile phone application is developed that, when placed inside a
car, intelligently classifies the type of accident it is involved in
and notifies the EMS team of this classification along with the
car’s GPS location. The classification mechanism is built through
a collection of data sets from a simulation of three types of
collisions, which creates a knowledge base for an artificial
intelligence-based classifier software. The experimental setup for
data collection and the functionality of the mobile phone
application called ‘Crash Detect’ are explored.

Keywords—Accident Detection, Machine intelligence, Mobile
phones, Sensors

I. INTRODUCTION

Road accidents have been one of the top contributors
towards human fatality for decades. Traffic accidents are the
leading cause of mortality for individuals aged 19 to 25 around
the world [1], and the second major cause of deaths in the UAE
[2]. A series of events takes place from the time an accident has
taken place until the patient has fully recovered. This paper
proposes a method to increase the efficiency of one of the most
vital parts of this sequence called the ‘emergency response.’
Emergency response is the process of medical personnel’s first
response to the accident and consists of medical personnel
arriving at the scene of the accident. In [3], the authors describe
the importance of knowing the mechanics of a crash while
paramedics attend to a crash site. Similarly, in [4], the authors
also stress the importance of understanding the kinematics of
an accident. Kinematics is an analytical processing of the scene
of a crash to determine the injuries most likely to have been
caused by the forces and movements involved. Such
understanding may be employed to identify stable patients with
seemingly no injury who might still carry the risk of later
suffering severe conditions due to the high intensity of the
accident they were involved in. This method also helps pre-
hospital healthcare professionals, or paramedics, carry out
evaluations and identify injuries in cases where anatomical and
physiological criteria for severity are inconclusive. This
process also assists the paramedics in deciding which hospital
is best equipped to handle the severity of the wounds incurred,
prepare for extrication if necessary and gather other resources
to conduct a complete and thorough evaluation of the victim.

The research presented in this paper is motivated by the fact
that emergency medical service personnel would perform

better if equipped with the knowledge of the kind of accident
they are dealing with before arriving at the accident scene.

Several technology-based solutions have been proposed to
reduce fatalities in road accidents during emergency response.
For example, several vehicles now come with built in systems
that detect crashes and notify Emergency Management
Systems (EMS) within seconds of the incident. The Automatic
Crash Notification (ACN) systems built into some vehicles
provide paramedics with information regarding a crash before
their arrival at the scene. Such systems are typically available
in modern cars and are activated when the airbag is deployed
(e.g., Ford SYNC 911 Assist system) or the emergency fuel
pump shut-off is activated. In some instances, the system is
activated even without the deployment of an airbag, using
sensors placed around the vehicle (e.g., the GM OnStar
system). Some of these systems send a distress message to the
local police with the location of the victim when an accident is
suspected [5]. In some cases, the car’s occupants are also
connected via phone to local EMS hotlines until help arrives.

Although built-in ACN systems offer a viable solution in
notifying EMS personnel, there are a few drawbacks associated
with such systems. Firstly, these systems are only available in
newer models of cars only. For example, the Toyota company
offers ACN in models from the year 2010 onwards. Secondly,
most of these systems are on a subscription basis; monthly
payments are required to order to keep the service running.
Therefore, cost is a major concern when it comes to using ACN
systems. In some cases, the occupants of the vehicle are not
conscious enough after the accident to communicate their
status to the EMS personnel via the phone connection
established by the system. Furthermore, these systems could be
rendered obsolete should the manufacturing company introduce
a major change in their communication strategy.

These potential drawbacks for current ACN systems call for
a notification system that is cost-effective, portable, and can be
extended to situations that do not involve vehicular collisions,
places the burden of communication away from the injured
party, and detects the kind of collision the victim is involved in.

This paper proposes such a notification system
implemented as an application on the driver’s mobile phone. A
mobile phone is the good platform for such a system because
most drivers today carry mobile phones. In addition, most
mobile phones also come with built-in accelerometers and
gyroscope sensors that can be used to help measure crash
kinematics in case of an accident.

