
Abstract—Unmanned aerial vehicles (UAVs) represent an impor-
tant class of networked robotic applications that must be both highly de-
pendable and autonomous. This paper addresses sensor selection and
placement problems for distributed failure diagnosis in such networks
where multiple vehicles must agree on the fault status of another UAV.
An integer linear programming (ILP) approach is proposed to solve
these problems. The ILP models of interest are developed and solved
using two different solvers. Experimental results indicate that the pro-
posed models are tractable for medium-sized topologies.

Index Terms—UAV networks, fault diagnosis, ad hoc sensor net-
works, distributed systems.

I.   INTRODUCTION

Unmanned aerial vehicles (UAVs) represent an important class of
robotic applications for distributed sensing and control. A collection of
vehicles must perform a shared task while coordinating the required in-
ter-vehicle actions using wireless communication. Examples include
remote sensing, surveillance and patrol, and data collection over areas
dangerous to human intervention. Such UAV networks have significant
cost constraints. However, they must be both highly dependable and
largely autonomous, requiring only high-level guidance from ground
controllers.

Sensing and surveillance applications require that nodes in the UAV
network maintain a tight spatial formation or physical topology, includ-
ing specified inter-node distances. In a typical decentralized formation-
control scheme, each node receives information from neighboring
nodes such as their position and velocity, and uses this data for local
control aimed at maintaining its position within the topology [7, 20].
Therefore, correct and timely information flow between nodes is criti-
cal to maintaining a stable topology.

To maintain the specified topology of a UAV network comprising
nodes , each  must communicate some critical informa-
tion such as its position and velocity to neighboring nodes. Hardware
(software) failures may, however, cause the node to transmit erroneous
values. Though physical redundancy in the form of replicated sensors
and processors can mask such node failures, it also adds to ’s cost,
weight, and power consumption. A low-cost alternative is failure diag-
nosis using analytical redundancy [9] where other nodes in the topolo-
gy use their local sensors and an appropriate mathematical model to
estimate the values sent by , and compare discrepancies between the
actual and estimated values.

This paper addresses sensor selection and placement problems for
distributed failure diagnosis in wireless UAV networks where multiple
nodes must agree on the fault status of another node. We assume that a
node  in this topology requires a testing configuration−a set of sen-
sors−to monitor ; for example, if  has a GPS sensor, and addition-
ally, a 3D laser range finder, it can, using these sensors and an
appropriate mathematical model, independently estimate ’s posi-
tion. Several choices of testing configurations are typically available
for , differing from each other in their monitoring range, detection
capabilities, and cost. (Another possible testing configuration on 

may comprise a 2D laser range finder and an omni-directional camera.)
Also, the sensors themselves may have varying operating distances.
Clearly, long-range sensors can monitor multiple nodes, and at greater
distances. However, the use of such expensive sensors may substantial-
ly increase the overall system cost. On the other hand, if only short-
range sensors are used, effective diagnosis may only be achieved with
a large number of such sensors. Therefore, efficient sensor selection
and placement strategies are needed to minimize system cost while
achieving the desired level of diagnosability.

Previous research has addressed distributed system diagnosis under
the assumption that processing units test each other and exchange the
test results to identify failures [2, 15]. Failed units are then removed
from future computations. Several variants of this problem have been
studied in the literature, including diagnosing transient and intermittent
faults [11, 13], probabilistic diagnosis [4], and failure diagnosis in ran-
dom, sparse, and highly regular topologies [5] [8]. Since explicit tests
are typically difficult to obtain in practice, various comparison-based
approaches have also been proposed, where tasks are duplicated on
multiple units and their results compared to identify faulty ones [3, 14,
18]. A good survey of prior diagnosis-related research is presented in
[2]. The above papers, however, don't address the sensor selection and
placement problems for failure diagnosis in wireless networks.

The authors of [6] present a method to identify faulty processors in
ad hoc wireless networks via a comparison-based diagnosis model.
They present algorithms for both fixed and time-varying network topol-
ogies, and show that diagnosis efficiency is significantly reduced when
the topology changes with time. As before, sensor selection and place-
ment problems are not addressed. 

The sensor selection problem is related to both the alarm and guard
placement problems [16, 17]. In [16], alarms are placed on the nodes of
a failure propagation graph such that a single system fault (one failed
node) is uniquely and efficiently identified. A fault propagates along
this graph activating one or more alarms and the diagnosis algorithm
finds the node responsible for causing them. The guard placement prob-
lem can be informally stated as that of determining the minimum num-
ber of guards, each having a certain monitoring range, to cover the
interior of an art gallery, represented as a polygon [17].

