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Abstract—Cyberattacks are becoming increasingly sophisticated 
and evolving danger to the Web users. Therefore, addressing the 
growing threat of cyberattacks and providing automated solutions 
became a necessity. The purpose of this paper is to use machine 
learning (ML) techniques for malicious websites detection and 
classification, and intrusion detection. Different ML algorithms 
were applied, namely Decision Tree (DT), K-Nearest Neighbors 
(KNN), Naive Bayes (NB) and Support Vector Machine (SVM). 
Two datasets were utilized to train the ML models. The first dataset 
contains two classes of websites: “malicious” and “benign”. The 
second dataset has six classes of different network intrusion cyber-
attacks: “normal”, “blackhole”, “TCP-SYN”, “PortScan”, 
“Diversion”, and “Overflow”. Experimental results demonstrated 
that the ML algorithms were able to achieve high accuracy in 
predicting website maliciousness and intrusion detection. Using the 
first dataset, DT KNN, and SVM classifiers exhibited the best 
performance for detecting malicious URLs with accuracies over 
99%. Using the second dataset, the DT classifier proved most 
suitable for intrusion detection, achieving an accuracy of 95%. This 
paper suggests the integration of ML techniques into online 
security systems to enhance their efficacy in detecting and 
preventing cyber threats.  

Keywords- malicious URLs, machine learning, system penetration, 
intrusion detection 

I. INTRODUCTION

The Web is a large platform that is used by billions of people 

around the world. The Web has a wide range of criminal 

enterprises such as spam-advertised commerce, propagating 

malware and financial fraud via phishing [1]. One common 

aspect between all these cybercriminal activities is that they all 

have unsuspecting users visit their websites. These visits can be 

triggered by email, Web search results, or links from other Web 

pages but they all necessitate the user performing some action, 

such as clicking to specify the desired Uniform Resource 

Locator (URL). These malicious URLs could also lead to 

intruders accessing information stored on the users’ devices 

such as pictures, location, emails, etc.  

The idea of this paper centrally revolves around the protection 

of general users against malicious URLs, phishing attempts, and 

other security concerns. Most antivirus services provide tools 

that identify viruses, malware, and worms. However, they can 

slow down the devices that they run on. Furthermore, relying on 

a firewall system alone is not sufficient to prevent a network 

from all types of network attacks [2]. The traditional approaches 

for detecting malicious URLs often rely on signature-based 

techniques, which can be easily bypassed by polymorphic URLs 

[3]. Therefore, offering automated solutions using the emerging 

machine learning (ML) techniques, can provide a great 

improvement in malicious websites and intrusion detection. 

The main contribution of this paper is to utilize the large 

datasets available nowadays and leverage the powerful ML 

techniques for URL maliciousness prediction and intrusion 

detection. Multiple machine learning techniques are utilized in 

this work including decision tree (DT), support vector machine 

(SVM), k-nearest neighbors (KNN), and Naïve Bayes (NB) 

classifiers. Various evaluation metrics are used to evaluate each 

of these classifiers such as accuracy, precision, recall, and F1-

score. Moreover, the receiver operating characteristic (ROC), 

area under the curve (AUC) and confusion matrix are used. Two 

datasets were utilized, namely malicious URLs dataset and 

intrusion detection dataset in order to identify different evolving 

adversarial security concerns. The findings of this work help the 

cybersecurity authorities predict malicious URLs, cyber dangers, 

thereby improving the security of online settings for all users. 

The rest of this paper is organized as follows. Section II 

presents the related works.  Section III explains the datasets and 

methodology considered in this work. Section IV presents the 

experimental results. Section V provides a discussion of the 

results. Section VI concludes the paper. 

II. RELATED WORK

There are numerous research papers that propose solutions 

to solve several security-related concerns. Justin et al. [3] 

explored lexical and host-based aspects of the linked URLs to 

identify malicious Websites using online learning techniques. 

Researchers found that online algorithms are especially useful 

when the training data is too large to be effectively processed in 

batch processing and when the distribution of parameters that 

characterize dangerous URLs is dynamic. Their proposed online 

algorithm achieved a classification accuracy of 99% using a 

balanced dataset. Another research paper [4] suggested a three-

class classification system for websites into benign, phishing 

and malware using a learning-based technique. Without 

accessing the websites’ content, their technique solely evaluates 

the URL itself which reduces the run-time latency and the 

chance of exposing users to browser-based security flaws. 
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Because of using the ML approach, their system achieved 97.53% 

accuracy in identifying dangerous websites which outperformed 

blacklisting services in terms of generality and coverage. 