The system presented in this paper is a mobile phone
application called ‘Crash Detect’ that detects collisions and

Fadi
Typewritten Text

Fadi
Typewritten Text

Fadi
Typewritten Text
IEEE International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, January 2018.

classifies the collision into one of two types: (1) car to non-
deformable or rigid object, and (2) car to human collision, and
notifies local police, EMS and victim’s emergency contacts of
the location and type of crash via SMS. The system also
incorporates handling false positives like the phone dropping,
sharp turns or uneven road conditions.

The remainder of the paper is organized as follows. The
next section describes previous work in detecting accidents
using mobile phones. Section III describes the design of the
system including an evaluation of the machine learning
algorithms used. Section IV shows a comparison between
algorithms and experimental results. Section V presents a
description of the developed mobile application. Finally,
Section VI concludes the paper.

II. LITERATURE REVIEW

This section provides a brief summary of works related to
using mobile phones for detecting accidents. In 2010, a group
of researchers from Vanderbilt University proposed the mobile
phone application WreckWatch [6]. This application keeps
track of accident/event data by recording the path, speed, forces
of acceleration on a vehicle leading up to the accident. The
research was conducted with the assumption that the phone is
inside the user’s pocket at all times, and therefore any forces
applied to the phone would have been applied to the user. This
system is an Android application on the client and
Java/MySQL and uses the Spring Framework on the server.
This paper provides an in-depth analysis regarding their client
server architecture and the use of what they refer to as ‘on
board’ sensors; accelerometer and GPS sensors were used to
detect collisions. False positives were prevented by using
contextual information, speed and acceleration filters. Other
challenges addressed in this research include excessive power
consumption, possible destruction of the phone, and
determining whether or not the user is inside the vehicle.

Another implementation of a similar system was reported in
[7]. The proposed system uses onboard sensors to collect
dynamic data witnessed in vehicular motion and uses this raw
data to categorize different collision events. The categorization
is done through using different machine learning algorithms.
The system is designed as a life-long learning system that
records the driver’s driving style and may be used to detect the
driver’s state (sleepy, intoxicated, etc).

In a similar system [8], the authors devised a system that
was 84% accurate in classifying accidents into different
categories. Their work elaborates on the methods used in
classifying car accidents into three classes; head-on collision,
collision to a barrier, and collision to wall.

Another system called iBump [9] continuously detects if an
accident has taken place using the built-in accelerometer of the
mobile phone. In case of an accident, the application sends an
SMS with the victim's GPS coordinates to the listed emergency
contacts and the GSM server. The research was conducted
based on data taken from a simulation of accidents using a
mechanical model. The simulation was done only for the case
where a car collides with a rigid stationary object. The accident
was classified based on severity.

Finally, as [10] points out that implementation of the crash
detection problem using a mobile device should not only
distinguish between various types of accidents but should try to
account for obvious false positives like dropping the phone,
shaking, sudden breaks on a physical apparatus and data
collected in actual vehicles engaged in behavior like sharp
turns etc.

III. TECHNICAL APPROACH

This section discusses the process involved in
implementing the proposed solution. The proposed system is
an Android application that detects a road accident using the
accelerometer and gyroscope in mobile phones. Based on
sensor data, the system classifies the accident into one of two
classes and notifies local police, EMS personnel and
emergency contacts. The system was developed by simulating
real life accidents in a controlled environment and recording
data with sensors. Features were then extracted from this data
and then used to train and test a number of algorithms. The
performance of these algorithms was evaluated based on their
ROC curves, precision, recall and F-Measures. The best
performing algorithms were then integrated into the Android
application for further testing. Each of the steps are described
next.

A. Experimental Setup and Accident Simulation

The objective of the experimental setup was to generate
forces involved in real life car accidents and collect the
accelerometer and gyroscope signatures for these situations.
The force involved in a high intensity accident is
approximately 40g where g is the acceleration due to gravity.
In order to generate this force, the apparatus shown in Figure 1
was used where springs were attached to a vehicle of 2 kg
payload comprising of sensors and pulled to a distance of 1.5
meters and then released to simulate a collision. The spring
constant k of these springs was calculated to ensure that a force
of approximately 40g was generated upon impact.

