

Botnet Attack Detection using Machine Learning
Mustafa Alshamkhany, Wisam Alshamkhany, Mohamed Mansour, Mueez Khan, Salam Dhou, Fadi Aloul

Department of Computer Science and Engineering
American University of Sharjah

United Arab Emirates
{b00061219, b00061217, b00065913, b00068255, sdhou, faloul}@aus.edu

Abstract–With the advancement of computers and technology,
security threats are also evolving at a fast pace. Botnets are one
such security threat which requires a high level of research and
focus in order to be eliminated. In this paper, we use machine
learning to detect Botnet attacks. Using the Bot-IoT and
University of New South Wales (UNSW) datasets, four
machine learning models based on four classifiers are built:
Naïve Bayes, K-Nearest Neighbor, Support Vector Machine,
and Decision Trees. Using 82,000 records from UNSW-NB15
dataset, the decision trees model has yielded the best overall
results with 99.89% testing accuracy, 100% precision, 100%
recall, and 100% F-score in detecting botnet attacks.

Keywords–IoT, botnet, machine learning, computer security,
DDoS, cyberattack, classification

I. INTRODUCTION

As the Internet of Things (IoT) is an evolving
technology, more of daily household devices are getting
connected to the internet [1]. This allows more devices to
potentially become botnet devices. This paper aims to use
Machine Learning technique to detect botnet attacks.

A botnet consists of several internet-connected devices
that could have been intentionally infected with malware by
cyber hackers. Botnets can be used to perform distributed
denial-of-service attacks (DDoS), steal data, or given access
to devices. A botnet attack is a type of malicious attack that
utilizes a series of connected computers to attack or take
down a network, network device, website, or an IT
environment. It is perpetrated with the sole intent to disrupt
normal working operations or degrade the overall service of
the target system. Therefore, the successful detection and
prevention of botnets would have major significance in
computer security.

As more devices are becoming candidates to being
botnet devices, the process of detecting and distinguishing
these botnet devices can be done using various machine
learning techniques. This work aims to detect botnets or
malicious traffic activity using the emerging machine
learning techniques and provide an improvement in the
accuracy compared to the other related work.

The paper is organized as follows. Section II presents
the literature review of related work. Section III shows the
proposed methodology. Section IV presents a discussion of
the experimental results. Section V presents the conclusion
and future work.

II. LITERATURE REVIEW

Many studies have been done in recent years which
show the effectiveness of using Machine and Deep Learning
in detecting botnet attacks which have been rising over the
years.

Some studies also focus on finding the key features or
characteristics of a botnet which can help distinguish
between and attack or normal traffic. Dong et al. [2]
discussed the use and effectiveness of machine learning in
botnet detection. They analyzed the structure of botnets to
find key features that can help distinguish botnet traffic from
normal traffic. These features can then be used for feature
selection when designing our machine learning model. One
such method was used by Vishwakarma et al. [3] who used
a honeypot to lure attackers and generated data from an IoT
network. This fresh data was then used to analyze different
characteristics of an attack such as IP addresses, MAC
addresses, packet size, etc. Furthermore, Guerra-Manzanares
et al. [4] presented the idea of using hybrid feature selection
models to reduce the feature set size to get accurate results.
The data used, contains 115 features, which is extremely
large for any dataset. Feature selection was done using the
filter, wrapper, and hybrid models to reduce the number of
features. These features were then fed into a K-Nearest
Neighbor (K-NN) and Random Forest model and high
accuracy of 99% was seen with both models.