Another method for identifying dangerous websites that 

prioritizes privacy protection was done by Wu et al. [5]. They 

employed structural partitioning and singular value 

decomposition (SVD) to protect the private information. 

Afterwards, an evaluation was conducted using SVM. Their 

method was able to identify a significant number of rogue 

websites by their URLs. Lakshmanarao et al. [6] proposed an 

ML-based solution for detecting malicious websites using 

different ML techniques, namely LR, KNN, DT and RF. In 

addition, they made use of different feature extraction methods. 

The researchers concluded that using the hashing vectorizer and 

RF classifier achieved the highest accuracy of 97.5%. This 

model was used in a mobile app for detecting malicious URLs. 

For intrusion detection solutions, Wu et al. [7] utilized the 

KDD intrusion detection dataset to evaluate several models, 

namely J48, RT, Random Tree, Decision Table, Multilayer 

Perceptron (MLP), NB and Bayes Network classifiers. The 

Bayes network classifier had the greatest value for properly 

identifying the regular packets. The RF classifier has the lowest 

RMSE value, lowest false positive rate and the greatest accuracy 

rate of 93.77%. Except for the false negative parameter, the RF 

classifier offers adequate performance parameters.  

Furthermore, Choi et al. [8], Vanhoenshoven et al. [9] 

Kaddoura et al. [10] and Prieto et al. [11] adopted various novel 

methodologies and perspectives in detecting and categorizing 

malicious web links and websites, utilizing different ML 

techniques and datasets. These works are the most similar to the 

work proposed in this paper. Choi et al. [8] presented a method 

that detects malicious URLs and identifies specific types of 

threats they pose. In a similar work, Vanhoenshoven et al. [9] 

delve into the use of ML techniques for detecting malicious 

URLs. Further, Kaddoura et al. [10] explored the classification 

of websites based on their malicious or benign nature. The study 

specifically leverages network features in conjunction with 

supervised ML algorithms, providing a distinct methodological 

approach from the previous studies. Lastly, Prieto et al. [11] 

proposed a knowledge-based approach to identify potentially 

risky websites. While the details were not given, their work 

signifies an interesting perspective that deviates from the typical 

ML-centric methodology and integrates a knowledge-based 

approach for risk detection. The papers discussed above are 

closely related to the proposed work since they make use of a 

similar approach and utilize datasets that contain features similar 

to the ones used in this work. They were also able to acquire 

high accuracies using ML models similar to ours. Table 1 

summarizes the papers discussed above. 
 

Table 1: Summary of Literature Review Studies 
Reference Type of 

Attack 

Targeted 

Dataset Used Classifier 

Used 
Accuracy 

Choi et al. [8]  attack 

types and 

malicious 

URLs 

Real life 

dataset 

collected by 

the authors 

SVM 93% for 

attack types 

and 98% for 

malicious 

URLs 

Vanhoenshoven 

et al. [9]  
malicious 

URLs 

Public dataset 

(2.4 million 

URLs ) 

RF 97.69% 

Kaddoura et 

al. [10]  

malicious 

URLs and 

network 

features 

Public dataset 

(1,782 URLs) 

SVM 96% 

Prieto et al. 

[11]  

domains 

with 

malicious 

content 

Generated 

dataset 

LR 89% 

 

III. METHODOLOGY 

A. Datasets Description 

In this paper, two publicly available datasets that relate to 

detecting malicious URLs as well as intrusion detection were 

utilized. The first dataset used is “Dataset of Malicious and 

Benign Webpages” [12], which will be referred to as dataset A. 

This dataset contains 10 features such as URL, URL length, IP 

address, geographic location and others. The dataset consists of 

1.52 million records that are split into a training set that contains 

1.2 million records, and a testing set that contains 362k records. 

Each record represents a webpage that is either labeled as benign 

(good) or malicious (bad). The dataset is highly imbalanced with 

98% of the data belong to the benign class and the rest (2%) 

belong to the malicious class. 

The second dataset used was “Network Intrusion Detection” 

[13], which will be referred to as dataset B. This dataset contains 

5000 records of features extracted from Network Port Statistics 

to protect modern-day computer networks from cyber-attacks. 

