
Abstract — The Employee Timetabling Problem (ETP) is
concerned with assigning a number of employees into a given
set of shifts over a fixed period of time, e.g. a week, while meet-
ing the employee’s preferences and organizational work regu-
lations. The problem also attempts to optimize the
performance criteria and distribute the shifts equally among
the employees. The problem is considered a classical NP-com-
plete optimization problem. It has received intensive research
during the past few years given its use in industries and orga-
nizations. Several formulations and algorithms based on local
search have been proposed to solve ETPs [12, 15, 17, 18]. In
this paper, we propose a complete approach using integer lin-
ear programming (ILP) to solve these problems. The ILP
model of interest is developed and solved using the generic ILP
solver CPLEX and the Boolean Satisfiability ILP solver PBS.
Experimental results indicate that the proposed model is trac-
table for reasonable-sized ETP problems.

Index Terms — Employee Timetabling, Optimization,
Scheduling, ILP, Boolean Satisfiability.

1.   INTRODUCTION
Employee Timetabling Problem (ETP) represent an im-

portant class of optimization problems in operational re-
search. The problem was originally associated with
timetabling of classes in schools and universities [22], but
has recently been extended to schedule employees in large
organizations, such as hospitals [12], factories, etc. Given a
number of employees and shifts, the goal is to assign em-
ployees to shifts while satisfying all of the employees and
organizational constraints. Many formulations and algo-
rithms have been proposed to solve ETP. Most of these al-
gorithms are based on local search techniques, namely hill
climbing, simulated annealing, and tabu search [15, 17, 21,
18, 7]. Such algorithms cannot prove unsatisfiability or
guarantee that a solution is optimal. In other words, if a so-
lution is found, it cannot guarantee that this solution has the
best possible optimization cost.

In this paper, we propose an integer linear programming
(ILP) approach to solve the ETP. The approach is complete
and hence examines the entire search space defined by the
problem to prove that either the problem has no solution,
i.e. the problem is unsatisfiable, or that a solution does ex-
ist, i.e. the problem is satisfiable. If the problem is satisfi-
able, our approach will search all possible solutions to find
the optimal solution. 

Recently, advanced Boolean Satisfiability (SAT) solvers
have been extended to solve ILP problems. The SAT prob-
lem is a central problem in artificial intelligence and com-
puter science and has received considerable attention from

researchers. Many complex Engineering problems have
been successfully solved using SAT. Such problems in-
clude routing [20], power optimization [2], verification [4],
and graph coloring [9], etc. Today, several powerful SAT
solvers exist and are able of handling problems consisting
of thousands of variables and millions of constraints. 

In this paper, we will also show how to formulate the
ETP as an ILP problem and explore the possibility of using
advanced SAT techniques to solve the ETP problem. We
also use the commercial generic-based ILP solver, CPLEX,
to test our instances. We report results for a variety of orga-
nization sizes. Initial results indicate the effectivity of the
proposed approach. The proposed approach is complete and
is guaranteed to identify the optimal schedule. 

This paper is organized as follows. Section 2 provides a
general overview of Boolean Satisfiability. Section 3 shows
how to formulate the ETP as an ILP instance. A detailed ex-
ample is shown in Section 5. Experimental results are pre-
sented and discussed in Section 5. The paper is concluded
in Section 6.

2.   BOOLEAN SATISFIABILITY
The Boolean satisfiability (SAT) problem involves find-

ing an assignment to a set of binary variables that satisfies
a given set of constraints. In general, these constraints are
expressed in products-of-sum form, also known as conjunc-
tive normal form (CNF). A CNF formula  on  binary
variables  consists of the conjunction (AND) of

 clauses  each of which consists of the dis-
junction (OR) of  literals. A literal  is an occurrence of a
Boolean variable or its complement.

Most current SAT solvers [13, 19, 16] are based on the
original Davis-Putnam backtrack search algorithm [10].
The algorithm performs a depth first search process that
traverses the space of  variable assignments until a satis-
fying assignment is found (the formula is satisfiable), or all
combinations have been exhausted (the formula is unsatis-
fiable). Originally, all variables are unassigned. The algo-
rithm begins by choosing a decision assignment to an
unassigned variable. A decision tree is maintained to keep
track of variable assignments. After each decision, the algo-
rithm determines the implications of the assignment on oth-
er variables. This is obtained by forcing the assignment of
the variable representing an unassigned literal in an unre-
solved clause, whose all other literals are assigned to 0, to
satisfy the clause. This is referred to as the unit clause rule.
If no conflict is detected, the algorithm makes a new deci-
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sion on a new unassigned variable. Otherwise, the back-
tracking process unassigns one or more recently assigned
variables and the search continues in another area of the
search space. 

As an example, a CNF instance  con-
sists of 3 variables, 2 clauses, and 4 literals. The assignment

 leads to a conflict, whereas the as-
signment  satisfies . Note that a
problem with n variables will have  possible assign-
ments to test. The above example with 3 variables has 8
possible assignments. A instance with 100 variables will
have 1.27e+30 assignments. Assuming a processor that can
verify an assignment every 1 nanosecond, the processor
will complete testing all  assignments in 4e+12 years.