Fig 1. Apparatus to simulate the 40g crash

In order to collect accelerometer and gyroscopic data, a
sensor box mimicking a mobile phone placed was placed on
the apparatus as the payload. As show in Figure 2, this data
collection sensor box consisted of the following components:

 LilyPad Arduino - microcontroller used to store data
collected by sensors

 9 Degrees of Freedom Sensor Stick - contains an
accelerometer (± 16g), gyroscope (± 2000°/s)

 Accelerometer ADXL377 (± 200g) - to measure
accelerations that exceed 16g

 SD card breakout to store readings to an SD card
 Power Supply – Polymer Lithium Ion battery with 7V

nominal output voltage
 Power Supply Stick – to bring down the voltage from

7V to 3.3 volts.

Fig 2. Sensor box to collect accelerometer and gyroscopic sensor data

B. Data Collection and Cleaning

Simulations were performed to collect sensor readings for
data that belonged to each of the classes shown in Table 1.

TABLE 1. CLASSES OF DATA

Scenario Type Collision Scenario No. Samples

Accident

Car to rigid wall 80

Car to human being 80

False Positive Phone being dropped 50

Sharp Turns 28

Driving on unpaved road 30

As Table 1 shows, two types of conditions were simulated;
actual accident and false positives. Two types of accidents
were simulated; vehicle hitting a rigid object and vehicle
hitting a person. The vehicle hitting a person was simulated by
using a hot water bag filled with water. Similarly, three types
of false positives were considered; phone being dropped,
driving on unpaved road or taking sharp turns. Data for
accidents were collected using the apparatus show in Figure 1
while the data for false positives was collected in a real car.
The sensor box was used in each case to collect the data.
Sensor readings were taken every five milliseconds in each
instance. The readings were stored and then retrieved from the
SD card installed in the sensor box. Each text file was then
individually cleaned; approximately 700 readings were
recorded for each sample from which the point of impact was
manually found and extracted. A window of 32 readings
around the crash was then used as the actual data showing a
particular condition (e.g., rigid crash). This served as the raw
data for training the system.

C. Feature Extraction

The next step in the process is the extraction of features
from the raw data. For example, in [7], mean, standard
deviation, entropy, energy and maximum peaks from
accelerometer sensor readings were used as features and then
directly used for attribute selection. Similarly, in [11] feature
extraction was carried out incorporating the discriminating
ability of features. The measurements used to evaluate the
performance of the features were the Bhattacharyya distance,
Fisher’s discriminant ratio and divergence. The conclusion was
that classification with extracted features yielded a higher
performance accuracy when compared to classification with
raw data alone.

In [12], Discrete Wavelet Transforms (DWT) based lossy
compression was used to overcome challenges of storage and
computation time. Another study [13] also illustrated how
DWTs were useful in defining new sets of features used in
classification and similarity search applications from wavelet
coefficients. These usually result in better defined features due
to the reduction in noise or irrelevant data, increasing the
accuracy of classification and similarity search. The authors in
[11] also detail the need to identify appropriate features that
differentiate textures (or in our case, signals) for classification.
The authors found the application of DWT to a set of statistical
features extracted from raw data provided a precise and
unifying framework for the analysis and characterization of a
signal at different scales.

Based on prior research, the research reported here applied
Discrete Wavelet Transforms (DWT) to the selected features to
extract time-frequency information and to achieve noise
suppression. A wavelet is an orthogonal function that is applied
to an infinite group of data. The following equation describes a
typical DWT decomposition:

 












 


1

0
)(

1
),(

N

n a

bk
gns

a
kmDWT  

Where s(n)g is the original signal, N is the number of
samples in the windowed signal (in our case N= 32), m is the
decomposition level index while a and b are scaling and
translation parameters respectively. The DWT can be
interpreted as a multi-stage filter banks with HP (high pass
resulting in approximate coefficients) and LP (low-pass
resulting in detail coefficients) filters performing series
dilations [14].

At each level the approximate/detail coefficients represent a
filtered signal that spans only half the frequency of the band.
This improves the frequency resolution as the frequency
uncertainty is reduced by half. A schematic representation of
the working of DWT is shown in Figure 3 where A1, A2 and
A3 represent sequences of approximate coefficients and D1,
D2 and D3 represent sequences of detailed coefficients.

