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Abstract–With the advancement of computers and technology, 
security threats are also evolving at a fast pace. Botnets are one 
such security threat which requires a high level of research and 
focus in order to be eliminated. In this paper, we use machine 
learning to detect Botnet attacks. Using the Bot-IoT and 
University of New South Wales (UNSW) datasets, four 
machine learning models based on four classifiers are built: 
Naïve Bayes, K-Nearest Neighbor, Support Vector Machine, 
and Decision Trees. Using 82,000 records from UNSW-NB15 
dataset, the decision trees model has yielded the best overall 
results with 99.89% testing accuracy, 100% precision, 100% 
recall, and 100% F-score in detecting botnet attacks. 

Keywords–IoT, botnet, machine learning, computer security, 
DDoS, cyberattack, classification 

I. INTRODUCTION 

As the Internet of Things (IoT) is an evolving 
technology, more of daily household devices are getting 
connected to the internet [1]. This allows more devices to 
potentially become botnet devices. This paper aims to use 
Machine Learning technique to detect botnet attacks.  

A botnet consists of several internet-connected devices 
that could have been intentionally infected with malware by 
cyber hackers. Botnets can be used to perform distributed 
denial-of-service attacks (DDoS), steal data, or given access 
to devices. A botnet attack is a type of malicious attack that 
utilizes a series of connected computers to attack or take 
down a network, network device, website, or an IT 
environment. It is perpetrated with the sole intent to disrupt 
normal working operations or degrade the overall service of 
the target system. Therefore, the successful detection and 
prevention of botnets would have major significance in 
computer security.  

As more devices are becoming candidates to being 
botnet devices, the process of detecting and distinguishing 
these botnet devices can be done using various machine 
learning techniques. This work aims to detect botnets or 
malicious traffic activity using the emerging machine 
learning techniques and provide an improvement in the 
accuracy compared to the other related work.  

The paper is organized as follows. Section II presents 
the literature review of related work. Section III shows the 
proposed methodology. Section IV presents a discussion of 
the experimental results. Section V presents the conclusion 
and future work. 

 
II. LITERATURE REVIEW 

Many studies have been done in recent years which 
show the effectiveness of using Machine and Deep Learning 
in detecting botnet attacks which have been rising over the 
years. 

Some studies also focus on finding the key features or 
characteristics of a botnet which can help distinguish 
between and attack or normal traffic. Dong et al. [2] 
discussed the use and effectiveness of machine learning in 
botnet detection. They analyzed the structure of botnets to 
find key features that can help distinguish botnet traffic from 
normal traffic. These features can then be used for feature 
selection when designing our machine learning model. One 
such method was used by Vishwakarma et al. [3] who used 
a honeypot to lure attackers and generated data from an IoT 
network. This fresh data was then used to analyze different 
characteristics of an attack such as IP addresses, MAC 
addresses, packet size, etc. Furthermore, Guerra-Manzanares 
et al. [4] presented the idea of using hybrid feature selection 
models to reduce the feature set size to get accurate results. 
The data used, contains 115 features, which is extremely 
large for any dataset. Feature selection was done using the 
filter, wrapper, and hybrid models to reduce the number of 
features. These features were then fed into a K-Nearest 
Neighbor (K-NN) and Random Forest model and high 
accuracy of 99% was seen with both models.  

One of the most promising classifiers in P2P botnet 
detection is the Decision Tree (DT) Classifier. Haq and 
Singh [5] used different classifiers as well as clustering for 
botnet detection. The dataset used contained over 38,000 
records of network traffic consisted of attack and normal 
traffic. In this paper, the DT classifier had the best accuracy 
of 90.2723% followed by Decision Tree classifier with an 
accuracy of 87.7853%. Similarly, according to Khan et al. 
[6], P2P botnets were difficult to detect because they own 
typical features of centralization and distribution. In 2013, 
Khan et al. suggested a detection method for P2P botnets, 
consisting of 2 stages. The first stage consisted of port 
judgement, DNS query and data flow count to filter non-P2P 
traffic. The 2nd stage used the bases of session features to 
reduce the number of packets being analyzed. Machine 
learning algorithms were also being used to classify and 
identify the traffic. The CTU-dataset, which contains 13 
different botnet samples was used to do the experiment. 
Three main ML algorithms were based on session 
characteristics to detect P2P botnet traffic. The algorithms 
used were Naïve Bayes (NB), DT classification, and ANN. 
The results showed that the detection rate using NB and 
ANN was 75.5% and 93.8%, respectively, but the DT 
algorithm showed 94.4% accuracy. This showed that the 
two-stage technique by P2P traffic filtering and the DT 
classifier based on session characteristics proved to 
effectively detect P2P botnet traffic. 

