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Abstract—As the Internet of Medical Things (IoMT) contin-
ues to transform healthcare, it also introduces new vulnera-
bilities to sophisticated cyberattacks that outpace conventional
defenses. In response, we present a tailored Intrusion Detection
System (IDS) optimized for IoMT environments, designed to
operate within the constraints of resource-limited devices while
addressing complex, real-world attack vectors. Leveraging the
CICIoMT2024 dataset and advanced machine learning models
like Random Forest and XGBoost, our approach overcomes
severe class imbalance and high dimensionality. Using Re-
cursive Feature Elimination with Cross-Validation (RFECV),
we reduced the feature set by 44.45%, achieving a state-of-
the-art weighted F1-score of 99.48%. Despite the superior
performance of the Random Forest model, its large memory
footprint poses challenges for deployment on IoMT devices
with limited resources. In contrast, the XGBoost model offers
a better balance between high detection accuracy and resource
consumption, making it more suitable for real-world applica-
tions. Our solution offers a scalable, efficient, and deployable
IDS that brings a new level of adaptability and precision to
IoMT cybersecurity, ready to defend against today’s threats
while evolving to meet tomorrow’s challenges.

Index Terms—Internet of Medical Things (IoMT), Intrusion
Detection Systems (IDS), Machine Learning, Cybersecurity,
Dimensionality Reduction, Model Optimization

I. INTRODUCTION

The Internet of Medical Things (IoMT) has emerged
as a pivotal subset of the expanding Internet of Things
(IoT) ecosystem, fundamentally reshaping healthcare ser-
vices. From personal health monitors to advanced medical
devices, IoMT solutions offer unprecedented opportunities
to enhance patient care. However, with this rapid expan-
sion comes heightened vulnerability to cyberattacks, posing
significant threats to both patient safety and privacy. The
sheer number of these devices, coupled with the increasingly
sophisticated nature of attacks, increases their vulnerability.
From Distributed Denial-of-Service (DDoS) and Denial-of-
Service (DoS) attacks to more advanced spoofing and recon-
naissance efforts, the complexity of these threats often sur-
passes the capacity of conventional cybersecurity measures.

Consequently, intrusion detection and prevention systems
must evolve to address this multifaceted threat landscape.

Intrusion detection systems (IDSs) tailored for IoMT
environments are critical, but they often struggle with the
resource limitations of small IoMT devices, such as con-
strained energy and processing capabilities. In this context,
machine learning (ML) and deep learning (DL) techniques
are emerging as the most effective approaches for threat
detection and mitigation. Our research leverages the CI-
CIoMT2024 dataset—a comprehensive collection of net-
work traffic data from various IoMT devices exposed to a
range of cyberattacks. This dataset, with its classification
of both malicious and benign activity, provides a valuable
resource for the development and evaluation of sophisticated
IDS solutions customized for IoMT environments.

This paper outlines our methodology for designing an
IDS using the CICIoMT2024 dataset, aiming to provide
a detailed analysis of IoMT network traffic under diverse
cyberattack scenarios, thereby advancing the security of
healthcare IoMT systems. In an environment of continuously
evolving threats, our goal is to lay the groundwork for
more adaptive and robust cybersecurity solutions, enabling
the development of intelligent, resilient defenses against an
increasingly complex array of cyberthreats.

Our research offers two key contributions to the field of
IoMT cybersecurity:

1) Model size optimization: We address the challenge
of large model sizes associated with extensive datasets
like CICIoMT2024. Recognizing the practical lim-
itations of IoMT devices—particularly in terms of
storage and processing capacity—our work empha-
sizes the need for model simplification. This not only
facilitates efficient deployment but also fills a critical
gap in the literature concerning model optimization for
real-world IoMT applications.

2) Comprehensive evaluation methodology: Our work
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further distinguishes itself by employing a more rigor-
ous evaluation approach compared to baseline studies.
We implement K-fold cross-validation (CV), which
provides a more robust and accurate performance
measure, particularly in scenarios with limited or
imbalanced data. Additionally, we utilize F1 scores as
a benchmark metric—a crucial, yet often overlooked,
measure in evaluating models for imbalanced datasets.
This comprehensive evaluation ensures that our IDS
performs reliably across various attack scenarios, of-
fering a more accurate assessment of real-world per-
formance.

II. LITERATURE REVIEW

Remote medicine and alert systems leverage IoMT to
enhance patient care in remote settings while ensuring
continuity of services. This domain encompasses not only
teleconsultations but also remote diagnosis and therapy,
providing a comprehensive approach to healthcare delivery
in challenging environments [1], [2], [3].