The dataset contains 31 features such as switch ID, Port Number 

passed, Received Packets, Sent Bytes, Sent Packets, and others. 

The dataset consists of six classes: 0 (Normal), 1 (Blackhole), 2 

(TCP-SYN), 3 (PortScan), 4 (Diversion) and 5 (Overflow). Fig. 

1 shows the percentage of records belonging to different the 

classes in each of dataset A and dataset B. 
 

 
(a)                          (b) 

Fig. 1. Percentage of records of different classes in (a) dataset A, and (b) 

dataset B 

B. Data Preprocessing and Model Selection  

Several data pre-processing techniques were applied to the 

datasets before ML algorithms were used. For dataset A, 

irrelevant features were dropped from the dataset such as ID, 

URL, IP address and content. This results in a total of 8 features 

used for classification. Moreover, the binary features were 

encoded using ordinal encoding. Due to the fact that the dataset 

is highly imbalanced, under-sampling was applied by taking a 

random subset of 150K from the benign records while 

considering all the 8063 malicious records present in the dataset. 



For dataset B, dimensionality reduction was applied by 

merging the ‘Packets Looked Up’ field with the ‘Packets 

Matched’ field into a single new field named ‘Packets not 

Found’. Additionally, the samples belonging to class 5 were 

dropped because the class has very few samples (1% of the 

dataset). Dimensionality reduction was also applied by dropping 

irrelevant features from the dataset such as the Table_ID, and 

Max_Size. Additionally, the features that had no variance in the 

values for all samples were also dropped, such as the ‘is_valid’ 

field. This process results in a total of 26 features left to be used 

for classification. Moreover, ordinal encoding and scaling were 

applied to features such as ‘received packets’ and ‘bytes’, and 

the ‘sent packets’ and ‘bytes’. For model selection, holdout 

method were used where 20% of the dataset is used for testing 

while the rest of the dataset is used for training. 

C. Classification Algorithms Used 

Decision Tree (DT) algorithm: creates a tree-like model by 

learning basic decision rules from training data [10]. The root of 

the decision tree represents the entire dataset and each internal 

node represents a decision rule based on one of the input features. 

The branches represent the possible values of the feature, and 

the leaf nodes represent the predicted value of the target variable. 

To make a prediction for a new data point, the input features of 

the testing dataset are compared against the decision rules 

represented by the internal nodes of the tree, and the predicted 

value is obtained by following the appropriate branch to a leaf 

node. The metrics that decision trees rely on to determine the 

best feature to split the dataset based on at each internal node are 

impurity measures such as Entropy or Gini Index, defined as 

follows: 

𝐺𝑖𝑛𝑖 = 1 −  ∑ (𝑝𝑖)2𝑐
𝑖=1   (1) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  ∑ −𝑝𝑖 log2 𝑝𝑖
𝑐
𝑖=1   (2) 

where 𝑝
𝑖
 is the relative frequency of class i at a specific node.   

 

K-nearest neighbors (KNN): a supervised non-parametric ML 

algorithm. It assigns a class label to an instance based on the 

class labels of its K nearest neighbors in the training data. Using 

a distance metric (e.g., Euclidean distance, Manhattan distance), 

the algorithm determines the distance between the instance and 

each training sample. The K closest neighbors are identified, and 

the class title is selected by majority vote. The predictions are 

affected by the choice of K. In addition, the KNN classifier 

avoids the time-consuming training process, and, more 

importantly, bypasses the need to learn individual program 

profiles separately [17]. Thus, the cost of learning program 

behavior is significantly decreased. Euclidean distance is 

defined by equation (3). 

𝑑(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1    (3) 

where x and y are samples being compared, 𝑥𝑖 and 𝑦
𝑖
 represent 

feature i of each of the samples x and y, respectively, and n is 

the number of features describing each sample. 

 

Naive Bayes (NB): an algorithm based on Bayes theorem, 

which predicts the label of a data point based on the probability 

of a hypothesis (or label) given some observed evidence (or 

features). The algorithm classifies the new data point by 

calculating the posterior probability of each class given the 

observed evidence and assigning that point to the class with the 

highest probability. The mathematical formula (4) calculates the 

probability of a sample to belong to a specific class given a 

feature vector, where y represents the class label and X 

represents the feature values. 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
  (4) 

The NB algorithm assumes conditional independence among 

features. Furthermore, it can work with missing feature values. 