Other effective classifiers are the random forest and 
decision tree classifiers. Stevanovic and Pedersen [7] 
explored how botnet detection can be achieved with high 
accuracy by using supervised machine learning. Firstly, they 
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proposed a botnet detection system that uses flow-based 
traffic analysis and supervised machine learning as a tool for 
identifying botnets. They then proceed to test performances 
of eight of the most important machine learning algorithms 
(MLAs) for classifying botnets traffic. Finally, they 
explored how much traffic needs to be observed for 
successful classification. Traffic analysis was done by either 
“batch” analysis, which is monitoring from the start until the 
end of the trace, or by “limited” analysis, where time 
intervals and packet numbers are limited. The experiments 
were conducted using the ISOP dataset which includes 
malicious and non-malicious records. The results showed 
that while the random forest classifier had the highest 
accuracy of botnet detection, the random tree classifier was 
considered as optimal because it had the best balance 
between accuracy and time of detection. In a newer paper in 
2018, Hoang et al. [8] proposed an evaluation on botnet 
detection model using machine learning algorithms in 
comparison to anomaly-based botnet detection methods. The 
paper used K-NN, C4.5, random forests (RF) and NB 
classifiers for their machine learning model. For the success 
of the machine learning model, they chose to use Domain 
Name Service’s superior and the classifier with the best 
performance. The results showed an overall accuracy of 
90% in detecting botnet using random forest. Jin et al. [9] 
also conducted research using DNS to detect botnets. Six 
special features of botnet domain traffic were selected based 
on their DNS logs. The selected features consisted of name-
based features, such as the meaningful length ratio. This was 
followed by message-based features, such as the number of 
source IPs, types and A, AAAA, NS and MX queries. 
Finally, quantity-based features, such as the total queries per 
day and how much querying was done per hour. After 
selecting features, three popular ML classifiers were used to 
pick the malicious domains from the DNS traffic. The used 
classifiers were Adaboost, Bagging, and NB. The results 
showed good performance with precision rates above 90% 
for all classifiers, with only minor differences between 
them. Such results clearly demonstrate the success of 
detecting and interrupting malicious botnet behaviors when 
their domain names appear in the traffic. In future studies, 
Jin et al. suggest deploying this system with larger DNS 
logs.  

Garg et al. [10] compared three machine learning 
algorithms in their ability to classify botnet vs normal 
traffic. This was done by selecting key features of the 
network traffic, and then grouping them in different 
combinations to produce several test cases for the 
algorithms. The three algorithms tested were the NB, 
Nearest Neighbour (IBk), and J48. After testing each 
algorithm with all the cases separately, the results showed 
that the detection accuracy of the J48 and IBk algorithms 
was higher than that of NB, but with limitations that J48 
required a high training time and IBk required a high testing 
time. Despite these limitations, the high detection rates of 
more than 99% enabled the detection of P2P botnets.  

The SVM classifier also proved a very effective 
classifier. Saad et al. [11] conducted a study on detected 
P2P botnets using network behavior analysis and machine 
learning. In their experiment they used two datasets of over 
370,000 which represented only malicious traffic. For 
normal traffic, they used a labeled dataset with a million 