The integration of Intrusion Detection Systems (IDS)
within the Internet of Things (IoT) and IoMT has been
significantly advanced through sophisticated machine learn-
ing (ML) and deep learning (DL) models. However, the
availability of datasets specifically focused on IoMT attacks
remains limited. Due to this scarcity, we also review IoT-
focused studies, as both IoT and IoMT devices are vulner-
able to similar attack vectors, such as Distributed Denial-
of-Service (DDoS) and spoofing. For instance, research
utilizing the CIC IoT 2022 dataset demonstrated that various
ML models achieved high accuracies, such as Decision Tree
at 98.5%, AdaBoost at 98.7%, XGBoost at 98.6%, and K-
Nearest Neighbors (KNN) at 95.6% [4]. These results under-
score the relevance of IoT-based research in evaluating IDS
technologies, as insights from IoT attacks can be effectively
applied to securing IoMT environments.

Another study employed the TON-IoT telemetry dataset,
using a hybrid CNN-LSTM model, which achieved an
accuracy of 94%, demonstrating the effectiveness of hybrid
deep learning architectures in complex IoMT scenarios [5].
Additionally, deep learning methods have been shown to be
highly effective in detecting subtle intrusion activities. For
example, one approach utilizing CNN and LSTM networks
with the WUSTL EHMS 2020 dataset reported high accu-
racy and precision of 99% [6]. Whereas when another paper
applied Logistic Regression and Random Forest models on
this dataset, the Decision Tree achieved an accuracy of
96.56% [7].

The integration of IDS in the context of IoMT has
been further explored in [8], focusing on secure Bluetooth
communication in healthcare environments. The authors
introduce a novel dataset tailored to IoMT topologies, with
a specific emphasis on Bluetooth vulnerabilities. Their eval-
uation included multiple machine learning (ML) models,
such as Support Vector Machines (SVM), K-Means, and
Deep Neural Networks (DNN). The results demonstrated the
effectiveness of these models, with the SVM achieving an
accuracy of 96.3%, precision of 95.8%, recall of 96.0%,
and F1-score of 95.9%. The K-Means algorithm, while less
effective, still performed reasonably well with an accuracy of

89.4%. The Deep Neural Network model exhibited superior
results with an accuracy of 98.5%, precision of 98.3%, recall
of 98.7%, and an F1-score of 98.4%.

Handling the diverse network behaviors and attack vectors
within large-scale IoT environments remains a challenge. To
address this, the CICIoT2023 dataset was created, and it
demonstrated exceptional performance, with Random Forest
achieving accuracy, precision, recall, and F1-score all at
99.7% [9]. They also used ensemble learning techniques,
such as Adaptive Boosting, achieved an accuracy of 99.18%,
precision of 98.68%, and an F1-score of 98.84%, underscor-
ing the effectiveness of various ML strategies in improving
IoT security.

Additionally, swarm intelligence has been integrated into
neural networks to enhance IoT security, as evidenced by
a study using the ToN-IoT dataset, which achieved 99.5%
accuracy [10]. A recent study focusing on this dataset
proposed an IDS achieving an F1-score of 99.95% with
their hybrid 1D CNN-LSTM model [11]. Plus, Another
study achieved an accuracy of 89.0% by using a Deep
Auto-Encoder on a dataset from the Criminal Investigation
Department of Nigeria, further highlighting the potential of
deep learning in IoMT security applications [12].

Other studies have evaluated a range of ML models on
various datasets. For instance, research using the Bot-IoT
dataset demonstrated that Random Forest performed well
in binary classification with 99% accuracy, while KNN
excelled in multi-class scenarios with the same accuracy
[13]. In another study, multiple models such as Logistic
Regression, SVM, Decision Tree, Random Forest, and Arti-
ficial Neural Networks (ANN) were applied to IoT sensors,
achieving a test accuracy of 99.4%, illustrating the effective-
ness of diverse ML techniques in distinguishing between
normal and anomalous traffic [14]. Random Forest also
excelled when applied to the NSL-KDD dataset, achieving
85.34% accuracy [15].

