
Malicious URL and Intrusion Detection using

Machine Learning

Amr Hamza, Farah Hammam, Medhat Abouzeid, Mohammad Arsalan Ahmed, Salam Dhou, Fadi Aloul

Department of Computer Science and Engineering

American University of Sharjah

Sharjah, UAE

Email: sdhou@aus.edu

Abstract—Cyberattacks are becoming increasingly sophisticated
and evolving danger to the Web users. Therefore, addressing the
growing threat of cyberattacks and providing automated solutions
became a necessity. The purpose of this paper is to use machine
learning (ML) techniques for malicious websites detection and
classification, and intrusion detection. Different ML algorithms
were applied, namely Decision Tree (DT), K-Nearest Neighbors
(KNN), Naive Bayes (NB) and Support Vector Machine (SVM).
Two datasets were utilized to train the ML models. The first dataset
contains two classes of websites: “malicious” and “benign”. The
second dataset has six classes of different network intrusion cyber-
attacks: “normal”, “blackhole”, “TCP-SYN”, “PortScan”,
“Diversion”, and “Overflow”. Experimental results demonstrated
that the ML algorithms were able to achieve high accuracy in
predicting website maliciousness and intrusion detection. Using the
first dataset, DT KNN, and SVM classifiers exhibited the best
performance for detecting malicious URLs with accuracies over
99%. Using the second dataset, the DT classifier proved most
suitable for intrusion detection, achieving an accuracy of 95%. This
paper suggests the integration of ML techniques into online
security systems to enhance their efficacy in detecting and
preventing cyber threats.

Keywords- malicious URLs, machine learning, system penetration,
intrusion detection

I. INTRODUCTION

The Web is a large platform that is used by billions of people

around the world. The Web has a wide range of criminal

enterprises such as spam-advertised commerce, propagating

malware and financial fraud via phishing [1]. One common

aspect between all these cybercriminal activities is that they all

have unsuspecting users visit their websites. These visits can be

triggered by email, Web search results, or links from other Web

pages but they all necessitate the user performing some action,

such as clicking to specify the desired Uniform Resource

Locator (URL). These malicious URLs could also lead to

intruders accessing information stored on the users’ devices

such as pictures, location, emails, etc.

The idea of this paper centrally revolves around the protection

of general users against malicious URLs, phishing attempts, and

other security concerns. Most antivirus services provide tools

that identify viruses, malware, and worms. However, they can

slow down the devices that they run on. Furthermore, relying on

a firewall system alone is not sufficient to prevent a network

from all types of network attacks [2]. The traditional approaches

for detecting malicious URLs often rely on signature-based

techniques, which can be easily bypassed by polymorphic URLs

[3]. Therefore, offering automated solutions using the emerging

machine learning (ML) techniques, can provide a great

improvement in malicious websites and intrusion detection.

The main contribution of this paper is to utilize the large

datasets available nowadays and leverage the powerful ML

techniques for URL maliciousness prediction and intrusion

detection. Multiple machine learning techniques are utilized in

this work including decision tree (DT), support vector machine

(SVM), k-nearest neighbors (KNN), and Naïve Bayes (NB)

classifiers. Various evaluation metrics are used to evaluate each

of these classifiers such as accuracy, precision, recall, and F1-

score. Moreover, the receiver operating characteristic (ROC),

area under the curve (AUC) and confusion matrix are used. Two

datasets were utilized, namely malicious URLs dataset and

intrusion detection dataset in order to identify different evolving

adversarial security concerns. The findings of this work help the

cybersecurity authorities predict malicious URLs, cyber dangers,

thereby improving the security of online settings for all users.

The rest of this paper is organized as follows. Section II

presents the related works. Section III explains the datasets and

methodology considered in this work. Section IV presents the

experimental results. Section V provides a discussion of the

results. Section VI concludes the paper.

II. RELATED WORK

There are numerous research papers that propose solutions

to solve several security-related concerns. Justin et al. [3]

explored lexical and host-based aspects of the linked URLs to

identify malicious Websites using online learning techniques.