packets of normal traffic which they obtained from Ericsson 
Research Traffic Lab. The classifiers they used were K-NN, 
Linear Support Vector Machine (SVM), Artificial Neural 
Network, Gaussian Based Classifier, and NB Classifier. 
After running their experiment, the result showed that SVM 
had the highest training time and classification time. For the 
detection rate, SVM had the highest accuracy of almost 98% 
and the lowest error rate of around 6%. Gaussian Classifier 
came second with 96% accuracy however it had the highest 
error rate of 20% out of all classifiers. NB had the lowest 
accuracy of 89% and the second-highest error rate of around 
12%. In 2014, Lin et al. [12] built a model based on a botnet 
detection using supervised machine learning classifiers, 
specifically a combination to between SVM and artificial 
fish swarm algorithm (AFSA). The data set they used was 
collected through a Local Area Network which was made to 
collect the packets data of the network and used it as a 
prototype simulation of botnet attacks traffic or normal 
traffic. Their results show after 5-fold cross-validation that 
the combination of SVM and AFSA performed better than 
other classifiers with 99% average accuracy rate.  

Another common classifier used in this domain is the 
KNN classifier. In 2013, Feizollah et al. [13] conducted a 
study on Android malware detection, more specifically, 
anomaly-based mobile botnet detection. The study used five 
machine learning classifiers, namely K-NN, Multi-Layer 
Perceptron (MLP), DT and SVM. In this study, they used 
malware data samples from the Android Malware Genome 
Project and evaluated the classifiers on them. This study 
selected 3 network features: connection duration, TCP size 
and number of GET/POST parameters. The result showed 
that the best classifier obtained is the KNN with a true 
positive rate as high as 99.94% and false positive of 0.06%. 
In a newer paper in 2018, Arif et al. [14] proposed a 
network to use machine learning classifiers, namely DT, K-
NN, NB and Random Forest (RF) to detect HTTP botnets. 
The dataset they used for their research was extracted from 
the network traffic which is based on TCP packet feature. 
The results showed that the best classifier to detect HTTP 
botnet attacks in the network traffic is KNN classifier with 
an average accuracy of 92.93% for each type of botnet 
family. 

Deep and unsupervised learning have also shown 
promise in detecting botnet attacks. Pour et al. [15] used a 
multi-window convolution neural network combined with 
clustering to detect over 350 IoT botnets in darknet traffic. 
Al Shorman et al. [16] proposed an unsupervised intelligent 
system which was made from SVM and Grey Wolf 
optimization for detecting IoT botnets. This model was able 
to achieve low detection time and reduce the number 
features that were used for detection. 

From these studies, it is found that machine learning is 
highly applicable and effective in botnet detection. The main 
contribution of this study is to create a botnet detection 
model using machine learning classification approach. 

III. PROPOSED METHODOLOGY 

A. Dataset Description 
Several datasets are available for this work such as the 

Bot-IoT and the UNSW-NB15 datasets. The Bot-IoT dataset 
contains over 72 million records with 42 features (27 
Integer, 13 Float, and 2 String types) and was created by 



 

setting up a botnet network in a controlled environment and 
monitoring the network traffic to capture any packets that 
were being sent. The dataset contains labeled normal and 
malicious traffic which includes attacks such as DDoS, DoS, 
OS Scan, etc. The other dataset, UNSW-NB15 contains 43 
features (14 Float, 6 Strings and 23 Integer types) and 2.5 
million records which are labeled as either attack traffic or 
normal traffic and further expanded to the category of attack 
and the subcategory. In addition to DDoS and DoS attacks, 
the dataset contains records for Fuzzers, Backdoor, 
Reconnaissance and Worm attacks [17]. These records were 
collected in pcap files and then converted to CSV to create 
the dataset. Both datasets have been compiled and made 
publicly available by UNSW Canberra for research purposes 
[18]. Furthermore, it is found that the UNSW-NB15 dataset 
is a more polished dataset, where has similar attributes to the 
Bot-IoT dataset but is more diverse in the type of malicious 
records it has. 

In this work, the UNSW-NB15 dataset was used as it is 
more detailed and was labeled by UNSW to be the best 
dataset for training. In this work, 82,000 records were 
randomly selected and utilized. The data was cleaned and 
prepared to classify the training and testing models. 
Categorical data such as the “proto”, type of “service’, 
“state”, “sptks”, “sload”, and “attack cat” were coded into 
numerical data. Random splits were performed on the data 
to divide it into a training set, that has 80% of the data, and a 
testing set, that has 20% of the data.  