One of the most promising classifiers in P2P botnet
detection is the Decision Tree (DT) Classifier. Haq and
Singh [5] used different classifiers as well as clustering for
botnet detection. The dataset used contained over 38,000
records of network traffic consisted of attack and normal
traffic. In this paper, the DT classifier had the best accuracy
of 90.2723% followed by Decision Tree classifier with an
accuracy of 87.7853%. Similarly, according to Khan et al.
[6], P2P botnets were difficult to detect because they own
typical features of centralization and distribution. In 2013,
Khan et al. suggested a detection method for P2P botnets,
consisting of 2 stages. The first stage consisted of port
judgement, DNS query and data flow count to filter non-P2P
traffic. The 2nd stage used the bases of session features to
reduce the number of packets being analyzed. Machine
learning algorithms were also being used to classify and
identify the traffic. The CTU-dataset, which contains 13
different botnet samples was used to do the experiment.
Three main ML algorithms were based on session
characteristics to detect P2P botnet traffic. The algorithms
used were Naïve Bayes (NB), DT classification, and ANN.
The results showed that the detection rate using NB and
ANN was 75.5% and 93.8%, respectively, but the DT
algorithm showed 94.4% accuracy. This showed that the
two-stage technique by P2P traffic filtering and the DT
classifier based on session characteristics proved to
effectively detect P2P botnet traffic.

Other effective classifiers are the random forest and
decision tree classifiers. Stevanovic and Pedersen [7]
explored how botnet detection can be achieved with high
accuracy by using supervised machine learning. Firstly, they

Fadi
Typewritten Text
14th IEEE International Conference on Innovations in Information Technology (IIT), November 2020

Fadi
Typewritten Text

proposed a botnet detection system that uses flow-based
traffic analysis and supervised machine learning as a tool for
identifying botnets. They then proceed to test performances
of eight of the most important machine learning algorithms
(MLAs) for classifying botnets traffic. Finally, they
explored how much traffic needs to be observed for
successful classification. Traffic analysis was done by either
“batch” analysis, which is monitoring from the start until the
end of the trace, or by “limited” analysis, where time
intervals and packet numbers are limited. The experiments
were conducted using the ISOP dataset which includes
malicious and non-malicious records. The results showed
that while the random forest classifier had the highest
accuracy of botnet detection, the random tree classifier was
considered as optimal because it had the best balance
between accuracy and time of detection. In a newer paper in
2018, Hoang et al. [8] proposed an evaluation on botnet
detection model using machine learning algorithms in
comparison to anomaly-based botnet detection methods. The
paper used K-NN, C4.5, random forests (RF) and NB
classifiers for their machine learning model. For the success
of the machine learning model, they chose to use Domain
Name Service’s superior and the classifier with the best
performance. The results showed an overall accuracy of
90% in detecting botnet using random forest. Jin et al. [9]
also conducted research using DNS to detect botnets. Six
special features of botnet domain traffic were selected based
on their DNS logs. The selected features consisted of name-
based features, such as the meaningful length ratio. This was
followed by message-based features, such as the number of
source IPs, types and A, AAAA, NS and MX queries.
Finally, quantity-based features, such as the total queries per
day and how much querying was done per hour. After
selecting features, three popular ML classifiers were used to
pick the malicious domains from the DNS traffic. The used
classifiers were Adaboost, Bagging, and NB. The results
showed good performance with precision rates above 90%
for all classifiers, with only minor differences between
them. Such results clearly demonstrate the success of
detecting and interrupting malicious botnet behaviors when
their domain names appear in the traffic. In future studies,
Jin et al. suggest deploying this system with larger DNS
logs.

Garg et al. [10] compared three machine learning
algorithms in their ability to classify botnet vs normal
traffic. This was done by selecting key features of the
network traffic, and then grouping them in different
combinations to produce several test cases for the
algorithms. The three algorithms tested were the NB,
Nearest Neighbour (IBk), and J48. After testing each
algorithm with all the cases separately, the results showed
that the detection accuracy of the J48 and IBk algorithms
was higher than that of NB, but with limitations that J48
required a high training time and IBk required a high testing
time. Despite these limitations, the high detection rates of
more than 99% enabled the detection of P2P botnets.