Fig. 3. The DWT model

The coefficients produced by the application of DWT

however are useable only up until a certain level of
decomposition. Lei et. Al. [14] demonstrated the impact of
choosing the appropriate level of decomposition (DL) in DWT
on its performance. They quantified the degree of sparseness in
wavelet coefficients by evaluating the percentage of zero/near-
zero coefficients among the entire transformed coefficients. To
determine the number of levels of DWT to be performed, the
sparseness of the coefficients in each level was calculated. The
percentage of zero/near-zero coefficients among the
transformed data was evaluated. The following equation was
used in this calculation:


1


N

N
ps O    

where sp’ represents the sparseness, N is the window size (32
in this case) and No is the number of zero/near zero coefficients
at that particular level. This was done to constrain the value of
sparseness between [0, 1]. The average of the sparseness of
wavelet coefficients in different classes of data collected was
plotted against their respective level. The graph so obtained in
Figure 4 shows that sparseness of the transformed data
diminishes and becomes almost saturated as the decomposition
level reaches 4. Therefore, decomposition was stopped at level
3.

After the DWT encoding, following prior research, Mean,
Standard Deviation, Kurtosis, Linear Weighted Average,
Quadratic Weighted Average, and Skewness was calculated for
each approximate (i.e., A1, A2, and A3) and detailed

coefficient (i.e., D1, D2, and D3) sequence as the primary
features for each 32-point raw data sequence collected earlier
for each scenario (i.e., Rigid Crash). This resulted in one
feature vector per instance which was used in the next stage of
training classifiers.

Fig. 4. Sparseness of Coefficients

D. Classification Algorithms

Various modelling techniques have been explored in
classifying accident data collected from mobile devices. For
example, the iBump application used a hybrid of Hidden
Markov Models (HMM) and Dynamic Time Warping (DTW)
for classifying accidents. The Hidden Markov Model is a
modeling tool that can be employed for modeling and
analyzing time series with spatial or temporal variability [9].
This technique has been employed in various speech and
gesture recognition systems. The authors in [15], described in
detail the application of HMM for very large vocabulary
speech recognition. The sensing process is basically collection
of data from the mobile phone’s sensors. As today’s mobile
phones are only sensitive to forces between -4g and + 4g, the
sensor data is clipped from its original value into this range.
iBump used Weighted Moving Average (WMA) to clean the
data. The data was then passed into a Vector Quantization Unit
in order to translate the three dimensional data into a single
dimensional sequential vector. These vectors were then used to
train the HMM model and as data for accident classification.

Dynamic Time Warping (DTW) is another algorithm used
in machine learning. This algorithm measures similarity
between two temporal sequences in a time series that may have
different speeds. For example, this algorithm used gesture
recognition based on accelerometer data to create a wireless
system for cricket training [16]. In the iBump system, this
algorithm was used to detect accidents alongside HMM due to
low false positive rates of HMM and an inability to tell
different levels of severity apart. Baum-Welch algorithm was
used for HMM training. This algorithm automatically estimates
the parameters of a HMM and determines the probability of
occurrence of a test set. It then uses this test set as a learning
mechanism for the model.

A number of traditional classification algorithms have also
been used to solve similar problem [7]. These methods
included Bayes Network, Random Forests, Logistic Regression
and Radial Basis Function. The algorithms were evaluated
based on their accuracy, F-Measure and low error on

misclassification. The evaluation revealed the random forest
classifier to be the best one with an accuracy of 78.44% and an
F-Measure of approximately 0.8. The same platform was used
by the researchers in [7] whilst testing the following
algorithms: REPTree, Random Forest, JRIP and RBF Classifier
of which REPTree outperformed the rest with an evaluation
performance accuracy of 84.3%.

Based on prior research, this paper applied the following
classification algorithms for classifying the WDM-coded
sensor data:

 Naïve Bayes
 Bayesian Networks
 Logistic Regression
 Random Forest
 REPTree
 J48

The Wrapper Sub Set Selection feature selection method

was used for each classifier which resulted in different sub-set
of attributes for training each of the classifiers tested. The
attributes selected in both the aforementioned methods were
trained and tested after applying the SMOTE filter for
underrepresented classes. A 10-fold cross-validation was used
to train and test each algorithm.

IV. RESULTS AND EVALUATION

Results for the top three best performing classifiers are
presented in this section.