Despite the SAT problem being NP-Complete [5], sever-
al powerful methods have been proposed to expedite the
backtrack search algorithm. One of the best methods is
known as the conflict analysis procedure [16] and has been
implemented in almost all SAT solvers. Whenever a con-
flict is detected, the procedure identifies the causes of the
conflict and augments the clause database with additional
clauses, known as conflict-induced clauses, to avoid regen-
erating the same conflict in future parts of the search pro-
cess. In essence, the procedure performs a form of learning
from the encountered conflicts. Significant speedups have
been achieved with the addition of conflict-induced clauses,
as they tend to effectively prune the search space.

Intelligent decision heuristics and random restarts [19],
also played an important role in enhancing the SAT solvers
performance. Chaff [19] proposed an effective decision
heuristic, known as VSIDS, and implemented several other
enhancements, including random restarts, which lead to
dramatic performance gains on many CNF instances.

Another recent extension to SAT solvers deals with its
input format. Restricting the input of SAT solvers to CNF
formulas can restrict their usage in various domains. There-
fore, researchers have focused on extending SAT solvers to
handle stronger input representations. Specifically, SAT
solvers [1, 6, 23] have recently been extended to handle
pseudo-Boolean (PB) constraints which are linear inequali-
ties with integer coefficients that can be expressed in the
normalized form [1] of:

(1)

where  and  are literals of Boolean variables.
Note that any CNF clause can be viewed as a PB constraint,
e.g. clause  is equivalent to . 

PB constraints can, in some cases, replace an exponential
number of CNF constraints. They have been found to be
very efficient in expressing “counting constraints” [1]. Fur-
thermore, PB extends SAT solvers to handle optimization
problems as opposed to only decision problems. Subject to
a given set of CNF and PB constraints, one can request the
minimization (or maximization) of an objective function

which consists of a linear combination of the problem’s
variables. 

(2)

This feature has introduced many new applications to the
SAT domain. Specifically, all 0-1 ILP problems (i.e. ILP
problems whose variables are Boolean) can be easily solved
now by SAT solvers. Recent studies has shown that SAT-
based optimization solvers can in fact compete with the best
generic-based ILP solvers [1, 6].

3.   PROBLEM FORMULATION
This section develops the 0-1 ILP model for the ETP and

illustrates its applicability using small examples. Consider
an organization with m employees. Assume the organiza-
tion runs for d days/week, has s shifts per day, and needs w
employees to be working in each shift. We first introduce
the following decision variables per employee:

(3)

(4)

(5)

Hence the total number of variables will be .
Two sets of constraints are added to represent the organiza-
tional regulations and employee preferences, respectively.
These are described below.

A.  Organizational Constraints
The organization needs to make sure that w employees

are assigned to each possible shift. This is expressed in the
following constraint:

(6)

The constraint can be customized per shift. For example the
morning shift can have more employees than the afternoon
or evening shift. 

B.  Employee Constraints
The first two constraints define the relationship between

the variables , , and . These constraints are add-
ed for all employees. Constraint (7) ensures that if an em-
ployee is assigned to any shift, then the employee is
working:

(7)
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Constraint (8) ensures that if an employee is working during
any day, then the employee is working, i.e. not on vacation,
etc. 

(8)

The following set of constraints deal with the employee
preferences. They can be specifically assigned to each em-
ployee depending on his/her preferences. 

• Alternating days: An employee cannot work for two
consecutive days.

(9)

• Number of shifts per employee: An employee can
work upto  shifts per day.

(10)

• Number of working days per employee: An
employee must work not less than  days and no

more than  days per week.

(11)

(12)

• Off-days: An employee may be sick or on vacation and
unable to work. Assuming employee i cannot work on
day j, this can be expressed using:

(13)

• Off-shifts: An employee may be working part-time or
unable of working during specific shifts. Assuming
employee i cannot work in the morning shifts
(indicated by ), due to another job. This can be
expressed using:

(14)

Note that constraints (9)-(14) are optional and a valid
schedule can be generated without them. However, the
schedule is likely to be meaningless, since the employees
preferences have not been taken into consideration. 

The last goal is to distribute the work evenly among all
employees and maximize their usage. This is expressed in

the following linear cost function which must be maxi-
mized:

(15)

This objective function will minimize the number of idle
workers. Other optimization functions can be similarly ex-
pressed for other organizational purposes such as reducing
the labor cost, minimizing the number of employees, etc. 

4.   ILLUSTRATIVE EXAMPLE
In this example, we examine a company consisting of

two employees. Assume the company is open 3 days a week
and includes two shifts per day (e.g. morning and evening
shift). Each shift must be assigned to a single employee. As
shown in Section 3, the number of variables is

. Figure 1 shows the distribution
of variables. We use the variable naming convention used
in the previous section. Each node represents a Boolean
variable. For example,  and  represent employees 1
and 2, respectively.  represents employee 1 working in
day 2.  represents employee 2 working in the morning
shift of day 3.