Additional work employing the CIC-IDS2017 dataset
showed that Decision Tree and Random Forest classifiers
achieved accuracies of 96.44% and 94.45%, respectively, in
a self-training IDS that adapts to new threats [16]. A study
focusing on IoMT environments proposed an IDS leveraging
tree-based ML classifiers combined with filter-based feature
selection techniques, demonstrating a detection accuracy of
98.79% on the CICIDS2017 dataset, while maintaining a low
false alarm rate of 0.007 [17]. The CIC-IDS 2018 dataset has
also been leveraged to dynamically retrain classifiers, with
the Decision Tree achieving a notable accuracy of 96.44%
[18]. Lastly, in [19], they use MeMalDet to extract optimal
features from memory dumps using deep autoencoders in
an unsupervised manner, which helps avoid manual feature
engineering and got a F1-Score of 98.72%.

These studies collectively highlight the crucial role of
advanced machine learning and deep learning models in
enhancing IDS for IoT and IoMT. By leveraging robust
datasets and innovative architectures, these studies contribute
valuable insights into improving intrusion detection capabil-
ities, demonstrating the critical importance of ML and DL
techniques in fortifying IoT and IoMT environments.



III. DATASET AND METHODS

A. Dataset Description

The CIC-IoMT 2024 dataset [20] contains 8,775,013
entries of network traffic data collected from Internet of
Medical Things (IoMT) devices. The CICIoMT2024 dataset
simulates multiple attack vectors targeting IoMT devices,
focusing on five main categories: Distributed Denial-of-
Service (DDoS), Denial-of-Service (DoS), reconnaissance,
MQTT-specific attacks, and spoofing attacks. Firstly, DDoS
and DoS attacks employed methods like ICMP floods that
overwhelm devices with echo requests; SYN floods inun-
dating targets with TCP SYN requests to exhaust resources;
and TCP/UDP floods exploiting transport layer protocols
to overload devices. Secondly, reconnaissance attacks in-
cluded port and OS scanning, ping sweeps, and vulnerability
scans to map network topologies and identify vulnerabil-
ities. Thirdly, MQTT-specific attacks targeted the MQTT
protocol—crucial for IoMT communication—using MQTT
Connect and Publish floods via custom Python scripts to
overwhelm brokers, and malformed data attacks that inject
erroneous packets to disrupt communication between brokers
and devices. Furthermore, spoofing attacks, particularly ARP
spoofing, enabled man-in-the-middle scenarios where at-
tackers intercepted and potentially altered communications.
Additionally, Bluetooth Low-Energy (BLE) attacks involved
overloading devices through continuous data writing and
scanning scripts, resulting in varied device responses from
normal operation to disruption. One significant aspect of this
dataset is the class imbalance; DDoS traffic makes up 66.6%
of the data, while benign traffic is only 2.6%. This imbalance
presents a challenge for machine learning models, which
may struggle to accurately identify less frequent attack
types. To prepare the data for machine learning applications,
MinMax scaling was performed on the extracted features,
normalizing the data to enhance model performance. These
diverse attack vectors provide a thorough basis for testing
and evaluating intrusion detection and mitigation models in
IoMT environments.

B. t-SNE Visualization

Fig. 1: t-SNE Visualization of 1000 random samples per
class

To better understand the separability of attack classes and
benign traffic in the CIC-IoMT 2024 dataset, a t-distributed

Stochastic Neighbor Embedding (t-SNE) was performed
on 1000 random samples from each class, visualizing the
high-dimensional feature space in two dimensions 1. The
t-SNE plot provides a qualitative assessment of the data
distribution and inter-class relationships, which are crucial
for developing effective machine learning-based intrusion
detection systems (IDS) in IoMT environments.

The t-SNE visualization reveals a well-defined cluster
for benign traffic (green) that is distinct from the various
attack classes. The compact nature of the benign cluster
indicates low intra-class variability, suggesting that benign
network traffic exhibits consistent patterns in the feature
space. This compactness is promising for classification tasks,
highlighting the inherent separability between benign and
malicious traffic.

The t-SNE visualization reveals a well-defined cluster
for benign traffic (green) that is distinct from the various
attack classes. The compact nature of the benign cluster
indicates low intra-class variability, suggesting that benign
network traffic exhibits consistent patterns in the feature
space. This compactness is promising for classification tasks,
as it highlights the inherent separability between benign and
malicious traffic.

Certain attack classes, such as ”ARP Spoofing” and ”Mal-
formed Data,” exhibit distinct, compact clusters, reflecting
higher intra-class consistency and clear separability from
other attack types. These attack classes may be easier to
detect using conventional classification methods as they
possess well-defined features. On the other hand, classes like
”DoS Publish Flood” display elongated and irregular cluster
shapes, indicating high intra-class variability. This suggests
the presence of multiple sub-modes of attack within the
same class, potentially requiring further feature engineering
or hierarchical classification techniques to improve detection
accuracy.