Support Vector Machines (SVM): A powerful and widely 

used supervised ML algorithm. Its goal is to find a hyperplane 

in an N-dimensional space to separate the data points belonging 

to different classes [10]. The hyperplane is selected in such a 

way that the data points are separated into distinct regions, one 

for each class, and the margin between the regions is maximized. 

SVM can still work even if the data is not linearly separable by 

using the kernel trick to map the data into a higher-dimensional 

space where it becomes separable by a hyperplane. This allows 

the SVM algorithm to handle complex and nonlinear 

relationships between the features and the target variable.  

All four classifiers mentioned above are applied to each of 

dataset A and dataset B, and their results are compared.  

D. Evaluation Metrics  

Several evaluation metrics are used to assess the 

performance of each of the ML models in classifying the target 

variable. In this work, accuracy, precision, recall, F1-score, 

receiver operating characteristic (ROC), area under the curve 

(AUC) and confusion matrix are used.  

Accuracy is the simplest and commonly used metric for 

classification tasks. It is defined as the ratio of correct 

predictions to the total number of predictions as defined in 

formula (4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

where 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the number of 

true negatives, 𝐹𝑃 is the number of false positives and 𝐹𝑁 is the 

number of false negatives.  

However, accuracy may not be the best metric to use 

especially when dealing with imbalanced datasets. Precision and 

recall are two metrics that are commonly used for classification 

tasks and they work well in the case of imbalanced datasets. 

Precision and recall formulas are provided as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (6) 

F1-score is a harmonic mean of precision and recall. It is a 

good metric to use when dealing with imbalanced datasets. It is 

defined as follows: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 



The ROC is a graphical representation of the trade-off 

between the true positive rate and false positive rate for different 

classification thresholds [16]. The AUC can be calculated as the 

area under the ROC curve. The AUC is a popular metric for 

evaluating binary classification models. It measures the 

performance of the model across all possible thresholds, which 

can be useful when dealing with imbalanced datasets.  

Lastly, a confusion matrix is a table that summarizes the 

performance of a classification model. It contains four values: 

true positives, false positives, true negatives, and false negatives 

[16]. The values in the confusion matrix can be used to calculate 

various metrics, including accuracy, precision and recall as 

mentioned in equations (4) – (6). 

IV. EXPERIMENTAL RESULTS 

A. Results using Dataset A 

Different ML algorithms were applied to dataset A. The 

following subsections show the results of each of the ML models. 

- DECISION TREE (DT) 

DT algorithm was applied on dataset A. Several tests were 

run to find the optimal tree size that results in the highest 

prediction accuracy. The size of the optimal tree was 19 nodes 

and it resulted in an accuracy of 99%. This classifier achieved a 

recall value of 99% and a precision value of 96% for the 

‘malicious’ class. The classifier also achieved an F1-score of 

98%. The AUC score obtained was 0.99.  

Fig. 2 shows the confusion matrix resulting from applying 

the DT classifier on dataset A. As can be seen from the figure, 

most of the samples were correctly classified. 

 

Tr
u

e 
la

b
el

 

Benign 1624 14 

Malicious 63 3e+04 

  Benign Malicious 

  Predicted label 
Fig. 2. Confusion matrix resulting from applying DT classifier on dataset A 

- K-NEAREST NEIGHBORS (KNN) 

One of the important factors in prediction accuracy for KNN 

is the number of neighbors used. It was found that the number 

of nearest neighbors for dataset A that yielded the highest 

accuracy (99.88%) was 100 neighbors. The precision of the 

malicious class is 100%. However, the recall was about 95% and 

the F-score was 97%. The AUC of the ROC curve was 99.86%. 

Fig. 3 shows the confusion matrix resulting from applying 

the KNN classifier on dataset A. As can be seen from the figure, 

most of the samples were correctly classified. 

- NAÏVE BAYES (NB) 

Using the NB model, an accuracy of 99.75% was obtained. 

The precision of the malicious class was 100% while the recall 

was approximately 89%. The F1-score was 94%, which was 

lower than that of the decision tree and KNN models. The AUC 

of the ROC curve was 99.69%. 