The SVM classifier also proved a very effective
classifier. Saad et al. [11] conducted a study on detected
P2P botnets using network behavior analysis and machine
learning. In their experiment they used two datasets of over
370,000 which represented only malicious traffic. For
normal traffic, they used a labeled dataset with a million

packets of normal traffic which they obtained from Ericsson
Research Traffic Lab. The classifiers they used were K-NN,
Linear Support Vector Machine (SVM), Artificial Neural
Network, Gaussian Based Classifier, and NB Classifier.
After running their experiment, the result showed that SVM
had the highest training time and classification time. For the
detection rate, SVM had the highest accuracy of almost 98%
and the lowest error rate of around 6%. Gaussian Classifier
came second with 96% accuracy however it had the highest
error rate of 20% out of all classifiers. NB had the lowest
accuracy of 89% and the second-highest error rate of around
12%. In 2014, Lin et al. [12] built a model based on a botnet
detection using supervised machine learning classifiers,
specifically a combination to between SVM and artificial
fish swarm algorithm (AFSA). The data set they used was
collected through a Local Area Network which was made to
collect the packets data of the network and used it as a
prototype simulation of botnet attacks traffic or normal
traffic. Their results show after 5-fold cross-validation that
the combination of SVM and AFSA performed better than
other classifiers with 99% average accuracy rate.

Another common classifier used in this domain is the
KNN classifier. In 2013, Feizollah et al. [13] conducted a
study on Android malware detection, more specifically,
anomaly-based mobile botnet detection. The study used five
machine learning classifiers, namely K-NN, Multi-Layer
Perceptron (MLP), DT and SVM. In this study, they used
malware data samples from the Android Malware Genome
Project and evaluated the classifiers on them. This study
selected 3 network features: connection duration, TCP size
and number of GET/POST parameters. The result showed
that the best classifier obtained is the KNN with a true
positive rate as high as 99.94% and false positive of 0.06%.
In a newer paper in 2018, Arif et al. [14] proposed a
network to use machine learning classifiers, namely DT, K-
NN, NB and Random Forest (RF) to detect HTTP botnets.
The dataset they used for their research was extracted from
the network traffic which is based on TCP packet feature.
The results showed that the best classifier to detect HTTP
botnet attacks in the network traffic is KNN classifier with
an average accuracy of 92.93% for each type of botnet
family.

Deep and unsupervised learning have also shown
promise in detecting botnet attacks. Pour et al. [15] used a
multi-window convolution neural network combined with
clustering to detect over 350 IoT botnets in darknet traffic.
Al Shorman et al. [16] proposed an unsupervised intelligent
system which was made from SVM and Grey Wolf
optimization for detecting IoT botnets. This model was able
to achieve low detection time and reduce the number
features that were used for detection.

From these studies, it is found that machine learning is
highly applicable and effective in botnet detection. The main
contribution of this study is to create a botnet detection
model using machine learning classification approach.

III. PROPOSED METHODOLOGY

A. Dataset Description
Several datasets are available for this work such as the

Bot-IoT and the UNSW-NB15 datasets. The Bot-IoT dataset
contains over 72 million records with 42 features (27
Integer, 13 Float, and 2 String types) and was created by

setting up a botnet network in a controlled environment and
monitoring the network traffic to capture any packets that
were being sent. The dataset contains labeled normal and
malicious traffic which includes attacks such as DDoS, DoS,
OS Scan, etc. The other dataset, UNSW-NB15 contains 43
features (14 Float, 6 Strings and 23 Integer types) and 2.5
million records which are labeled as either attack traffic or
normal traffic and further expanded to the category of attack
and the subcategory. In addition to DDoS and DoS attacks,
the dataset contains records for Fuzzers, Backdoor,
Reconnaissance and Worm attacks [17]. These records were
collected in pcap files and then converted to CSV to create
the dataset. Both datasets have been compiled and made
publicly available by UNSW Canberra for research purposes
[18]. Furthermore, it is found that the UNSW-NB15 dataset
is a more polished dataset, where has similar attributes to the
Bot-IoT dataset but is more diverse in the type of malicious
records it has.

In this work, the UNSW-NB15 dataset was used as it is
more detailed and was labeled by UNSW to be the best
dataset for training. In this work, 82,000 records were
randomly selected and utilized. The data was cleaned and
prepared to classify the training and testing models.
Categorical data such as the “proto”, type of “service’,
“state”, “sptks”, “sload”, and “attack cat” were coded into
numerical data. Random splits were performed on the data
to divide it into a training set, that has 80% of the data, and a
testing set, that has 20% of the data.