The overlap between certain attack classes, particularly
among DDoS variants, highlights the potential for misclas-
sification in real-world IDS deployments. The positioning of
related attack types, such as ”Ping Sweep” and ”Port Scan,”
near one another suggests that these attacks share common
features, making it difficult for a classifier to differentiate
between them without additional feature refinement. This
observation motivates the need for further exploration of
domain-specific features and hybrid classification models
that can reduce the impact of overlapping feature spaces.

C. Model Selection

Stratified K-Fold divides the dataset into K subsets, or
folds, ensuring that each fold is representative of the class
distribution present in the full dataset. The model is trained
on K-1 folds and validated on the remaining fold. This
process is repeated K times, with each fold used exactly
once as the validation set. By maintaining class balance in
each fold, stratified K-Fold minimizes the risk of bias toward
the majority class, ensuring a more accurate and reliable
evaluation of the model’s performance across both majority
and minority classes.

This technique is necessary in scenarios where class im-
balance skews model training, leading to poor generalization,
especially for underrepresented classes such as rare attacks



in this datasets Without stratification, traditional K-Fold
cross-validation might result in folds that fail to adequately
represent minority classes, leading to an overestimation of
the model’s performance on the majority class while failing
to capture the complexity of minority class predictions.
Moreover, stratified K-Fold cross-validation helps mitigate
issues like overfitting, providing a more comprehensive
evaluation compared to a simple train-test split. Therefore,
by adopting stratified K-Fold cross-validation, we ensure that
our models are evaluated across different attack categories,
resulting in a balanced performance evaluation across both
frequent and rare attack vectors.

D. Models Used

In alignment with the methodology of [13], we bench-
marked our system’s performance using a variety of models,
including Logistic Regression, AdaBoost, Random Forest,
and XGBoost, which are well-suited for tabular data and
offer a balance between accuracy and computational effi-
ciency. Additionally, we implemented a neural network to
evaluate the potential of deep learning in this context. The
neural network consisted of three hidden layers with 128,
64, and 32 neurons, respectively, using ReLU activation,
and incorporated dropout layers with a 30% rate to prevent
overfitting. The output layer utilized softmax activation for
multi-class classification. Given the resource constraints of
IoMT devices, which limit the feasibility of deploying large
models, Random Forest and XGBoost emerged as the most
effective solutions, balancing high detection accuracy with
practical deployability.

E. Evaluation Metrics

While accuracy is a commonly used metric for evaluating
classification models, it can be misleading in the context
of imbalanced datasets. In scenarios where one class sig-
nificantly outnumbers the others, a classifier may achieve
high accuracy simply by predicting the majority class for all
instances. This results in an overly optimistic assessment of
the model’s performance, as it fails to account for the correct
identification of minority class instances, which are often of
greater interest in intrusion detection systems. To address
this limitation, we focus on metrics that provide a more
nuanced evaluation of classifier performance on imbalanced
data:

a) Precision: Precision measures the accuracy of the
positive predictions, indicating the proportion of true positive
predictions out of all positive predictions made by the
classifier. This metric is particularly important in security
applications where false positives can lead to unnecessary
interventions. Precision is defined as:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(1)

A high precision score implies that the model has a
low false-positive rate, meaning it predicts fewer benign
instances as malicious.

b) Recall: Recall, also referred to as sensitivity, mea-
sures the ability of the classifier to correctly identify all
relevant positive instances. It reflects the proportion of true
positive observations out of all actual positives in the dataset.
Recall is critical in cybersecurity tasks where missing an
attack can have consequences. Recall is defined as:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(2)

A high recall indicates that the model successfully iden-
tifies most of the malicious instances, reducing the false-
negative rate.

c) F1-Score: The F1-score represents the harmonic
mean of precision and recall, providing a balanced metric
that combines both values. It is especially useful in cases
of class imbalance, as it emphasizes the trade-off between
precision and recall. The F1-score is defined as:

F1-Score = 2× Precision × Recall
Precision + Recall

(3)

This score ensures that both false positives and false
negatives are considered equally when evaluating the per-
formance of the classifier.