This paper uses an integer linear programming (ILP) approach to
solve sensor selection and placement problems for distributed failure
diagnosis in UAV networks. We specifically target popular UAV for-
mations such as mesh, diamond, and circular topologies [20] [22], and
provide exact solutions for topologies up to 40 nodes, representative of
topology sizes assumed by researchers while developing formation
control algorithms [21] [23].

The proposed method aims to minimize both the testing and commu-
nication costs associated with identifying a bounded number of faulty
UAV nodes. (In a typical wireless network, it is desirable to minimize
the transmitting range of individual nodes to reduce power consump-
tion and network interference.) Assuming an upper bound f on the num-
ber of node failures, we formulate and solve ILP models for the
following optimization problems.
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• Sensor selection. Given a topology comprising q UAV nodes,
where each node can choose between multiple testing and
communication configurations, select a configuration for each 
to guarantee the diagnosis of any faulty node in the topology while
minimizing overall testing cost. This is termed the MinC problem.

• Sensor placement. Given a topology comprising q empty slots and
an equal number of UAV nodes, each having a specific testing and
communication configuration, allocate nodes to slots such that
system diagnosability, in terms of the number of diagnosed nodes,
is maximized. The above is termed the MaxD problem.

The proposed models are solved using two different ILP solvers [1, 10]
and their performance compared. Our experiments indicate that these
models are tractable for topologies up to forty nodes. We also briefly
discuss how to extend our approach to obtain approximate solutions for
larger topologies.

The rest of this paper is organized as follows. Section 2 discusses
some modeling assumptions and the distributed diagnosis approach.
We develop ILP models for the MinC and MaxD problems in Section 3
and solve them in Section 4. We conclude this paper in Section 5.

II.   PRELIMINARIES

This section describes the assumed system model and discusses the
distributed diagnosis approach. The combinatorial nature of the sensor
selection and placement problems of interest is briefly outlined.

A.   System model

We assume a distributed system where UAV nodes communicate
with each other over a wireless network having limited bandwidth and
must maintain the specified physical topology. Fig. 1(a) shows a circu-
lar topology of radius 5m. High-level controllers coordinate with other
nodes of interest to maintain the topology while feedback-control loops
regulate local dynamics on each node.

A node ’s position within a topology is given in the 
dimensions and the distance between nodes  and  is

When  has a choice of testing configurations, we let  denote the
 such configuration with testing range range( ) and cost ; if

, then  can test (or monitor)  using configura-
tion . Similarly, if  denotes the  communication configura-
tion on  having cost , then node  can transmit messages to 
if . (Also, whenever the context is clear, we will re-
fer to the  testing and  communication configuration on a node
simply as  and , respectively.)

As noted in Section I, controllers on each  must communicate
some critical information such as its position and velocity to neighbor-
ing nodes to maintain the desired topology. We assume that  may
suffer operational failures including permanent and transient ones,
thereby transmitting erroneous (sensor) information to its neighbors.
Therefore,  must be diagnosed and removed from participating in fu-
ture formation-control computations.

B.   Distributed diagnosis

Distributed diagnosis in a topology such as Fig. 1(a) requires that
multiple testing nodes agree on the fault status of a testee node . This
is achieved using a two-phase approach as follows. During phase 1,
each testing node independently evaluates the information transmitted
by . These local decisions are then consolidated via a suitable agree-
ment algorithm during phase 2 to obtain a global view of ’s status.
Similar two-phase diagnosis schemes have been previously proposed to
identify faulty processors [19]. 

Fig. 2 shows an analytical redundancy-based checking scheme exe-
cuted locally on node  to evaluate the information sent by . In the
figure,  uses its onboard testing configuration and an appropriate
mathematical model to independently estimate ’s sensor values.
These estimates are compared to the actual values sent by  to gener-
ate a residue or error. During phase 2,  exchanges the locally gener-
ated residue with other testing nodes within communication range.
Since multiple testers may employ both design and data diversity, i.e.,
use various testing configurations and/or models to estimate the same
values, these residues may differ slightly from each other, and yet be
correct. Therefore, each tester obtains a voted residue value using an
approximate agreement algorithm, and evaluates it against an a priori
defined threshold to diagnose . If all testers perceive ’s failure
uniformly, then a suitable agreement algorithm is the median voter
which selects the middle value from an odd number of residues by elim-
inating those residue pairs differing by the greatest amount [12]. At the
end of phase 2, all fault-free nodes correctly identify ’s status.
Assuming an upper bound f on the number of node failures in the topol-
ogy, we need at least 2f +1 tester nodes to diagnose another node. The
distributed approach described above also tolerates failures during the
diagnosis process itself and increases confidence in the corresponding
decisions. Finally, to reduce the cost of diagnosis, not all sensors on 

Fig. 1. (a) A circular UAV topology, and testing edges generated when 

(b) all nodes are equipped with configuration  and 

(c) nodes , , , and  are equipped with , and  with .
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are diagnosed. A few critical sensors are typically selected and checkers
implemented to diagnose them.