 
B. Feature selection and Dimensionality reduction 

For our model, we applied a feature selection and 
dimensionality reduction to reduce the dimensionality of the 
data while preserving the variance in the data. One method 
of dimensionality reduction is Principal Component 
Analysis (PCA). PCA is a data transformation method that 
projects the data into a new feature space where most of the 
variance in the data is represented by the first coordinate of 
the new space (called the first principal component), the 
second most variance on the second principal component, 
and so on. In this work, the features with the greatest 
variance are selected to be used as input to the classifiers. 
Using this process, we ensure that only relevant features are 
selected which will contribute to the computational 
efficiency and the simplicity of the machine learning 
models. Furthermore, this process has the feasibility to 
reduce any overfitting that might occur using all the 
features. 

 
C. Classification Algorithms 

Several classifiers were used and evaluated in this 
work. Scikit-learn library in Python was used in this work. 
For the evaluation, the confusion matrix was computed to 
calculate precision, recall, and F-Measure using the true and 
predicted labels from the model. The classifiers used in this 
paper are: 

 
1) Naïve Bayes (NB) with Gaussian probabilities – a 

probabilistic classifier that uses the Bayes theorem and 
assumes a conditional independence between the different 
features of the dataset. NB estimates the class probability 
based on the training set. 

2) K-Nearest Neighbor (k-NN) – a non-parametric 
algorithm used for classification and regression. To predict 
the class, the model assigns the class of the test sample 
based on the majority of the k nearest neighbors of that 
given test sample.  

3) Support Vector Machine (SVM) with nonlinear 
kernel, namely radial basis function (RBF) – creates a 
decision boundary based on samples of different classes. 
The shape of the decision boundary is created based on the 
kernel function used, and key hyper parameters such as C 
which controls the tradeoff between the smoothness of the 
decision boundary and the correctness of the classification, 
and gamma which defines the influence of the data points’ 
distribution on the shape of the decision boundary. 

4) Decision Tree (DT) – a tree-like classification model 
where each node in the tree specifies a test on a single 
feature and each branch descending from that node 
corresponds to one of the possible values for that feature.  

To apply these classifiers, the dataset was randomly 
split into training and testing datasets. The training data was 
used to train the classifiers. The classifiers were then tested 
using the testing dataset to predict the labels. The classifiers 
were all evaluated and compared as discussed in Section IV.  

IV. DISCUSSION OF RESULTS 

To summarize, we have applied DT, SVM, KNN and 
NB classifiers and analyzed the result of each classifier 
model. Meaning, we looked at the prediction test and train 
accuracy, precision, recall and F-measure scores as well as 
their confusion matrix for each classifier. The result 
organized in the table below. 

 
A. Principal Component Analysis (PCA) 

PCA was applied on the dataset to reduce the number of 
dimensions in a dataset while preserving its variance. The 
results of performing PCA on the dataset are shown in Table 
II. After running a simulation that varies the PCA 
parameters, the best parameters that yielded the highest 
accuracy were recorded. As can be seen in the table, the 
number of components chosen for DT and NB was 43. For 
k-NN and SVM with RBF kernel, the number of 
components used was 20. DT and SVM with RBF kerned 
had the highest accuracy with the optimal number of 
components. 

TABLE I 
RESULTS OF APPLYING PCA ON THE DATASET USING DIFFERENT 

CLASSIFIERS 

Classifier Number of 
Components 

Chosen 

Training 
Accuracy 

Testing 
Accuracy 

Decision Trees 43 99.28% 98.87%
Naïve Bayes 43 85.69% 85.91% 

k-NN 42 90.5% 82.14% 
SVM – rbf 20 99.9% 99.25% 

 

 

 



 

B. Feature Selection 
In this work, the best features were selected to reduce 

the dimensionality of the dataset and remove the effect of 
training the classifiers using irrelevant features. Multiple 
runs were performed using Chi-squared and ANOVA F-
value to determine the degree of correlation between the 
features and the output labels. It was found that Chi-squared 
criteria was best suited to be used to rank the features when 
it comes to accuracy. Using SVM with RBF, only 14 
features ensured producing the best accuracy. However, DT 
achieved its highest accuracy using 29 features. Table II 
shows the accuracy of the classifiers reported using the 
selected features. 