B. Feature selection and Dimensionality reduction

For our model, we applied a feature selection and
dimensionality reduction to reduce the dimensionality of the
data while preserving the variance in the data. One method
of dimensionality reduction is Principal Component
Analysis (PCA). PCA is a data transformation method that
projects the data into a new feature space where most of the
variance in the data is represented by the first coordinate of
the new space (called the first principal component), the
second most variance on the second principal component,
and so on. In this work, the features with the greatest
variance are selected to be used as input to the classifiers.
Using this process, we ensure that only relevant features are
selected which will contribute to the computational
efficiency and the simplicity of the machine learning
models. Furthermore, this process has the feasibility to
reduce any overfitting that might occur using all the
features.

C. Classification Algorithms

Several classifiers were used and evaluated in this
work. Scikit-learn library in Python was used in this work.
For the evaluation, the confusion matrix was computed to
calculate precision, recall, and F-Measure using the true and
predicted labels from the model. The classifiers used in this
paper are:

1) Naïve Bayes (NB) with Gaussian probabilities – a

probabilistic classifier that uses the Bayes theorem and
assumes a conditional independence between the different
features of the dataset. NB estimates the class probability
based on the training set.

2) K-Nearest Neighbor (k-NN) – a non-parametric
algorithm used for classification and regression. To predict
the class, the model assigns the class of the test sample
based on the majority of the k nearest neighbors of that
given test sample.

3) Support Vector Machine (SVM) with nonlinear
kernel, namely radial basis function (RBF) – creates a
decision boundary based on samples of different classes.
The shape of the decision boundary is created based on the
kernel function used, and key hyper parameters such as C
which controls the tradeoff between the smoothness of the
decision boundary and the correctness of the classification,
and gamma which defines the influence of the data points’
distribution on the shape of the decision boundary.

4) Decision Tree (DT) – a tree-like classification model
where each node in the tree specifies a test on a single
feature and each branch descending from that node
corresponds to one of the possible values for that feature.

To apply these classifiers, the dataset was randomly
split into training and testing datasets. The training data was
used to train the classifiers. The classifiers were then tested
using the testing dataset to predict the labels. The classifiers
were all evaluated and compared as discussed in Section IV.

IV. DISCUSSION OF RESULTS

To summarize, we have applied DT, SVM, KNN and
NB classifiers and analyzed the result of each classifier
model. Meaning, we looked at the prediction test and train
accuracy, precision, recall and F-measure scores as well as
their confusion matrix for each classifier. The result
organized in the table below.

A. Principal Component Analysis (PCA)

PCA was applied on the dataset to reduce the number of
dimensions in a dataset while preserving its variance. The
results of performing PCA on the dataset are shown in Table
II. After running a simulation that varies the PCA
parameters, the best parameters that yielded the highest
accuracy were recorded. As can be seen in the table, the
number of components chosen for DT and NB was 43. For
k-NN and SVM with RBF kernel, the number of
components used was 20. DT and SVM with RBF kerned
had the highest accuracy with the optimal number of
components.

TABLE I
RESULTS OF APPLYING PCA ON THE DATASET USING DIFFERENT

CLASSIFIERS

Classifier Number of
Components

Chosen

Training
Accuracy

Testing
Accuracy

Decision Trees 43 99.28% 98.87%
Naïve Bayes 43 85.69% 85.91%

k-NN 42 90.5% 82.14%
SVM – rbf 20 99.9% 99.25%

B. Feature Selection
In this work, the best features were selected to reduce

the dimensionality of the dataset and remove the effect of
training the classifiers using irrelevant features. Multiple
runs were performed using Chi-squared and ANOVA F-
value to determine the degree of correlation between the
features and the output labels. It was found that Chi-squared
criteria was best suited to be used to rank the features when
it comes to accuracy. Using SVM with RBF, only 14
features ensured producing the best accuracy. However, DT
achieved its highest accuracy using 29 features. Table II
shows the accuracy of the classifiers reported using the
selected features.