Returning to Fig. 1, we assume two testing configuration choices
 and  with monitoring ranges of 5m and 9.5m, respectively, for a

node . A configuration selected for  induces corresponding test-
ing edges on neighboring nodes where  indicates that  can
monitor . Fig. 1(b) shows the edges generated when each  choos-
es . Assuming full communication connectivity between nodes and

, nine such testing configurations are needed to diagnose a node
in the topology. Fig. 1(c), on the other hand, shows the case where ,
placed on nodes , , , and , and , placed on , achieve
the same level of diagnosability as Fig. 1(b). The overall diagnosis cost

corresponding to Fig. 1(c) is less than that of Fig. 1(b) if ,
where ( ) denotes the dollar cost of  ( ).

The above example illustrates the combinatorial nature of the sensor
selection and placement problems of interest, and ILP formulations
provide a systematic and rigorous approach to exploring the search
space for optimal solutions. Also, increased computing power and effi-
cient implementations allow modern ILP solvers [1, 10] to tackle large
optimization problems.

III.   PROBLEM FORMULATION

This section develops the ILP models for the sensor selection
(MinC) and placement (MaxD) problems, and illustrates their applica-
bility using small examples.

A.   The MinC Problem

Consider a topology comprising q nodes, where each  may
choose between n testing and m communication configurations

 and , respectively. Assuming
an upper bound f on node failures, the MinC optimization problem is to
select the minimum-cost testing and communication configuration for
the overall system topology while guaranteeing the diagnosis of any
faulty node in the topology. 

First, we introduce the following decision variables.

The following linear cost function must be minimized.

where  and  denote the dollar cost corresponding to testing con-
figuration  and communication configuration , respectively, on
node . The optimization is subject to the following constraints guar-
anteeing the distributed diagnosis of faulty nodes in the topology.
A node  must choose at most one of n available testing configura-
tions.

(1)

A node  must also choose between one of m possible communication
configurations.

(2)

Each node  must be monitored by at least  other nodes. Con-
straint (3) sets the decision variable  based on ’s ability to mon-
itor . If  denotes the set of all possible testing configurations on

 capable of monitoring , where a test configuration  if
, then

Fig. 3. (a) A circular topology of 10m radius with twelve nodes, 
(b) the available testing (communication) configuration choices, 

(c) cost-optimal selection of configurations for nodes, and 
(d) testing edges corresponding to the selected configurations 
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(3)

Clearly, if , then no test configuration available to  has the
range to monitor  and  must be 0 to satisfy the above constraint.
If, however, , i.e.,  monitors , then  must have select-
ed a suitable testing configuration from  (since ) to
satisfy constraint (3).
Constraint (4) ensures that at least  nodes are chosen to monitor

.

(4)

Constraint (5) sets  to indicate if node  can transmit messages to
 using the chosen communication configuration. If  now denotes

the set of all possible communication configurations on  capable of
transmitting to , where configuration  if

, then

(5)

Constraints (6) and (7) use a decision variable  to select a
subset of the monitoring nodes−  to be exact−to participate in the
distributed failure diagnosis scheme. Constraint (8) ensures that the
node  being tested can transmit its actual sensor values to the moni-
toring nodes. (Recall from Fig. 2 that the checking scheme on a tester
node compares the actual and estimated sensor values to generate a res-
idue during phase 1 of the diagnosis process.)

(6)

(7)

(8)

Finally, the chosen subset of  nodes must have the communica-
tion means to exchange the residues amongst themselves and reach an
agreement during phase 2 of the diagnosis process, i.e., these nodes
must be fully connected. The following constraints enforce this require-
ment.

(9)

(10)

For any pair of nodes,  and , selected to participate in ’s diag-
nosis, i.e., , ( ) must be able to transmit its locally
computed residue to ( ). So,  and  must both be one to sat-
isfy constraints (9) and (10), respectively.

B.   The MaxD Problem

Given a topology with q empty slots and an equal number of nodes,
each with a specific testing and communication configuration, allocate
nodes to slots such that system diagnosability, in terms of the number
of diagnosed nodes, is maximized. Again, we assume an upper bound f
on the number of node failures. We define the following decision vari-
ables.