Researchers found that online algorithms are especially useful

when the training data is too large to be effectively processed in

batch processing and when the distribution of parameters that

characterize dangerous URLs is dynamic. Their proposed online

algorithm achieved a classification accuracy of 99% using a

balanced dataset. Another research paper [4] suggested a three-

class classification system for websites into benign, phishing

and malware using a learning-based technique. Without

accessing the websites’ content, their technique solely evaluates

the URL itself which reduces the run-time latency and the

chance of exposing users to browser-based security flaws.

IEEE 38th International Conference on Information Networking (ICOIN), Ho Chi Minh City, Vietnam, 2024

Because of using the ML approach, their system achieved 97.53%

accuracy in identifying dangerous websites which outperformed

blacklisting services in terms of generality and coverage.

Another method for identifying dangerous websites that

prioritizes privacy protection was done by Wu et al. [5]. They

employed structural partitioning and singular value

decomposition (SVD) to protect the private information.

Afterwards, an evaluation was conducted using SVM. Their

method was able to identify a significant number of rogue

websites by their URLs. Lakshmanarao et al. [6] proposed an

ML-based solution for detecting malicious websites using

different ML techniques, namely LR, KNN, DT and RF. In

addition, they made use of different feature extraction methods.

The researchers concluded that using the hashing vectorizer and

RF classifier achieved the highest accuracy of 97.5%. This

model was used in a mobile app for detecting malicious URLs.

For intrusion detection solutions, Wu et al. [7] utilized the

KDD intrusion detection dataset to evaluate several models,

namely J48, RT, Random Tree, Decision Table, Multilayer

Perceptron (MLP), NB and Bayes Network classifiers. The

Bayes network classifier had the greatest value for properly

identifying the regular packets. The RF classifier has the lowest

RMSE value, lowest false positive rate and the greatest accuracy

rate of 93.77%. Except for the false negative parameter, the RF

classifier offers adequate performance parameters.

Furthermore, Choi et al. [8], Vanhoenshoven et al. [9]

Kaddoura et al. [10] and Prieto et al. [11] adopted various novel

methodologies and perspectives in detecting and categorizing

malicious web links and websites, utilizing different ML

techniques and datasets. These works are the most similar to the

work proposed in this paper. Choi et al. [8] presented a method

that detects malicious URLs and identifies specific types of

threats they pose. In a similar work, Vanhoenshoven et al. [9]

delve into the use of ML techniques for detecting malicious

URLs. Further, Kaddoura et al. [10] explored the classification

of websites based on their malicious or benign nature. The study

specifically leverages network features in conjunction with

supervised ML algorithms, providing a distinct methodological

approach from the previous studies. Lastly, Prieto et al. [11]

proposed a knowledge-based approach to identify potentially

risky websites. While the details were not given, their work

signifies an interesting perspective that deviates from the typical

ML-centric methodology and integrates a knowledge-based

approach for risk detection. The papers discussed above are

closely related to the proposed work since they make use of a

similar approach and utilize datasets that contain features similar

to the ones used in this work. They were also able to acquire

high accuracies using ML models similar to ours. Table 1

summarizes the papers discussed above.

Table 1: Summary of Literature Review Studies
Reference Type of

Attack

Targeted

Dataset Used Classifier

Used
Accuracy

Choi et al. [8] attack

types and

malicious

URLs

Real life

dataset

collected by

the authors

SVM 93% for

attack types

and 98% for

malicious

URLs

Vanhoenshoven

et al. [9]
malicious

URLs

Public dataset

(2.4 million

URLs)

RF 97.69%

Kaddoura et

al. [10]

malicious

URLs and

network

features

Public dataset

(1,782 URLs)

SVM 96%

Prieto et al.

[11]

domains

with

malicious

content

Generated

dataset

LR 89%

III. METHODOLOGY

A. Datasets Description

In this paper, two publicly available datasets that relate to

detecting malicious URLs as well as intrusion detection were

utilized. The first dataset used is “Dataset of Malicious and

Benign Webpages” [12], which will be referred to as dataset A.

This dataset contains 10 features such as URL, URL length, IP

address, geographic location and others. The dataset consists of

1.52 million records that are split into a training set that contains

1.2 million records, and a testing set that contains 362k records.