F. Feature Reduction Methods Used

a) Principal Component Analysis (PCA): PCA is
a popular linear dimensionality reduction technique that
transforms the original features into a lower-dimensional
space while retaining most of the variance in the data. By
projecting the data onto a lower- dimensional subspace, PCA
helps reduce computational complexity and mitigate the
curse of dimensionality, particularly beneficial when dealing
with high-dimensional datasets.

b) Recursive Feature Elimination with Cross-
Validation (RFECV): RFECV is an effective feature selec-
tion method that improves model performance by iteratively
removing less important features. It works by training a
model on subsets of features, eliminating the least significant
ones at each step, and evaluating its performance through
cross-validation. This process identifies the optimal feature
set that best contributes to the model’s predictive power.

RFECV helps enhance generalization by selecting relevant
features while discarding redundant or noisy ones. The use
of cross-validation ensures robustness and prevents over-
fitting, making it a valuable method for high-dimensional
datasets where feature interactions are complex.

IV. RESULTS

Our evaluation begins with a comparison of baseline
metrics, as shown in Table ??, which highlights the state-of-
the-art results from the original CICIoMT2024 paper. These
results serve as a benchmark for assessing the improvements
achieved through our experimental modifications. The table
also details the impact of feature selection techniques, such
as Principal Component Analysis (PCA) for dimensionality
reduction and Recursive Feature Elimination (RFE) for iden-
tifying optimal feature subsets. Notably, the use of stratified
K-Fold cross-validation ensures a balanced evaluation across
different data folds, providing a robust performance metric



TABLE I: Classifier Performance Metrics with Maximum Values per Classifier Highlighted

Classifier Metric Kfold Avg (Std) Kfold Avg (Std) Kfold Avg (Std)
(Baseline) (PCA) (RFECV)

Logistic Regression
Precision 0.7127 (0.00) 0.6229 (0.01) 0.6930 (0.01)

Recall 0.7524 (0.00) 0.7169 (0.00) 0.7496 (0.00)
F1 Score 0.6741 (0.00) 0.6134 (0.00) 0.6710 (0.00)

AdaBoost
Precision 0.5116 (0.13) 0.4768 (0.05) 0.4713 (0.07)

Recall 0.4806 (0.14) 0.3642 (0.09) 0.4292 (0.10)
F1 Score 0.3879 (0.14) 0.2797 (0.07) 0.3381 (0.09)

Random Forest
Precision 0.9981 (0.00) 0.9189 (0.00) 0.9981 (0.00)

Recall 0.9981 (0.00) 0.9148 (0.00) 0.9982 (0.00)
F1 Score 0.9981 (0.00) 0.9000 (0.00) 0.9981 (0.00)

XGBoost
Precision 0.9977 (0.00) 0.9417 (0.00) 0.9976 (0.00)

Recall 0.9978 (0.00) 0.9429 (0.00) 0.9977 (0.00)
F1 Score 0.9977 (0.00) 0.9412 (0.00) 0.9976 (0.00)

Neural Network
Precision 0.7514 (0.00) N/A N/A

Recall 0.7854 (0.00) N/A N/A
F1 Score 0.7234 (0.00) N/A N/A

TABLE II: F1-Score Comparison: CICIoMT 2024 Benchmarks vs. Our Test Results

Model CICIoMT 2024 F1-Score [20] F1-Score on Test Set % Improvement
Logistic Regression 0.4310 0.6561 +52.22%
AdaBoost 0.3011 0.3426 +13.78%
Random Forest 0.9074 0.9948 +9.63%
XGBoost N/A 0.9926 N/A
Neural Network 0.5791 0.6947 +19.96%

for each model. Table ?? further illustrates the substan-
tial improvements in F1-scores achieved by our optimized
models over the original benchmarks. Ensemble methods,
particularly Random Forest and XGBoost, significantly out-
performed other classifiers, with Random Forest achieving
an F1-score of 99.48%, marking a 9.63% improvement over
the benchmark. The neural network, despite achieving an
F1-score of 69.47%, showed a 19.96% improvement over
its benchmark, demonstrating some effectiveness but falling
short of the ensemble models in handling class imbalance
and complex attack vectors. These results underscore the
importance of feature selection and model optimization in
enhancing intrusion detection performance within resource-
constrained IoMT environments.

V. DISCUSSION OF RESULTS

The experimental outcomes presented in Tables I and II
demonstrate significant enhancements in intrusion detection
performance within IoMT environments. The Random Forest
classifier achieved a mean F1-score of 99.48%, surpassing
the CICIoMT 2024 benchmark by 9.63%, while Logistic
Regression and AdaBoost exhibited notable increases of
52.22% and 13.78% in F1-score respectively. These ad-
vancements are primarily due to our adoption of compre-
hensive evaluation techniques. Employing stratified K-Fold
cross-validation ensured that each fold accurately reflected
the dataset’s class distribution, enabling the models to learn
effectively from both majority and minority classes. This

contrasts with baseline methods that may have inadequately
represented minority classes, potentially leading to biased
models.