Note that , previously introduced in Section A, has been redefined
for the MaxD problem.
We maximize the cost function

subject to the following constraints. 
A node  must be allocated to exactly one slot.

(11)

Conversely, each slot  must have exactly one node allocated to it.

(12)

Let  denote the set of nodes, when placed in slot i, can monitor slot 
j; node  if it has a testing configuration  such that

. Constraint (13) sets the decision variable  to in-
dicate if a chosen node-to-slot allocation enables slot i to test slot j, and
constraint (14) ensures that a node allocated to slot j is monitored by at
least  other nodes.

(13)
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(14)

Constraint (15) sets the decision variable  indicating if a chosen
node-to-slot allocation enables slot i to transmit to slot j. Let  now
denote the set of nodes, when placed in slot i, have the transmission
range to reach slot j; node  if its communication configuration

 is such that .

(15)

Constraints (16), (17), and (18) select exactly  slots to diagnose
the node placed in slot j. Note that the node placed in slot j must trans-
mit its sensor values to every member of the selected subset; otherwise
it is not diagnosable. For example, if under some node-to-slot alloca-
tion, slot j cannot transmit its sensor values to a slot i chosen to monitor
it, i.e.,  and , then clearly  must be 0 to satisfy con-
straint (18).

(16)

(17)

(18)

Finally, for each slot j, the  slots chosen to diagnose it must be
able to exchange the test results amongst themselves and reach an
agreement during phase 2 of the diagnosis process. These slots must be
fully connected or else the node in slot j cannot be diagnosed. For ex-
ample, consider a pair of slots i and k chosen to diagnose slot j, i.e.,

. However, if slots i and k cannot exchange their test re-
sults, i.e., if  or , then clearly  must be zero to sat-
isfy both constraints (19) and (20).

(19)

(20)

C.   Examples

We now apply the previously developed ILP models to a small ex-
ample. First, consider the MinC model. Fig. 3(a) shows a circular topol-
ogy of 10m radius with twelve nodes (or slots), and Fig. 3(b) lists the
four configuration choices available to each node, their testing and
communication ranges, and corresponding costs. Fig. 3(c) shows the
configurations selected by the ILP model for each node to obtain the
cost-optimal solution and Fig. 3(d) shows the testing graph correspond-
ing to these selections, guaranteeing the diagnosis of any node in the to-
pology for . Note that a testing configuration is not selected for
nodes , , and . Also, the optimal cost achieved is 56 as
compared to the worst-case cost of 120 (obtained when each node
chooses the testing and communication configuration with the maxi-
mum range and cost), resulting in a cost savings of 53.3%.

The MaxD model uses the same topology in Fig. 3(a) with the five
configurations listed in Fig. 4(a). Each node now has onboard, an a pri-
ori selected configuration, shown in Fig. 4(b). The node-to-slot alloca-
tion resulting in maximum diagnosability under the single fault model
in shown in Fig. 4(c). Note that failures affecting nodes , , and

 cannot be diagnosed under this allocation.

IV.   PERFORMANCE EVALUATION

We solve the ILP models developed in Section III using the CPLEX
[10] and PBS [1] solvers. The CPLEX and PBS solvers were executed

on Sunblade 1000 and 2.8 GHz Pentium 4 machines, respectively, each
with 500 MB main memory. The results presented in this section as-
sume circular topologies, though the models are directly applicable to
other important formations such as meshes and diamonds.

For each experiment, we distribute q nodes in a circular topology of
radius 100 units. The various testing and communication configura-
tions are generated as follows. We first compute  and , the
maximum and minimum inter-node distances, respectively, within the
topology. Each testing configuration now has a range given by

 where  is a user-defined vari-
able. For our experiments, five different testing configurations having
costs 5, 4, 3, 2, and 1 were obtained with  assuming values of 0, 0.5,
0.25, and 1, respectively. (The configuration with the greatest testing
range has the maximum cost of 5, and so on.) The above process is re-
peated to obtain five different communication configurations.

A.   Analysis of MinC Results

Table 1 summarizes the results obtained by CPLEX for different to-
pology sizes under one, two, and three node failures. The results show
the achieved costs as well as the corresponding processing times. Col-
umn two shows the worst-case diagnosis cost  incurred by the
overall system if both the testing and communication configurations se-
lected for each node cost 5 apiece. The time-out period for the solver
was set to 10,000 seconds and the optimal solutions are shown in bold-
face. In case of a timeout, indicated by t/o in the table, the best available
solution is shown. The results indicate that CPLEX succeeds in finding
optimal solutions in many cases, and even those solutions obtained after
a solver time-out incur substantially lower cost than their correspond-
ing  values; for example, the cost incurred for diagnosing a node
when  is, on average, 68%, 55%, and 45% less than the cor-
responding . For the smallest topology with , the optimi-
zation problem is unsatisfiable and denoted by uns in the table, for

. (Note that to diagnose a node under a two (three) fault model,
a minimum of five (seven) tester nodes are required.)