Each record represents a webpage that is either labeled as benign

(good) or malicious (bad). The dataset is highly imbalanced with

98% of the data belong to the benign class and the rest (2%)

belong to the malicious class.

The second dataset used was “Network Intrusion Detection”

[13], which will be referred to as dataset B. This dataset contains

5000 records of features extracted from Network Port Statistics

to protect modern-day computer networks from cyber-attacks.

The dataset contains 31 features such as switch ID, Port Number

passed, Received Packets, Sent Bytes, Sent Packets, and others.

The dataset consists of six classes: 0 (Normal), 1 (Blackhole), 2

(TCP-SYN), 3 (PortScan), 4 (Diversion) and 5 (Overflow). Fig.

1 shows the percentage of records belonging to different the

classes in each of dataset A and dataset B.

(a) (b)

Fig. 1. Percentage of records of different classes in (a) dataset A, and (b)

dataset B

B. Data Preprocessing and Model Selection

Several data pre-processing techniques were applied to the

datasets before ML algorithms were used. For dataset A,

irrelevant features were dropped from the dataset such as ID,

URL, IP address and content. This results in a total of 8 features

used for classification. Moreover, the binary features were

encoded using ordinal encoding. Due to the fact that the dataset

is highly imbalanced, under-sampling was applied by taking a

random subset of 150K from the benign records while

considering all the 8063 malicious records present in the dataset.

For dataset B, dimensionality reduction was applied by

merging the ‘Packets Looked Up’ field with the ‘Packets

Matched’ field into a single new field named ‘Packets not

Found’. Additionally, the samples belonging to class 5 were

dropped because the class has very few samples (1% of the

dataset). Dimensionality reduction was also applied by dropping

irrelevant features from the dataset such as the Table_ID, and

Max_Size. Additionally, the features that had no variance in the

values for all samples were also dropped, such as the ‘is_valid’

field. This process results in a total of 26 features left to be used

for classification. Moreover, ordinal encoding and scaling were

applied to features such as ‘received packets’ and ‘bytes’, and

the ‘sent packets’ and ‘bytes’. For model selection, holdout

method were used where 20% of the dataset is used for testing

while the rest of the dataset is used for training.

C. Classification Algorithms Used

Decision Tree (DT) algorithm: creates a tree-like model by

learning basic decision rules from training data [10]. The root of

the decision tree represents the entire dataset and each internal

node represents a decision rule based on one of the input features.

The branches represent the possible values of the feature, and

the leaf nodes represent the predicted value of the target variable.

To make a prediction for a new data point, the input features of

the testing dataset are compared against the decision rules

represented by the internal nodes of the tree, and the predicted

value is obtained by following the appropriate branch to a leaf

node. The metrics that decision trees rely on to determine the

best feature to split the dataset based on at each internal node are

impurity measures such as Entropy or Gini Index, defined as

follows:

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖)2𝑐
𝑖=1 (1)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = ∑ −𝑝𝑖 log2 𝑝𝑖
𝑐
𝑖=1 (2)

where 𝑝
𝑖
 is the relative frequency of class i at a specific node.

K-nearest neighbors (KNN): a supervised non-parametric ML

algorithm. It assigns a class label to an instance based on the

class labels of its K nearest neighbors in the training data. Using

a distance metric (e.g., Euclidean distance, Manhattan distance),

the algorithm determines the distance between the instance and

each training sample. The K closest neighbors are identified, and

the class title is selected by majority vote. The predictions are

affected by the choice of K. In addition, the KNN classifier

avoids the time-consuming training process, and, more

importantly, bypasses the need to learn individual program

profiles separately [17]. Thus, the cost of learning program

behavior is significantly decreased. Euclidean distance is

defined by equation (3).

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 (3)

where x and y are samples being compared, 𝑥𝑖 and 𝑦
𝑖
 represent

feature i of each of the samples x and y, respectively, and n is

the number of features describing each sample.