Fig. 1. Employee Timetabling Example

The company’s constraint indicating that each shift must
be assigned to a single employee is expressed as:

The above constraint are represented in PB form. The fol-
lowing set of CNF constraints enforce the relationship be-
tween the variables.
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The final set of constraints represents the employees prefer-
encs. Assume the following working preferences:

• Employee 1 works on alternative days

• Employee 2 works for a maximum of 4 shifts per week

PB: 

• Employee 1 cannot work during morning shifts

PB: 

• Employee 2 cannot work on day 3

PB: 

• Employee 1 must work at least 2 days per week

PB: 

In summary, the instance consists of 20 variables, 10 PB
constraints, and 24 CNF constraints.

5.   EXPERIMENTAL RESULTS
In this section, we evaluate the use of ILP solvers to

solve the ETP problem. A tool was developed using Visual
Basic with an easy-to-use GUI interface. The user inputs
the employee preferences and organization constraints. The
tool translates the user input into a 0-1 ILP instance as de-
scribed in Section 3. The instance is then passed into an ILP
solver and once the search is completed, the solution, if sat-
isfiable, is translated into an easy-to-read schedule. The tool
can handle an unlimited number of employees, has the abil-
ity to add unique preferences for each employee, and gen-
erates a schedule for a period of month. We used two of the
best 0-1 ILP solvers: (1) The SAT-based 0-1 ILP solver,
PBS [1, 3], and (2) the leading generic commercial ILP
solver, CPLEX [14]. PBS is an advanced SAT solver that
can handle both CNF and PB constraints. It employs the lat-
est advances in the SAT technology. The experiments were
conducted on a Pentium Xeon 3.2 GHz machine, equipped
with 4 GBytes of RAM, and running Linux. The runtime
limit was set to 1000 seconds. 

We present runtime results for 12 examples of organiza-
tions. Table 1 shows the organization and employee prefer-
ences, the runtime in seconds of PBS and CPLEX, and the
result of the search. A SAT result indicates that the instance
is satisfiable, and hence a schedule is generated. A UNS re-
sult indicates that the instance is unsatisfiable, and hence a
schedule cannot be generated given these constraints. In
this case, relaxing the constraints, such as adding more em-
ployees or reducing the number of shifts or working days,
can help make the problem satisfiable. Note that if the
search is completed, both solvers must yield the same opti-
mal result.

The first 4 columns in Table 1 show the organization reg-
ulations and the last 3 columns show the employee prefer-
ences. A brief description of the preferences is given below:

The fairness constraint was enforced in all examples. Sev-
eral observations are in order:

• PBS was able to solve most instances, but timed-out in
3 cases. In these cases, the instances were unsatisfiable,
and hence didnt have a solution. CPLEX, on the other
hand, was able to solve all instances (both satisfiable
and unsatisfiable) in less than a second.

Logic Expression CNF Constraint

Logic Expression CNF Constraint

Logic Expression CNF Constraint
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Column Constraint Description
2 Number of employees
3 Number of working days per week
4 Number of shifts per day

5 Number of employees per shift. If 3 numbers are 
listed, these correspond to the 3 shifts, respectively

6 Alternating Days policy enforced

7 Maximum number of shifts per day for each 
employee

8 Maximum number of working days per week for 
each employee



• The larger the organization, hence the 0-1 ILP instance,
the longer is the search runtime.

• The approach is complete and is guaranteed to find a
fair schedule given enough time and memory
resources.

6.   CONCLUSION
In this paper, we present an ILP-based approach to gen-

erating employees timetables. The proposed approach uti-
lizes advanced generic-based and Boolean satisfiability-
based ILP solvers to find a schedule that satisfies the orga-
nization’s rules and its employees preferences. The pro-
posed approach can be used to optimize a given objective
function such as minimizing labor costs or maximizing fair-
ness among employees. We show how to formulate the em-
ployee timetabling as an ILP problem. The approach was
tested on organizations with various sizes and showed
promising results. The approach is complete and will find
the required timetable, or will indicate that no timetable ex-
ists that meets the current organization’s conditions.
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TABLE 1. Experimental results using the ILP solvers 
PBS and CPLEX.
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1 6 5 3 1 Y 1 - SAT 0 0.02
2 12 5 3 2 Y 1 - SAT 0 0.03
3 18 5 3 3 Y 1 - SAT 0 0.16
4 15 5 3 3 Y 1 - UNS >1000 0.04
5 25 5 3 5 Y 1 - UNS >1000 0.06
6 27 5 3 4 Y 1 - SAT 0 0.07
7 25 5 3 3 Y 1 - SAT 0 0.06
8 18 5 3 3, 2, 1 Y 1 - SAT 0 0.04
9 15 5 3 3, 2, 1 Y 1 - SAT 0.01 0.04
10 30 5 3 6, 4, 2 Y 1 - SAT 0.01 0.06
11 45 5 3 9, 6, 3 Y 1 - SAT 0.01 0.11
12 18 5 3 2 Y 1 2 UNS >1000 0.05