Finally, the results obtained by PBS for MinC are not shown here
since CPLEX consistently provided better solutions. However, it must
be noted that though PBS timed-out in most cases (the time-out was set
to 3,000 seconds.), the sub-optimal solutions obtained were also sub-
stantially better than .

B.   Analysis of MaxD Results

Both CPLEX and PBS were used to solve the MaxD model for dif-
ferent topology sizes. For each experiment, we generated a circular to-
pology of radius 100 units comprising q (empty) slots. Assuming an
equal number of nodes, a specific testing and communication configu-
ration was pre-selected for each node such that the distribution of con-
figurations to nodes was uniform. The time-out periods for the CPLEX
and PBS solvers were set to 10,000 and 3,000 seconds, respectively.
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max Dmin 1 α–( ) Dmax⋅,( ) 0 α 1≤ ≤

α

Nodes(q)
f = 1 f = 2 f = 3

Cost Time Cost Time Cost Time

4 40 40 0 uns 0 uns 0
8 80 46 0.29 64 0.19 80 0

12 120 56 167.18 69 10.28 88 9.59
16 160 58 69.81 79 67.82 93 67.02
20 200 58 424.75 89 t/o 101 251.17
22 220 54 2099.09 74 34.37 102 1311
26 260 58 4547.47 78 2086.2 108 t/o
32 320 78 t/o 109 t/o 123 t/o
34 340 64 t/o 98 t/o 115 t/o

Table 1. The MinC results obtained by CPLEX for different topology 
sizes and number of node failures.
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Table 2 summarizes the results obtained by CPLEX and PBS, in
terms of the number of diagnosable nodes, for . Again, opti-
mal results are shown in boldface in the figures. We assume five testing
(communication) configurations corresponding to  values of 0, .25,
.5, .75, and 1. The results indicate that MaxD is a substantially harder
problem to solve than MinC. Though the solutions are obtained quickly,
both solvers time-out trying to prove their optimality, and so Table 2
does not show the corresponding processing times. To obtain the results
in Table 3, only four configurations were assumed, corresponding to 
values of .25, .5, .75, and 1. Since the testing and communication ranges
on nodes are now somewhat limited, the results show a slight decrease
in system diagnosability.

To summarize, the ILP models appear tractable for medium-size to-
pologies up to 40 nodes and MinC was easier to solve than the MaxD
problem. Also, in the case of MinC, even those solutions not proved as
optimal still result in substantial cost savings when compared to the
worst-case bounds. The next section briefly discusses how to apply the
proposed models to larger network topologies.

V.   DISCUSSION

This paper has addressed the problems of sensor selection and place-
ment for distributed failure diagnosis in UAV networks. We developed
two ILP models, namely MinC and MaxD to solve the problems of in-
terest. The MinC model allows designers to systematically explore
available low-cost system diagnosis alternatives without having to du-
plicate sensors and processors on individual nodes. The MaxD model,
on the other hand, allows designers to specify the placement of nodes
within a given topology to maximize system diagnosability while in-
curring no additional testing costs. The ILP models were solved using
the CPLEX and PBS solvers, and experimental results indicate that they
are tractable for medium-size topologies. For larger topologies, a
straightforward (and sub-optimal) solution is to partition the given to-
pology into portions tractable for the ILP models, and solve the result-

ing sub-problems in parallel. We will investigate this and other
approximation methods in future work.
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f 1 2,=

α

α

Nodes(q)
f = 1 f = 2

PBS CPLEX PBS CPLEX
4 uns uns uns uns
8 uns uns uns uns

12 9 9 uns uns
16 12 12 8 8
20 16 16 16 15
22 17 17 17 13
26 20 20 20 16
32 25 32 14 32
34 27 34 15 24

Table 2. Number of nodes diagnosed under the different fault models; 
five testing (communication) configurations corresponding to = 0, 

.25, .5, .75, 1 are assumed

Nodes(q)
f = 1 f = 2

PBS CPLEX PBS CPLEX
4 uns uns uns uns
8 uns uns uns uns

12 9 9 uns uns
16 12 12 uns uns
20 15 15 14 14
22 16 16 14 13
26 19 19 19 19
32 23 23 7 14
34 25 25 6 23

Table 3. Number of nodes diagnosed when only four configurations 
corresponding to = .25, .5, .75, 1 are assumed

α

α
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