Naive Bayes (NB): an algorithm based on Bayes theorem,

which predicts the label of a data point based on the probability

of a hypothesis (or label) given some observed evidence (or

features). The algorithm classifies the new data point by

calculating the posterior probability of each class given the

observed evidence and assigning that point to the class with the

highest probability. The mathematical formula (4) calculates the

probability of a sample to belong to a specific class given a

feature vector, where y represents the class label and X

represents the feature values.

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
 (4)

The NB algorithm assumes conditional independence among

features. Furthermore, it can work with missing feature values.

Support Vector Machines (SVM): A powerful and widely

used supervised ML algorithm. Its goal is to find a hyperplane

in an N-dimensional space to separate the data points belonging

to different classes [10]. The hyperplane is selected in such a

way that the data points are separated into distinct regions, one

for each class, and the margin between the regions is maximized.

SVM can still work even if the data is not linearly separable by

using the kernel trick to map the data into a higher-dimensional

space where it becomes separable by a hyperplane. This allows

the SVM algorithm to handle complex and nonlinear

relationships between the features and the target variable.

All four classifiers mentioned above are applied to each of

dataset A and dataset B, and their results are compared.

D. Evaluation Metrics

Several evaluation metrics are used to assess the

performance of each of the ML models in classifying the target

variable. In this work, accuracy, precision, recall, F1-score,

receiver operating characteristic (ROC), area under the curve

(AUC) and confusion matrix are used.

Accuracy is the simplest and commonly used metric for

classification tasks. It is defined as the ratio of correct

predictions to the total number of predictions as defined in

formula (4):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4)

where 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the number of

true negatives, 𝐹𝑃 is the number of false positives and 𝐹𝑁 is the

number of false negatives.

However, accuracy may not be the best metric to use

especially when dealing with imbalanced datasets. Precision and

recall are two metrics that are commonly used for classification

tasks and they work well in the case of imbalanced datasets.

Precision and recall formulas are provided as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

F1-score is a harmonic mean of precision and recall. It is a

good metric to use when dealing with imbalanced datasets. It is

defined as follows:

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7)

The ROC is a graphical representation of the trade-off

between the true positive rate and false positive rate for different

classification thresholds [16]. The AUC can be calculated as the

area under the ROC curve. The AUC is a popular metric for

evaluating binary classification models. It measures the

performance of the model across all possible thresholds, which

can be useful when dealing with imbalanced datasets.

Lastly, a confusion matrix is a table that summarizes the

performance of a classification model. It contains four values:

true positives, false positives, true negatives, and false negatives

[16]. The values in the confusion matrix can be used to calculate

various metrics, including accuracy, precision and recall as

mentioned in equations (4) – (6).

IV. EXPERIMENTAL RESULTS

A. Results using Dataset A

Different ML algorithms were applied to dataset A. The

following subsections show the results of each of the ML models.

- DECISION TREE (DT)

DT algorithm was applied on dataset A. Several tests were

run to find the optimal tree size that results in the highest

prediction accuracy. The size of the optimal tree was 19 nodes

and it resulted in an accuracy of 99%. This classifier achieved a

recall value of 99% and a precision value of 96% for the

‘malicious’ class. The classifier also achieved an F1-score of

98%. The AUC score obtained was 0.99.

Fig. 2 shows the confusion matrix resulting from applying

the DT classifier on dataset A. As can be seen from the figure,

most of the samples were correctly classified.

Tr
u

e
la

b
el

Benign 1624 14

Malicious 63 3e+04

 Benign Malicious

 Predicted label
Fig. 2. Confusion matrix resulting from applying DT classifier on dataset A

- K-NEAREST NEIGHBORS (KNN)

One of the important factors in prediction accuracy for KNN

is the number of neighbors used. It was found that the number

of nearest neighbors for dataset A that yielded the highest

accuracy (99.88%) was 100 neighbors. The precision of the

malicious class is 100%. However, the recall was about 95% and

the F-score was 97%. The AUC of the ROC curve was 99.86%.

Fig. 3 shows the confusion matrix resulting from applying

the KNN classifier on dataset A. As can be seen from the figure,

most of the samples were correctly classified.

- NAÏVE BAYES (NB)

Using the NB model, an accuracy of 99.75% was obtained.