TABLE II
RESULTS OF APPLYING FEATURE SELECTION ON THE DATASET USING

DIFFERENT CLASSIFIERS

Classifier

Percentile
of

selected
features

Number
of

selected
features

Training
Accuracy

Testing
Accuracy

Decision Trees 67% 29 100% 100%
Naïve Bayes 67% 29 96.40% 96.39%

k-NN 72% 31 90.47% 82.23%
SVM– rbf 32% 14 99.85% 99.00%

With these results, it is observed that the DT model

provided the best training and testing accuracy with a total
of 29 features involved with the training and testing
accuracy of 100%. Table III displays the best features
selected for the detection of malicious traffic and their
description as given from the dataset.

TABLE III
BEST FEATURES SELECTED FOR THE DETECTION OF MALICIOUS TRAFFIC

Name Type Feature description

Spkts integer Source to destination packet count

Dpkts integer Destination to source packet count

Sbytes Integer Source to destination transaction bytes

Dbytes Integer Destination to source transaction bytes

Rate Integer Total packets per second in transaction

sttl Integer Source to destination time to live value

dttl Integer Destination to source time to live value

Sload Float Source bits per second

Dload Float Destination bits per second

dloss Integer
Destination packets retransmitted or

dropped

Sintpkt Float Source interpacket arrival time (mSec)

Dintpkt Float
Destination interpacket arrival time

(mSec)

Sjit Float Source jitter (mSec)

Djit Float Destination jitter (mSec)

swin integer Source TCP window advertisement value

stcpb integer Source TCP base sequence number

dtcpb integer Destination TCP base sequence number

dwin integer
Destination TCP window advertisement

value

dmean integer
Mean of the packet size transmitted by

the dst

smean integer
Mean of the packet size transmitted by

the src

res_bdy_len integer
Actual uncompressed content size of the

data transferred from the server’s http
service.

ct_srv_src integer

No. of connections that contain the same
service (14) and source address (1) in 100

connections according to the last time
(26).

ct_dst_ltm integer
No. of connections of the same

destination address (3) in 100 connections
according to the last time (26).

ct_src_ ltm integer
No. of connections of the same source

address (1) in 100 connections according
to the last time (26).

ct_src_dport_ltm integer

No of connections of the same source
address (1) and the destination port (4) in

100 connections according to the last
time (26).

ct_dst_sport_ltm integer

No of connections of the same destination
address (3) and the source port (2) in 100

connections according to the last time
(26).

ct_dst_src_ltm integer

No of connections of the same source (1)
and the destination (3) address in in 100
connections according to the last time

(26).

cat nominal

The name of each attack category. In this
data set , nine categories e.g. Fuzzers,
Analysis, Backdoors, DoS Exploits,

Generic, Reconnaissance, Shellcode and
Worms

C. Model Selection and Classification:
In this work, using the best features found in each

classifier, we applied grid search with a 5-fold cross
validation on all the models to get the best combination of
hyper parameters for each model and to ensure its
optimality. The summary of results is shown in Table IV.

For the NB classifier, the best hyper parameter values
found to produce best results were 1e-20 for
‘var_smoothing’. The model preforms fairly good in
comparison to other models where we the training and
testing accuracy were 97% and 96% and precision,
accuracy, recall and f-score all lie above 96%. The model
obtain exceptionally high false classifications in the
confusion matrix as it generates some false positives and
false negatives classifications. Nevertheless, this model
proves to be a good model for classifying botnet attacks.

Similarly, using grid search on KNN, it was found that
the best hyper parameter for the number of neighbors
‘K_neighbors’ is 3. It is noticeable that the classifier’s
performance results were generally the lowest compared to
the other models. The training and testing accuracies
reported for this model were 91% and 83%, respectively
while precision, accuracy, recall and f-score are all around
81%. There is a considerable amount of false positives and
false negatives classifications according to the confusion
matrix.