Tr
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e 
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Benign 1538 84 

Malicious 0 70765 

  Benign Malicious 

  Predicted label 

Fig. 3. Confusion matrix resulting from applying KNN classifier on dataset A 

 

- SVM WITH LINEAR KERNEL  

An SVM with linear kernel model was utilized in this work. 

Several tests were run to select the best hyperparameters for the 

model. The best accuracy obtained was 99.73% at iteration 5000. 

The precision of the malicious class was 100%. The recall, on 

the other hand, was 89% similar to that achieved using the NB 

model. The achieved F1-score was 94%. This demonstrates that 

the linear SVM model and the NB model are both less 

accurate models compared to KNN and DT classifiers. 

- SVM WITH POLYNOMIAL KERNEL 

An SVM with polynomial kernel model was utilized in this 

work. Several tests were run to select the best hyperparameters 

for the model. The polynomial degree selected was 6 which 

achieved an accuracy of 99.75%. Fig. 4 shows the confusion 

matrix resulting from applying the SVM with polynomial kernel 

classifier on dataset A. As can be seen from the figure, most of 

the samples were correctly classified. 
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Benign 1529 87 

Malicious 0 70771 

  Benign Malicious 

  Predicted label 
Fig. 4. Confusion matrix resulting from applying the SVM classifier with 

polynomial kernel on dataset A 

 

The precision of the malicious class was 100% while the 

recall was 95%. The combination of the two measures yielded 

an F1-score of 97%. The results of all the ML models applied to 

dataset A are summarized in Table 2. 

 
Table 2. Applicability metrics of all ML models applied to dataset A 

Class Metric DT KNN NB 

Linear 

Kernel 

SVM 

Poly 

Kernel 

SVM 

Malicious 

Precision 96% 100% 100% 100% 100% 

Recall 99% 95% 89% 89% 95% 

F1-score 98% 97% 94% 94% 97% 

Benign 

Precision 100% 100% 100% 100% 100% 

Recall 100% 100% 100% 100% 100% 

F1-score 100% 100% 100% 100% 100% 

Overall Accuracy 99.76% 99.88% 99.75% 99.73% 99.75% 

 AUC 99.98% 99.86% 99.69% 99% 99% 

 



B. Results using Dataset B  

Different ML algorithms were applied to dataset B. The 

following subsections show the results of each of the ML models. 

- DECISION TREE (DT) 

Several tests were run to select the ideal size of the DT that 

results in the maximum prediction accuracy. The testing 

accuracy was at its highest (95%) when the tree had 49 nodes. 

Fig. 6 shows the confusion matrix resulting from applying DT 

on dataset B. As can be seen from the figure, both the TCP_SYN 

(class 2) and Port Scan (class 3) attacks have remarkably similar 

features which resulted in false negatives and false positives 

between these classes in the confusion matrix. 

 

Fig. 6. Confusion matrix resulting from applying the DT classifier on dataset B 

 

The DT classifier had precision values ranging between 79% 

and 100% for the different classes as seen in Table 3. The recall 

and F1-score values ranged between 78% and 100%.  

- KNN 

KNN was applied on dataset B. Several tests were run to find 

the number of neighbors that maximizes the accuracy. It was 

found that 13 neighbors is the best number of nearest neighbors. 

The accuracy of the KNN model was comparatively lower than 

that of the DT classifier, which was around 85.19% as can be 

seen in Table 3. The KNN classifier was mainly not able to 

differentiate between the TCP_SYN and Port scan classes, as 

well as misclassifying a hefty 39 samples from the Diversion 

type class as a blackhole. The precision values ranged between 

58% and 99 %, and recall values ranged between 42% and 100%. 

The generated F1-scores ranged between 51% and 99%, as can 

be seen in Table 3. Due to these scores, it can be concluded that 

this classifier is not as accurate as the DT classifier.  

- NAÏVE BAYES (NB) 

NB classifier was applied to dataset B. As can be seen in 

Table 3, the accuracy of NB was lower than that of the DT, but 

similar to the KNN model, sitting at about 84.69%. This 

classifier had difficulty distinguishing between several samples 

in the TCP_SYN and Port scan classes too, as well as 

misclassifying 38 samples from the blackhole type class as 

Diversions. This model yielded F1-scores for its classes ranging 

between 60% and 100%, and precision scores ranging between 

52% and 100% and recall scores ranging between 48% and 

100%, as shown in Table 3. It can be concluded that the scores 

achieved by KNN classifier are not as high as the ones achieved 

by the DT model.  