The precision of the malicious class was 100% while the recall

was approximately 89%. The F1-score was 94%, which was

lower than that of the decision tree and KNN models. The AUC

of the ROC curve was 99.69%.

Tr
u

e
la

b
el

Benign 1538 84

Malicious 0 70765

 Benign Malicious

 Predicted label

Fig. 3. Confusion matrix resulting from applying KNN classifier on dataset A

- SVM WITH LINEAR KERNEL

An SVM with linear kernel model was utilized in this work.

Several tests were run to select the best hyperparameters for the

model. The best accuracy obtained was 99.73% at iteration 5000.

The precision of the malicious class was 100%. The recall, on

the other hand, was 89% similar to that achieved using the NB

model. The achieved F1-score was 94%. This demonstrates that

the linear SVM model and the NB model are both less

accurate models compared to KNN and DT classifiers.

- SVM WITH POLYNOMIAL KERNEL

An SVM with polynomial kernel model was utilized in this

work. Several tests were run to select the best hyperparameters

for the model. The polynomial degree selected was 6 which

achieved an accuracy of 99.75%. Fig. 4 shows the confusion

matrix resulting from applying the SVM with polynomial kernel

classifier on dataset A. As can be seen from the figure, most of

the samples were correctly classified.

Tr
u

e
la

b
el

Benign 1529 87

Malicious 0 70771

 Benign Malicious

 Predicted label
Fig. 4. Confusion matrix resulting from applying the SVM classifier with

polynomial kernel on dataset A

The precision of the malicious class was 100% while the

recall was 95%. The combination of the two measures yielded

an F1-score of 97%. The results of all the ML models applied to

dataset A are summarized in Table 2.

Table 2. Applicability metrics of all ML models applied to dataset A

Class Metric DT KNN NB

Linear

Kernel

SVM

Poly

Kernel

SVM

Malicious

Precision 96% 100% 100% 100% 100%

Recall 99% 95% 89% 89% 95%

F1-score 98% 97% 94% 94% 97%

Benign

Precision 100% 100% 100% 100% 100%

Recall 100% 100% 100% 100% 100%

F1-score 100% 100% 100% 100% 100%

Overall Accuracy 99.76% 99.88% 99.75% 99.73% 99.75%

 AUC 99.98% 99.86% 99.69% 99% 99%

B. Results using Dataset B

Different ML algorithms were applied to dataset B. The

following subsections show the results of each of the ML models.

- DECISION TREE (DT)

Several tests were run to select the ideal size of the DT that

results in the maximum prediction accuracy. The testing

accuracy was at its highest (95%) when the tree had 49 nodes.

Fig. 6 shows the confusion matrix resulting from applying DT

on dataset B. As can be seen from the figure, both the TCP_SYN

(class 2) and Port Scan (class 3) attacks have remarkably similar

features which resulted in false negatives and false positives

between these classes in the confusion matrix.

Fig. 6. Confusion matrix resulting from applying the DT classifier on dataset B

The DT classifier had precision values ranging between 79%

and 100% for the different classes as seen in Table 3. The recall

and F1-score values ranged between 78% and 100%.

- KNN

KNN was applied on dataset B. Several tests were run to find

the number of neighbors that maximizes the accuracy. It was

found that 13 neighbors is the best number of nearest neighbors.

The accuracy of the KNN model was comparatively lower than

that of the DT classifier, which was around 85.19% as can be

seen in Table 3. The KNN classifier was mainly not able to

differentiate between the TCP_SYN and Port scan classes, as

well as misclassifying a hefty 39 samples from the Diversion

type class as a blackhole. The precision values ranged between

58% and 99 %, and recall values ranged between 42% and 100%.

The generated F1-scores ranged between 51% and 99%, as can

be seen in Table 3. Due to these scores, it can be concluded that

this classifier is not as accurate as the DT classifier.

- NAÏVE BAYES (NB)

NB classifier was applied to dataset B. As can be seen in

Table 3, the accuracy of NB was lower than that of the DT, but

similar to the KNN model, sitting at about 84.69%. This

classifier had difficulty distinguishing between several samples

in the TCP_SYN and Port scan classes too, as well as

misclassifying 38 samples from the blackhole type class as

Diversions. This model yielded F1-scores for its classes ranging

between 60% and 100%, and precision scores ranging between

52% and 100% and recall scores ranging between 48% and

100%, as shown in Table 3. It can be concluded that the scores

achieved by KNN classifier are not as high as the ones achieved

by the DT model.