TABLE II 
RESULTS OF APPLYING FEATURE SELECTION ON THE DATASET USING 

DIFFERENT CLASSIFIERS 

Classifier 

Percentile 
of 

selected 
features 

Number 
of 

selected 
features 

Training 
Accuracy 

Testing 
Accuracy 

Decision Trees 67% 29 100% 100% 
Naïve Bayes 67% 29 96.40% 96.39% 

k-NN 72% 31 90.47% 82.23% 
SVM– rbf 32% 14 99.85% 99.00% 

 
With these results, it is observed that the DT model 

provided the best training and testing accuracy with a total 
of 29 features involved with the training and testing 
accuracy of 100%. Table III displays the best features 
selected for the detection of malicious traffic and their 
description as given from the dataset. 

TABLE III 
BEST FEATURES SELECTED FOR THE DETECTION OF MALICIOUS TRAFFIC 

Name Type Feature description 

Spkts integer Source to destination packet count 

Dpkts integer Destination to source packet count 

Sbytes Integer Source to destination transaction bytes 

Dbytes Integer Destination to source transaction bytes 

Rate Integer Total packets per second in transaction 

sttl Integer Source to destination time to live value 

dttl Integer Destination to source time to live value 

Sload Float Source bits per second 

Dload Float Destination bits per second 

dloss Integer 
Destination packets retransmitted or 

dropped 

Sintpkt Float Source interpacket arrival time (mSec) 

Dintpkt Float 
Destination interpacket arrival time 

(mSec) 

Sjit Float Source jitter (mSec) 

Djit Float Destination jitter (mSec) 

swin integer Source TCP window advertisement value 

stcpb integer Source TCP base sequence number 

dtcpb integer Destination TCP base sequence number 

dwin integer 
Destination TCP window advertisement 

value 

dmean integer 
Mean of the packet size transmitted by 

the dst 

smean integer 
Mean of the packet size transmitted by 

the src  

res_bdy_len integer 
Actual uncompressed content size of the 

data transferred from the server’s http 
service. 

ct_srv_src integer 

No. of connections that contain the same 
service (14) and source address (1) in 100 

connections according to the last time 
(26). 

ct_dst_ltm integer 
No. of connections of the same 

destination address (3) in 100 connections 
according to the last time (26). 

ct_src_ ltm integer 
No. of connections of the same source 

address (1) in 100 connections according 
to the last time (26). 

ct_src_dport_ltm integer 

No of connections of the same source 
address (1) and the destination port (4) in 

100 connections according to the last 
time (26). 

ct_dst_sport_ltm integer 

No of connections of the same destination 
address (3) and the source port (2) in 100 

connections according to the last time 
(26). 

ct_dst_src_ltm integer 

No of connections of the same source (1) 
and the destination (3) address in in 100 
connections according to the last time 

(26). 

cat nominal 

The name of each attack category. In this 
data set , nine categories e.g. Fuzzers, 
Analysis, Backdoors, DoS Exploits, 

Generic, Reconnaissance, Shellcode and 
Worms 

 

C. Model Selection and Classification: 
In this work, using the best features found in each 

classifier, we applied grid search with a 5-fold cross 
validation on all the models to get the best combination of 
hyper parameters for each model and to ensure its 
optimality. The summary of results is shown in Table IV. 

For the NB classifier, the best hyper parameter values 
found to produce best results were 1e-20 for 
‘var_smoothing’. The model preforms fairly good in 
comparison to other models where we the training and 
testing accuracy were 97% and 96% and precision, 
accuracy, recall and f-score all lie above 96%. The model 
obtain exceptionally high false classifications in the 
confusion matrix as it generates some false positives and 
false negatives classifications. Nevertheless, this model 
proves to be a good model for classifying botnet attacks. 

Similarly, using grid search on KNN, it was found that 
the best hyper parameter for the number of neighbors 
‘K_neighbors’ is 3. It is noticeable that the classifier’s 
performance results were generally the lowest compared to 
the other models. The training and testing accuracies 
reported for this model were 91% and 83%, respectively 
while precision, accuracy, recall and f-score are all around 
81%. There is a considerable amount of false positives and 
false negatives classifications according to the confusion 
matrix.  