- SVM WITH LINEAR AND POLYNOMIAL KERNELS  

SVM models with linear and polynomial kernels were also 

applied to dataset B. The results achieved were low compared to 

other models. Even after performing hyperparameter tuning on 

both models, the performance did not vary significantly. 

Moreover, due to their poor performance in all metrics as can be 

seen in Table 3, SVM models with linear and polynomial 

kernels were considered unsuitable for dataset B.  
 

Table 3. Applicability metrics of all ML models applied to dataset B 

Class Metric DT KNN NB 

SVM 

Linear 

SVM 

Poly 

Normal 

Precision 100% 99% 100% 86% 58% 

Recall 100% 100% 100% 91% 100% 

F1-score 100% 99% 100% 89% 74% 

Blackhole 

Precision 97% 58% 78% 85% 30% 

Recall 95% 72% 54% 28% 2% 

F1-score 96% 64% 64% 42% 5% 

TCP-

SYN 

Precision 79% 73% 61% 47% 75% 

Recall 83% 79% 96% 45% 13% 

F1-score 81% 75% 75% 46% 22% 

PortScan 

Precision 79% 76% 99% 25% 25% 

Recall 78% 70% 48% 28% 5% 

F1-score 78% 73% 65% 27% 9% 

Diversion 

Precision 100% 67% 52% 44% 22% 

Recall 96% 42% 72% 68% 3% 

F1-score 98% 51% 60% 54% 5% 

Overall Accuracy 95% 85% 85% 67% 
57% 

 

V. DISCUSSION 

This work employed four ML methods, namely DT, NB, 

SVM and KNN, to detect harmful websites and identify system 

intrusions. As shown in Table 2, all ML algorithms 

demonstrated excellent performance in detecting fraudulent 

websites especially the KNN model applied on dataset A. This 

suggests that these algorithms can be valuable in identifying and 

preventing cyber threats, particularly in the context of website 

and system security. Furthermore, the DT algorithm exhibited a 

high F1-score of 98% when applied on dataset B, indicating its 

proficiency in recognizing patterns and making accurate 

predictions on new, unseen data. Furthermore, it can be 

concluded that the preprocessing step including feature selection 

and dimensionality reduction that were applied on each of the 

datasets allowed the respective models to be able to perform 

well in detecting malicious URLs and intrusion. Table 4 

compares the proposed work to other works that use similar 

datasets. As can be seen, the proposed work outperformed the 

previous ones. 
 



Table 4. Models’ Performance Comparison with previous works 

Detected Attack 

Categories 

Dataset Used Classifier 

Used 

Results 

Attack types and 

bad URLs [8] 

Real life dataset 

collected by the 

authors 

SVM Accuracy: 93% 

(Attack types), 98% 

(Malicious URLs) 

Malicious URLs 

[9] 

Public dataset 

(2.4 million 

URLs ) 

RF Accuracy: 97.69% 

Malicious URLs 

and network 

features [10] 

Public dataset 

(1,782 URLs) 

SVM Accuracy: 96% 

F1-Score: 92% 

Domains that 

contain malicious 

content [11] 

Built a dataset LR Accuracy: 89% 

Malicious URLs Dataset A KNN Accuracy: 99.88% 

F1-Score: 97% 

TCP_SYN and 

Port scan 

Dataset B Decision 

Tree 

Accuracy: 95.09% 

F1-Score: 78% - 

100% 

 

VI. CONCLUSION 

In summary, this paper revealed that using ML classification  

techniques was highly effective in detecting malicious URLs, 

achieving accuracies over 99%. For intrusion detection, the DT 

classifier proved to be the most suitable with an accuracy of 95%. 

These findings highlight the significant potential of ML 

techniques in the field of cybersecurity. Implementing these 

techniques can enhance website security and effectively defend 

against harmful cyberattacks. The study underscores the need 

for a diverse range of ML algorithms to improve the accuracy 

and dependability of security systems. By leveraging the 

strengths of different algorithms, comprehensive and robust 

security solutions can be developed to combat evolving cyber 

threats. In the future, the aim is to extend the work to consider 

more types of security attacks. This can be done by training the 

ML models on datasets that include other attacks. Moreover, the 

proposed method can be implemented and used in different 

security systems to provide real-time protection of general users 

against malicious URLs and other security concerns. 
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