- SVM WITH LINEAR AND POLYNOMIAL KERNELS

SVM models with linear and polynomial kernels were also

applied to dataset B. The results achieved were low compared to

other models. Even after performing hyperparameter tuning on

both models, the performance did not vary significantly.

Moreover, due to their poor performance in all metrics as can be

seen in Table 3, SVM models with linear and polynomial

kernels were considered unsuitable for dataset B.

Table 3. Applicability metrics of all ML models applied to dataset B

Class Metric DT KNN NB

SVM

Linear

SVM

Poly

Normal

Precision 100% 99% 100% 86% 58%

Recall 100% 100% 100% 91% 100%

F1-score 100% 99% 100% 89% 74%

Blackhole

Precision 97% 58% 78% 85% 30%

Recall 95% 72% 54% 28% 2%

F1-score 96% 64% 64% 42% 5%

TCP-

SYN

Precision 79% 73% 61% 47% 75%

Recall 83% 79% 96% 45% 13%

F1-score 81% 75% 75% 46% 22%

PortScan

Precision 79% 76% 99% 25% 25%

Recall 78% 70% 48% 28% 5%

F1-score 78% 73% 65% 27% 9%

Diversion

Precision 100% 67% 52% 44% 22%

Recall 96% 42% 72% 68% 3%

F1-score 98% 51% 60% 54% 5%

Overall Accuracy 95% 85% 85% 67%
57%

V. DISCUSSION

This work employed four ML methods, namely DT, NB,

SVM and KNN, to detect harmful websites and identify system

intrusions. As shown in Table 2, all ML algorithms

demonstrated excellent performance in detecting fraudulent

websites especially the KNN model applied on dataset A. This

suggests that these algorithms can be valuable in identifying and

preventing cyber threats, particularly in the context of website

and system security. Furthermore, the DT algorithm exhibited a

high F1-score of 98% when applied on dataset B, indicating its

proficiency in recognizing patterns and making accurate

predictions on new, unseen data. Furthermore, it can be

concluded that the preprocessing step including feature selection

and dimensionality reduction that were applied on each of the

datasets allowed the respective models to be able to perform

well in detecting malicious URLs and intrusion. Table 4

compares the proposed work to other works that use similar

datasets. As can be seen, the proposed work outperformed the

previous ones.

Table 4. Models’ Performance Comparison with previous works

Detected Attack

Categories

Dataset Used Classifier

Used

Results

Attack types and

bad URLs [8]

Real life dataset

collected by the

authors

SVM Accuracy: 93%

(Attack types), 98%

(Malicious URLs)

Malicious URLs

[9]

Public dataset

(2.4 million

URLs)

RF Accuracy: 97.69%

Malicious URLs

and network

features [10]

Public dataset

(1,782 URLs)

SVM Accuracy: 96%

F1-Score: 92%

Domains that

contain malicious

content [11]

Built a dataset LR Accuracy: 89%

Malicious URLs Dataset A KNN Accuracy: 99.88%

F1-Score: 97%

TCP_SYN and

Port scan

Dataset B Decision

Tree

Accuracy: 95.09%

F1-Score: 78% -

100%

VI. CONCLUSION

In summary, this paper revealed that using ML classification

techniques was highly effective in detecting malicious URLs,

achieving accuracies over 99%. For intrusion detection, the DT

classifier proved to be the most suitable with an accuracy of 95%.

These findings highlight the significant potential of ML

techniques in the field of cybersecurity. Implementing these

techniques can enhance website security and effectively defend

against harmful cyberattacks. The study underscores the need

for a diverse range of ML algorithms to improve the accuracy

and dependability of security systems. By leveraging the

strengths of different algorithms, comprehensive and robust

security solutions can be developed to combat evolving cyber

threats. In the future, the aim is to extend the work to consider

more types of security attacks. This can be done by training the

ML models on datasets that include other attacks. Moreover, the

proposed method can be implemented and used in different

security systems to provide real-time protection of general users

against malicious URLs and other security concerns.