For the SVM with RBF kernel, the dataset records were 
reduced to 10,000 as SVM classifier is computationally 
expensive. The best hyper parameters that were found are of 



 

C: 10, and gamma: 0.0001. The results using this model is 
satisfactory where the training and testing accuracies were 
100% and 98%, with good the precision, accuracy, recall 
and f-score results.  

Lastly, after performing a grid search on DT to find its 
optimum hyper parameters, we found that the best hyper 
parameters are max depth of 100, max features at 10, max 
leaf nodes are none and min sample leaf at 10. This model 
outshines the other classifiers as it uses the entire dataset 
and provides the highest performance values. In detail, the 
training and testing accuracy are averaged at 99.9% and 
99.8%, respectively, while the precision, accuracy, recall 
and f-score all lie in 100% with a significantly low or almost 
zero false classifications in the confusion matrix. Not only it 
is not computationally expensive, the DT classifier model 
was able to correctly differentiate the malicious traffic and 
normal traffic statistically better than the previously 
discussed classifiers.  

This work improved the performance of the other 
machine learning models proposed in the literature. It 
demonstrated a 1% increase in the detection accuracy over 
the work at [4] and [12] and a 9.8% increase over the work 
proposed in [5]. 

TABLE IV 
SUMMARY OF PERFORMANCE RESULTS FOR ALL THE COMPARED 

CLASSIFIERS 

  Evaluation 
Classifier - 5-fold validation 

DT 
NB 

Gaussian 
SVM- 

rbf 
KNN 

Accuracy 
Training accuracy 99.91% 97.10% 100% 91% 

Testing  
accuracy 

99.89% 96.90% 98.80% 83.00% 

Confusion 
Matrix 

TP 7443 6986 22 6024 

FP 8 461 24 1346 

FN 10 53 0 1422 

TN 9006 8967 1954 7646 

Precision  

Normal traffic 100% 99% 100% 81% 

Attack traffic 100% 95% 99% 85% 

Macro avg 100% 97% 99% 83% 

Weighted avg 100% 97% 99% 83% 

Recall 

Normal traffic 100% 94% 48% 81% 

Attack traffic 100% 99% 100% 84% 

Macro avg 100% 97% 74% 83% 

Weighted avg 100% 97% 99% 83% 

F1-score 

Normal traffic 100% 96% 65% 81% 

Attack traffic 100% 97% 99% 85% 

Macro avg 100% 97% 99% 83% 

Weighted avg 100% 97% 82% 83% 

Support 

Normal traffic 7451 7447 46 7400 

Attack traffic 9016 9020 1954 9067 

Macro avg 16467 16467 2000 16467 

Weighted avg 16467 16467 2000 16467 

Accuracy 16467 16467 2000 16467 

 

 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, the detection of botnet or malicious 
traffic activity using the emerging machine learning 
techniques was proposed. Four classifiers were applied on 
this work, namely  Naïve Bayes, K-Nearest Neighbor, 
Support Vector Machine, and Decision Trees. The 
experimental results revealed that the decision tree model 
performed better than the other classifier models as well as a 
slight improvement on the models that were previously 
mentioned in the reviewed literature. Theoretically, this 
model can be used to detect several botnet attacks and other 
type of malicious network activity. 

As a future work, the entire UNSW-NB15 dataset must 
be tested with the same model to validate the results. This 
experiment can also be extended to include other datasets 
such as the Bot-IoT dataset and the CTU-13 which are more 
recent to compare the performance of the algorithms with 
different kinds of botnet traffic. More classifiers such as 
logistic regression and neural networks can be also tested. 
Furthermore, unsupervised learning methods such as 
clustering can be investigated and compared with the 
supervised learning methods used in this paper. Moreover, 
other methods of feature selection can be examined to refine 
these results further. Lastly, the machine learning model can 
be tested on a real-time controlled environment to accurately 
measure the model’s performance and how it handles 
different types of threats such a zero-day threats. 
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