A. Naïve Bayes

The Naïve Bayes algorithm performed best in terms of the
‘Sharp Turn’ and ‘Unpaved Road’ classes with a True Positive
rate of over 97%. However, this algorithm significantly
misclassified the Phone drop class with only 60% accuracy.
There were also a number of instances where an accident case
was classified as a non-accident case. The complete
performance of the Naïve Bayes classifier is displayed in
Table 2 below.

TABLE 2. PERFORMANCE OF THE NAÏVE BAYES CLASSIFIER

TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.7 0.083 0.667 0.7 0.683 0.919 Wall
Crash

0.888 0.068 0.755 0.888 0.816 0.96 Human
Crash

0.6 0.041 0.667 0.6 0.632 0.886 Phone
Drop

0.972 0 1 0.972 0.986 1 Sharp
Turn

0.981 0.003 0.981 0.981 0.981 0.996 Unpaved
Road

B. Logistic Regression

Logistic Regression performed slightly better than the
Naïve Bayes. This algorithm did a relatively better job of
differentiating between accident and non-accident cases. For
example, the Phone Drop was classified correctly 74% of the

time. The overall performance of the Logistic Regression
classifier is shown in Table 3 below.

TABLE 3. PERFORMANCE OF THE LOGISTIC REGRESSION CLASSIFIER

TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.663 0.098 0.616 0.663 0.639 0.917 Wall
Crash

0.925 0.048 0.822 0.925 0.871 0.971 Human
Crash

0.74 0.036 0.74 0.74 0.74 0.918 Phone
 Drop

0.958 0.017 0.92 0.958 0.939 0.988 Sharp
Turn

0.852 0.011 0.92 0.852 0.885 0.974 Unpaved
Road

C. Random Forest

Random Forest algorithm performed the best among those
tested. As Table 4 shows, like others, the algorithm was not
able to identify the Phone Drop very accurately. However, it
was fairly successful in identifying the human crash class and
the other false positives like sharp turn and unpaved road.

TABLE 4. PERFORMANCE OF THE RANDOM FOREST CLASSIFIER

TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.7 0.098 0.629 0.7 0.663 0.917 Wall
Crash

0.925 0.045 0.831 0.925 0.876 0.975 Human
Crash

0.6 0.019 0.811 0.6 0.69 0.926 Phone
Drop

0.986 0.015 0.934 0.986 0.959 0.999 Sharp
Turn

0.907 0.006 0.961 0.907 0.933 0.998 Unpaved
Road

The ROC curve for Random Forest is shown in Figure 5. The
Random Forest classifier with the wrapper method for
attribute selection was subsequently implemented in the
Android application.

Fig. 5. ROC Curves for Random Forest Classifier

V. ANDROID APPLICATION

The android application is called ‘Crash Detect’. The
application has been design to ensure ease of use with little or
no training. The application currently supports only the
English language although in the future, it can be modified to
support other languages.

Fig. 6. Sample screenshots of the Android application

Upon first run of the application, the user is requested to
register his/her details. On this registration page, the user is
asked to enter an e-mail address, full name, phone number and
password. Personal details requested are so that the Police will
be able to identify the user in case of a collision. The user is
then asked to enter details regarding medical history and add a
number of emergency contacts. The insurance details and date
of birth are so that the EMS will be able to directly contact the
insurance provider if necessary.

As a service running in the background, the application
takes readings of the phone’s accelerometer and gyroscope
every 5 milliseconds, feeds this date to the trained model and
determines if an accident has taken place. The application
automatically sends out a notification to local police, EMS and
emergency contacts in case of an accident. This SMS
notification contains the type and location of the accident. The
user has the option of cancelling the notification in case of a
misclassification by the algorithm. Figure 6 show the user
interface of the application.

VI. CONCLUSIONS

Road accidents are a major cause for concern in the
present times. Despite rules and regulations and fines, the
death toll and casualty rate caused by road accidents alone are
still astounding. There is an urgent need for solutions that
increase efficiency of emergency response in these situations.
Although car manufacturing companies offer viable solutions
with their built-in accident notification systems, these are
expensive and could be rendered obsolete with changing
technology. This paper presents a solution that is affordable,
portable and needs little to no effort on the user’s part. The
solution is an Android application that uses an Artificial
Intelligence classifier. The application constantly monitors
phone sensor data, feeds this data into the classifier model to
detect if an accident has occurred. In case of an accident, the
application notifies emergency contacts, local police and local

emergency medical response teams of the location and
classification of the accident.