REFERENCES

[1] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious URLs,” Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1245–1253, 2009.

[2] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Practical
real-time intrusion detection using machine learning approaches,”
Computer Communications, vol. 34, no. 18, pp. 2227–2235, 2011.

[3] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker.
2009. Identifying suspicious URLs: an application of large-scale online
learning. In Proceedings of the 26th Annual International Conference on
Machine Learning (ICML '09). Association for Computing
Machinery,NewYork,NY,USA,681–688.

[4] Haotian Liu, Xiang Pan and Zhengyang Qu, "Learning based Malicious
Web Sites Detection using Suspicious URLs", Proc. of the 34th
Internationai Conference on Software Engineering, 2009.

[5] M. Wu and M. Yang, “Privacy Preservation for Detecting Malicious Web
Sites from Suspicious URLs,” 2011, International Conference on Business
Computing and Global Informatization, Shanghai, China, 2011, pp. 400-
403, doi: 10.1109/BCGIn.2011.106.

[6] A. Lakshmanarao, M. R. Babu, and M. M. Bala Krishna, “Malicious URL
detection using NLP, machine learning and Flask,” 2021 International
Conference on Innovative Computing, Intelligent Communication and
Smart Electrical Systems (ICSES), 2021.

[7] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation of
machine learning algorithms for Intrusion Detection System,” 2017 IEEE
15th International Symposium on Intelligent Systems and Informatics
(SISY), 2017.

[8] H. Choi, B. Zhu, and H. Lee, "Detecting Malicious Web Links and
Identifying Their Attack Types," in Proceedings of the 2nd USENIX
Conference on Web Application Development (WebApps '11), Portland,
OR, USA, 2011, pp. 4-4.

[9] F. Vanhoenshoven, G. Napoles, R. Falcon, K. Vanhoof, and M. Koppen,
“Detecting malicious urls using machine learning techniques,” 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), 2016.
doi :10.1109/SSCI.2016.7850079

[10] S. Kaddoura, "Classification of malicious and benign websites by network
features using supervised machine learning algorithms," 2021 5th Cyber
Security in Networking Conference (CSNet), Abu Dhabi, United Arab
Emirates, 2021, pp. 36-40, doi: 10.1109/CSNet52717.2021.9614273.

[11] J. C. Prieto, A. Fernandez-Isabel, I. M. De Diego, F. Ortega, and J. M.
Moguerza, “Knowledge-based approach to detect potentially risky
websites,” IEEE Access, vol. 9, pp. 11633–11643, 2021.

[12] A. K. Singh, “Dataset of malicious and benign webpages,” Kaggle, 04-
Apr-2020.[Online].Available:
https://www.kaggle.com/datasets/aksingh2411/dataset-of-malicious-and-
benign-
webpages?resource=download&select=Webpages_Classification_train_d
ata.csv. [Accessed: 07-Feb-2023].

[13] G. Dutt, "Network Intrusion Detection," 2020, Kaggle. [Online]. Available:
https://www.kaggle.com/datasets/gauravduttakiit/network-intrusion-
detection?resource=download. [Accessed: April 29, 2023].

[14] I. Ul Hassan, R. H. Ali, Z. Ul Abideen, T. A. Khan, and R. Kouatly,
“Significance of machine learning for detection of malicious websites on
an unbalanced dataset,” Digital, vol. 2, no. 4, pp. 501–519, 2022.

[15] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439–
448, 2002.

[16] S. Pradhan and S. K. Nayak, "An Analysis of SVM and NN Classifiers for
Large Scale Datasets," 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI), 2019, pp. 475-480.

[17] G. S. Handelman, H. K. Kok, R. V. Chandra, A. H. Razavi, S. Huang, M.
Brooks, M. J. Lee, and H. Asadi, “Peering into the black box of artificial
intelligence: Evaluation metrics of machine learning methods,” American
Journal of Roentgenology, vol. 212, no. 1, pp. 38–43, 2019.