For the SVM with RBF kernel, the dataset records were
reduced to 10,000 as SVM classifier is computationally
expensive. The best hyper parameters that were found are of

C: 10, and gamma: 0.0001. The results using this model is
satisfactory where the training and testing accuracies were
100% and 98%, with good the precision, accuracy, recall
and f-score results.

Lastly, after performing a grid search on DT to find its
optimum hyper parameters, we found that the best hyper
parameters are max depth of 100, max features at 10, max
leaf nodes are none and min sample leaf at 10. This model
outshines the other classifiers as it uses the entire dataset
and provides the highest performance values. In detail, the
training and testing accuracy are averaged at 99.9% and
99.8%, respectively, while the precision, accuracy, recall
and f-score all lie in 100% with a significantly low or almost
zero false classifications in the confusion matrix. Not only it
is not computationally expensive, the DT classifier model
was able to correctly differentiate the malicious traffic and
normal traffic statistically better than the previously
discussed classifiers.

This work improved the performance of the other
machine learning models proposed in the literature. It
demonstrated a 1% increase in the detection accuracy over
the work at [4] and [12] and a 9.8% increase over the work
proposed in [5].

TABLE IV
SUMMARY OF PERFORMANCE RESULTS FOR ALL THE COMPARED

CLASSIFIERS

 Evaluation
Classifier - 5-fold validation

DT
NB

Gaussian
SVM-

rbf
KNN

Accuracy
Training accuracy 99.91% 97.10% 100% 91%

Testing
accuracy

99.89% 96.90% 98.80% 83.00%

Confusion
Matrix

TP 7443 6986 22 6024

FP 8 461 24 1346

FN 10 53 0 1422

TN 9006 8967 1954 7646

Precision

Normal traffic 100% 99% 100% 81%

Attack traffic 100% 95% 99% 85%

Macro avg 100% 97% 99% 83%

Weighted avg 100% 97% 99% 83%

Recall

Normal traffic 100% 94% 48% 81%

Attack traffic 100% 99% 100% 84%

Macro avg 100% 97% 74% 83%

Weighted avg 100% 97% 99% 83%

F1-score

Normal traffic 100% 96% 65% 81%

Attack traffic 100% 97% 99% 85%

Macro avg 100% 97% 99% 83%

Weighted avg 100% 97% 82% 83%

Support

Normal traffic 7451 7447 46 7400

Attack traffic 9016 9020 1954 9067

Macro avg 16467 16467 2000 16467

Weighted avg 16467 16467 2000 16467

Accuracy 16467 16467 2000 16467

V. CONCLUSION AND FUTURE WORK

In this paper, the detection of botnet or malicious
traffic activity using the emerging machine learning
techniques was proposed. Four classifiers were applied on
this work, namely Naïve Bayes, K-Nearest Neighbor,
Support Vector Machine, and Decision Trees. The
experimental results revealed that the decision tree model
performed better than the other classifier models as well as a
slight improvement on the models that were previously
mentioned in the reviewed literature. Theoretically, this
model can be used to detect several botnet attacks and other
type of malicious network activity.

As a future work, the entire UNSW-NB15 dataset must
be tested with the same model to validate the results. This
experiment can also be extended to include other datasets
such as the Bot-IoT dataset and the CTU-13 which are more
recent to compare the performance of the algorithms with
different kinds of botnet traffic. More classifiers such as
logistic regression and neural networks can be also tested.
Furthermore, unsupervised learning methods such as
clustering can be investigated and compared with the
supervised learning methods used in this paper. Moreover,
other methods of feature selection can be examined to refine
these results further. Lastly, the machine learning model can
be tested on a real-time controlled environment to accurately
measure the model’s performance and how it handles
different types of threats such a zero-day threats.

REFERENCES

[1] S. Ranger, “What is the IoT? Everything you need to know about the
Internet of Things right now | ZDNet,” ZDNet, 2020. [Online].
Available: https://www.zdnet.com/article/what-is-the-internet-of-
things-everything-you-need-to-know-about-the-iot-right-now/.

[2] X. Dong, J. Hu and Y. Cui, “Overview of Botnet Detection Based on
Machine Learning,” International Conference on Mechanical, Control
and Computer Engineering, Huhhot, pp. 476-479, 2018.