The model was trained using data collected from
laboratory simulations and real cars. Some false positives like
Phone Drop were not identified well and need more work.
However, this application is a stepping stone towards
improving road accident responses in a cost-efficient manner.

REFERENCES
[1] Hirose et al. “Analysis of Road Accident Rates Following Performed

Actions Associated to Engineering, Education and Enforcement:
Araraquara, Franca, Matão, Ribeirão Preto and São Carlos,” in Proc. of
the 17th International Conference Road Safety On Five Continents, 2016.

[2] M. Taamneh, S. Alkheder and S. Taamneh, “Data-mining techniques for
traffic accident modeling and prediction in the United Arab Emirates,”
Journal of Transportation Safety & Security, 146-166, Apr. 2016.

[3] B. Hallinan, “The EMT's and Paramedic's Role in Vehicle Extrication,”
Journal of Emergency Medical Services, 2015.

[4] D. Diaz, T. Otano, B. Fraile, C. Louis, J. Ramírez, and A. Sucunza, “Use
of a Structural Deformity Index as a Predictor of Severity Among
Trauma Victims in Motor Vehicle Crashes,” The Journal of Emergency
Medicine on ScienceDirect, 43(1), 19-28, 2012.

[5] C. Pignataro, “Automatic Crash Notification: A Promising Resource for
Fire EMS,” 2013. Available at:
http://www.fireengineering.com/articles/print/volume-166/issue-
9/departments/fireems/automatic-crash-notification-a-promising-
resource-for-fire-ems.html

[6] J. White, C. Thompson, H. Turner, B. Dougherty and D. Schmidt,
“WreckWatch: Automatic traffic accident detection and notification with
smartphones,” Mobile Networks and Applications, 16:285, 2011.

[7] C. Vijayagopalraj, “A Vehicle - Collision Learning System Using
Driving Patterns on the Road,” Masters of Science, University of North
Texas, 2013.

[8] A. Meier, M. Gonter and R. Kruse, “Precrash Classification of Car
Accidents for Improved Occupant Safety Systems,” Procedia
Technology, vol. 15, 198-207, 2014.

[9] F. Aloul, I. Zualkernan, R. Abu-Salma, H. Al-Ali, and M. Al-Merri,
“ibump: Smartphone application to detect car accidents,” in Proc. of the
IEEE International Conference on Industrial Automation and
Information & Communications Technology, 52-56, Aug. 2014.

[10] J. Lahn, H. Peter and P. Braun, “Car Crash Detection on Smartphones,”
in Proc. of the 2nd International Workshop on Sensor-based Activity
Recognition and Interaction, 2015.

[11] S. Arivazhagan and L. Ganesan, “Texture classification using wavelet
transform,” Pattern Recognition Letters, 24(9-10), 1513-1521, June
2003.

[12] D. Li, T. Bissyande, J. Klein and Y. Traon, “Time Series Classification
with Discrete Wavelet Transformed Data,” International Journal of
Software Engineering and Knowledge Engineering, vol. 26, 1361-1377,
2016.

[13] P. Chaovalit, A. Gangopadhyay, G. Karabatis and Z. Chen, “Discrete
wavelet transform-based time series analysis and mining,” ACM
Computing Surveys, 43(2), 1-37, Jan. 2011.

[14] L. Lei, C. Wang and X. Liu, “Discrete Wavelet Transform
Decomposition Level Determination Exploiting Sparseness
Measurement,” International Journal of Electrical, Computer,
Energetic, Electronic and Communication Engineering, 7(9), 2013.

[15] A. Seward, “A fast HMM match algorithm for very large vocabulary
speech recognition,” Speech Communication, 42(2), 191-206, Feb. 2004.

[16] I. Zualkernan, K. Assaleh, S. Dabrai, M. Hoque and H. Pedhiwala, “A
Wireless Electronic Training System for Cricket,” in Proc. of the IEEE
13th Conference on Advanced Learning Technologies, 2013.

[17] E. Justino, F. Bortolozzi and R. Sabourin, “A comparison of SVM and
HMM classifiers in the off-line signature verification,” Pattern
Recognition Letters, 26(9), 1377-1385, Jul. 2005.