The superior performance of ensemble methods like Ran-
dom Forest and XGBoost underscores their ability to capture
complex, nonlinear patterns inherent in IoMT network traf-
fic. Their high precision and recall scores, as detailed in
Table I, indicate a strong capability to distinguish between
benign and malicious activities, which is crucial for effective
intrusion detection.

The neural network achieved an F1-score of 69.47%,
improving by 19.96% over its baseline. However, this per-
formance still lagged behind the ensemble methods, high-
lighting challenges in handling class imbalance and high
intra-class variability. Additionally, neural networks impose
substantial computational overhead and require larger mem-
ory footprints, rendering them less practical for resource-
constrained IoMT environments. This finding reinforces that
ensemble methods like Random Forest and XGBoost are
more suitable for IoMT applications, offering a superior
balance between performance and efficiency.

Implementing Recursive Feature Elimination with Cross-
Validation (RFECV) further enhanced model efficiency by
reducing feature dimensionality without compromising per-
formance. For instance, the Random Forest classifier main-
tained its high F1-score while reducing the feature set
by 44.45% (retained 25/45 original features). This reduc-



tion is particularly significant for deployment on resource-
constrained IoMT devices, where computational resources
are limited. In contrast, Principal Component Analysis
(PCA) did not yield comparable performance improvements,
suggesting that feature selection methods preserving the
original feature space are more effective in this context.
RFECV’s ability to identify and retain the most informa-
tive features contributes to the model’s interpretability and
efficiency.

Despite these significant performance improvements and
feature set reductions, deploying our optimized models
on resource-constrained IoMT devices presents practical
challenges related to memory footprint and computational
requirements. Specifically, the Random Forest model, even
after feature reduction, remains large—reducing from 732.90
MB to 496.47 MB—which is impractical for deployment on
IoMT devices that typically have limited memory capacities
ranging from tens of kilobytes to a few megabytes [21]. In
contrast, the XGBoost model is considerably smaller, with
the base model at 4.37 MB and the reduced model at 4.23
MB, making it more suitable for deployment on resource-
constrained devices.

Therefore, while Random Forest offers superior perfor-
mance, XGBoost provides a better balance between accu-
racy and resource consumption for real-world applications.
Future work will focus on further optimizing model sizes
through techniques such as model compression and pruning
to facilitate deployment on devices with stringent resource
constraints.

The balance achieved between high detection accuracy
and reduced model complexity addresses a critical challenge
in the field. Our approach facilitates the practical deployment
of robust intrusion detection systems on IoMT devices by
optimizing models for performance and resource efficiency.

These findings have important implications for enhancing
cybersecurity in IoMT networks. The significant improve-
ments over the CICIoMT 2024 benchmarks, particularly in
F1-scores highlighted in Table II, validate the effectiveness
of our methodologies. Future work could explore integrating
these optimized models into real-world IoMT systems and
assess their performance under dynamic network conditions.

VI. CONCLUSION

The rapid expansion of the Internet of Medical Things
(IoMT) offers significant advancements in healthcare but
also exposes critical vulnerabilities to cyber threats. Tradi-
tional security measures often fall short in protecting these
devices due to resource constraints and evolving attack
complexities.

In this study, we developed a customized Intrusion De-
tection System (IDS) tailored for IoMT environments using
the CICIoMT2024 dataset. By addressing challenges like
class imbalance and high dimensionality, we achieved a
state-of-the-art weighted F1-score of 99.48% while reducing
the feature set by 44.45%. Our optimized Random Forest
and XGBoost models outperformed baseline approaches
and proved suitable for deployment on resource-constrained
IoMT devices. The strength of our research lies in combining
effective machine learning techniques with practical imple-
mentation strategies. By employing stratified K-Fold cross-

validation and Recursive Feature Elimination with Cross-
Validation (RFECV), we ensured robust performance across
various attack types and enhanced model efficiency without
compromising accuracy.

While our optimized models demonstrate high accuracy
and reduced feature sets, practical deployment on IoMT de-
vices necessitates consideration of resource limitations. Our
results indicate that XGBoost, due to its smaller model size,
is more suitable for deployment on resource-limited devices
compared to Random Forest. Future research will explore
additional model optimization techniques to reduce memory
footprint and computational requirements, ensuring efficient
and effective intrusion detection in IoMT environments.
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