[3] R. Vishwakarma and A. Jain, “A Honeypot with Machine Learning
based Detection Framework for defending IoT based Botnet DDoS
Attacks,” International Conference on Trends in Electronics and
Informatics (ICOEI), Tirunelveli, India, pp. 1019-1024, 2019.

[4] A. Guerra-Manzanares, H. Bahsi and S. Nõmm, “Hybrid Feature
Selection Models for Machine Learning Based Botnet Detection in
IoT Networks,” International Conference on Cyberworlds (CW),
Kyoto, Japan, pp. 324-327, 2019.

[5] S. Haq and Y. Singh, “Botnet Detection using Machine Learning,”
International Conference on Parallel, Distributed and Grid
Computing (PDGC), India, pp. 240-245, 2018.

[6] R. Khan, R. Kumar, M. Alazab and X. Zhang, “A Hybrid Technique
To Detect Botnets, Based on P2P Traffic Similarity,” Cybersecurity
and Cyberforensics Conference (CCC), Melbourne, Australia, pp.
136-142, 2019.

 [7] M. Stevanovic and J. Pedersen, “An efficient flow-based botnet
detection using supervised machine learning,” International
Conference on Computing, Networking and Communications, HI, pp.
797-801, 2014.

[8] X. Hoang and Q. Nguyen, “Botnet Detection Based On Machine
Learning Techniques Using DNS Query Data,” Future Internet, vol.
10, no. 5, p. 43, May 2018.

[9] J. Jin, Z. Yan, G. Geng and B. Yan, “Botnet Domain Name Detection
based on machine learning,” International Conference on Wireless,
Mobile and Multi-Media (ICWMMN), Beijing, China, pp. 273-276,
2015.

[10] S. Garg, A. Singh, A. Sarje and S. Peddoju, “Behaviour analysis of
machine learning algorithms for detecting P2P botnets,” International
Conference on Advanced Computing Technologies, pp. 1-4, 2013.

[11] S. Saad et al., “Detecting P2P botnets through network behavior
analysis and machine learning,” International Conference on Privacy,
Security and Trust, Montreal, QC, pp. 174-180, 2011.

[12] K.-C. Lin, S.-Y. Chen, and J. C. Hung, “Botnet Detection Using
Support Vector Machines with Artificial Fish Swarm Algorithm,”
Journal of Applied Mathematics, vol. 2014, Article ID 986428, 2014.

[13] A. Feizollah, N. B. Anuar, R. Salleh, F. Amalina, R. Ma’arof, and S.
Shamshirband, “A Study Of Machine Learning Classifiers for
Anomaly-Based Mobile Botnet Detection,” Malaysian Journal of
Computer Science, 26(4), 2013.

[14] R. Dollah, Faizal. A., F. Arif, M. Mas’ud and L. Xin, “Machine
Learning for HTTP Botnet Detection Using Classifier Algorithms,”
Journal of Telecommunication, Electronic and Computer
Engineering, 10(1-7), pp. 27- 30, 2018.

[15] M. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Iqbal,
S. Samtani, J. Crichigno, and N. Ghani, “On Data-driven Curation,
Learning, and Analysis for Inferring Evolving Internet-of-Things
(IoT) Botnets in the Wild,” Computers & Security, vol. 91, April
2020.

[16] A. Al Shorman, H. Faris, and I. Aljarah, “Unsupervised intelligent
system based on one class support vector machine and Grey Wolf
optimization for IoT botnet detection,” Journal of Ambient
Intelligence and Humanized Computing, vol. 11, pp. 2809–2825, July
2020.

[17] Moustafa, Nour, and Jill Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15 network
data set),” Military Communications and Information Systems
Conference (MilCIS), Australia, 2015.

[18] N. Koroniotis, N. Moustafa, E. Sitnikova and B. Turnbull, “Towards
the Development of Realistic Botnet Dataset in the Internet of Things
for Network Forensic Analytics: Bot-IoT Dataset,” Future Generation
Computer Systems, vol. 100, p. 779-796, November 2019.

