

Predicting Hospital No-Shows Using Machine Learning

Tasneem Batool, Mostafa Abuelnoor, Omar El Boutari, Fadi Aloul, Assim Sagahyroon
Department of Computer Science and Engineering

American University of Sharjah, UAE

{g00071143, b00069562, b00063858, faloul, asagahyroon}@aus.edu

Abstract—All over the globe, significant amounts of patients miss

their appointments without cancelling in time or even cancelling

at all, resulting in billions of dollars wasted yearly due to

increased idle time, overtime and waiting time that the other

patients and hospitals face. Hospitals are actively trying to

implement methods to try to reduce the idle time caused by

patient no-shows by using overbooking and reminder systems.

However, these two methods can be very costly. Overbooking can

lead to patient dissatisfaction and constant personalized

reminders, such as phone calls, to every patient can be annoying

and costly in terms of manpower. This paper focuses on offering

a solution which mitigates the global phenomenon of medical no-

shows by creating a machine learning model using existing

patient datasets to discover patterns and relationships between

multiple patient variables and their tendency to miss

appointments. Therefore, the likelihood of a patient showing up,

given their information, may be predicted. The machine learning

model used to form the solution predictive model is based on the

decision tree classification algorithm. Furthermore, a scheduling

system was implemented such that the overall model detects

whether a patient has a risk of missing an appointment with a 95%

accuracy, upon which it automatically enables the risky patient’s

schedule slot for overbooking and notifies medical staff or

administration to contact them accordingly.

Keywords – no-shows, machine learning, appointments

I. INTRODUCTION

A vast majority of clinics and hospitals around the world

face a common major problem: huge sums of profit being

wasted in the healthcare sector due to patient no-shows. In fact,

it is estimated that around $150 billion is lost annually due to

no-shows within the USA alone [1]. Any clinic that allows

patients to book appointments in advance runs a huge risk; the

patient not showing up to the appointment or cancelling the

appointment without a sufficient time window. Hence many

hospitals rely on the costly approach of reminders which is

often implemented in parallel with overbooking, which is the

practice of booking multiple patients in a single appointment

slot. For reasons pertaining to the aforementioned economic

and social implications, it becomes clear that a need exists for

a solution which realistically tackles surging no-show rates

and reduces the idle time and overtime of medical staff [2-3].

In this paper, an Appointment Scheduling and Intuitive

Management (ASIM) system is proposed that enables quick,

hassle-free appointment scheduling for patients and provides

convenient and practical schedule oversight, logging, and

management for the medical staff in a hospital or a clinic. The

proposed solution allows for the automated handling of high-

risk appointments, based on case-specific outcome predictions.

For the proposed ASIM system to predict a patient no-

show, it was built to work in parallel with a machine learning

classifier. Hence, to develop, test, and integrate a functional

classifier, this paper utilizes a dataset which contains 110,527

appointment logs – recording appointment features such as

Patient ID, gender, lead time, age, clinic neighborhood, health

insurance, pre-existing medical condition, and a flag

indicating whether or not the patient was reminded. By

feeding the dataset’s information into the classification

algorithm selected, the system’s machine learning component

is trained sufficiently such that it is able to form rigid patient

non-attendance predictions. As such, by using the prediction

result evaluated by the classifier component, the system is able

to overbook slots that will have a no-show. This paper

explores and tests different, widely-used machine learning

algorithms prior to integrating a classifier component capable

of formulating predictions that are highly accurate and reliable

such that the overarching system design may handle no-shows

accordingly.

The remainder of the paper is organized as follows.

Section II provides a literature review. Section III gives a

description of the proposed system. Section IV discusses the

implementation of the classifier. Section V explores the

results of the classifier. Section VI evaluates the results

obtained. The paper concludes in Section VII.

II. LITERATURE REVIEW

There have been significant efforts made by established

researchers to investigate the phenomenon of hospital no-

shows, predict its occurrences, and reduce its instances. Norris

et al [4], Triemstra and Lowery [5], and McMullen and

Netland [6] conducted research to map correlations between a

set of independent variables and their impact on the rates of

no-shows. Norris et al [4] distinguish themselves from their

predecessors by considering three discrete outcomes on

appointment attendance: show, no-show, and informed

cancellation. This conscious decision prevents grouping the

latter two outcomes into one and thus sharpens their focus on

the problem of hospital no-shows. Moreover, while [5] and [6]

have limited their independent variables to lead time (i.e. the

time elapsed between the booking of the appointment and the

appointment itself) and insurance, [4] have analyzed a wider

range of independent factors which include weather,

appointment time, lead time, prior attendance history, patient

age, and payment method. All results from the analyses of [4-

6] indicate that lead time plays the most important role in

determining the attendance of a hospital appointment. It was

observed that an increase in lead time led to an increase in the

rates of hospital no-shows as well. [4] concluded their study

by suggesting further research to determine the optimal lead

time threshold that will improve appointment attendance.

Similarly, [6] note that no-show rates are likely to decrease by

as much as 60% if lead time were restricted to 0-2 weeks.

IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, January 2021

Aside from the surface analyses of data, researchers such

as Mohammadi el al [7], Levy et al [8], and Alaeddini et al [9],

have delved into the development of machine learning models

to predict no-shows using a variety of algorithms. For instance,

[7] created models using logistic regression, Naive Bayes, and

artificial neural networks. Their dataset consisted of a vast

array of independent variables such as clinic type, lead time,

patient age, race, gender, marital status, cell-phone ownership,

insurance, and tobacco usage. The resulting models reported

accuracies of 73% for logistic regression, 71% for artificial

neural networks, and 82% for Naive Bayes. Similarly, [8] also

considered factors such as patient age, gender, and marital

status, number of appointments that day, and patient diagnosis,

producing a prediction model with an accuracy of 65%. [9]

also worked with similar independent variables and produced

a hybrid model of logistic regression and Naive Bayes,

reporting an accuracy of 80%. Similar to [4-6], [7]’s models

indicated that lead time once again played a significant role in

the outcome of appointment attendance. [9]’s hybrid model on

the other hand suggests a strong correlation between days

close to holidays and no-shows, as well as types of clinics and

no-shows.

On the aspect of no-show prevention, the two most

popular methods observed in existing literature are

overbooking and patient reminders. While overbooking does

not directly address the problem of hospital no-shows, it is

known to mitigate the consequences of no-shows, namely an

increase in hospital idle time and decreased operational

efficiency. Cao and Tang [10] and Chen [11] utilized different

models for overbooking strategies in their works. [10]

developed a Markov Decision Process (MDP) model to

determine optimal overbooking strategy and proved the

optimal overbooking policy is a threshold type policy; each

appointment slot has a no-show probability and a threshold

beyond which it is not optimal to book additional

appointments on that slot. Similarly, [11] developed a

simulation model to represent hospital appointments as a

multi-server queue - each queue having its distinct

overbooking strategy. [11]’s simulation results successfully

improved the operational efficiency of the clinic by reducing

overtime by 58%, idle time by 23%, and increasing the

number of patients served by 16%.

While [10] and [11] have chosen to employ overbooking

strategies, Walji and Zhang [12], and Percac-Lima et al [13]

have chosen to research intervention systems such as patient

reminders in an effort to reduce hospital no-shows and thus

reduce wastage of resources. For instance, [12] uses human-

computer interaction principles to test the type of messages

that are more likely to appeal to patients and thus encourage

them to attend their appointments on time. Through multiple

iterations in their methodology, they were able to develop

scripts for reminder emails that had a significant appeal to

patients in terms of personalization, accuracy of the message,

and an overall optimistic and “genuine” tone. While [13]’s

study involved the development of classification models to

predict no-shows much like [7-9], their research went a step

further and employed an intervention method called the

Patient Navigation System in an effort to minimize no-shows.

[13] randomized and split their predicted no-show patients

into a control group and intervention group of approximately

the same size. Patients in the intervention group were called

by trained callers to remind them of their appointments and

resolve any barriers that they may experience. [13] were then

able to conclude their study by stating that the intervention

group reported a no-show rate 7.3% lower than that of the

control group.

It is worth noting that [13], as well as Kaplan-Lewis and

Percac-Lima [14], have also investigated the reasons for

patient no-shows. The studies revealed that the main reasons

for no-shows were forgetfulness and miscommunication.

Miscommunication was further explained as patients being

misinformed of the date and time of the appointment, patients

incorrectly thinking that their appointments were cancelled,

and patients being unaware of the existence of a cancellation

process. This further strengthens the case for installing patient

reminder systems as an intervention method to reduce hospital

no-shows.

This paper seeks to contribute to the vast array of existing

literature on two fronts. It was noted that the classification

models developed by previous researchers reported accuracy

measures between 65% to 82%; thus, one of the goals of this

paper is to develop a classification model to predict hospital

no-shows with an improved accuracy than that of its

predecessors, paired with high precision and recall measures.

Furthermore, this paper seeks to employ overbooking

strategies limited to just those booked appointment slots

which are predicted by the classifier to be no-shows, instead

of a standardized, unadaptable mechanism including all

patients. This will increase the overall operational efficiency

of the hospital or clinic without imposing inconveniences on

patients who show punctuality by attending their

appointments on time.

III. PROPOSED SYSTEM

The system proposed, as shown in Figure 1, consists of

the following major components: a mobile application, web

application, mobile app server, web app server, machine

learning component, and a database. The system is

implemented using the 3-tier architecture that contains the

User Interface layer, Application Logic layer, and Database

layer. The layered approach allows for decoupling, whose

benefits include more manageable code, increased flexibility

and ease in changing or upgrading parts of the implementation

in the future, to name a few.

A. User Interface Layer

The User Interface consists of two client nodes, each node

dedicated one type of client: either a patient client or a hospital

admin client. Each client node consists of a component that

allows the end user to interact with the system; the patient

client node holds the mobile application component, whereas

the admin client node holds the web application component.

The patient accesses the mobile application to receive

functionalities such as registering their profile and booking an

appointment. The functionalities are achieved through the

mobile application using the web interfaces provided by the

mobile app server. Similarly, the hospital admin accesses the

web application to use functionalities such as adding

appointment slots and viewing appointment schedules and

details. These functionalities are once again achieved via the

web application’s use of web interfaces provided by the web

app server.

B. Application Logic Layer

The Application Logic layer consists of two nodes, each

node functioning as an application server to each type of client

node. The mobile app server consists of 4 major components:

1) HTTP server: handles HTTP requests such, as GET

and POST, from the mobile application. It provides the web

interfaces for the mobile application to use to achieve its

functionalities.

2) Database service: provides mediation between the

server and the cloud database by providing web interfaces for

the HTTP server to use, so it may achieve functionalities such

as adding, modifying, or retrieving documents from the

database.

3) Classifier service: provides mediation between the

server and the trained machine learning classifier by providing

the interface for the server to send patient and appointment

information and receive the no-show prediction.

4) Prediction classifier: is the trained classifier used to

predict the no-show likelihood of a patient, given their

information and other additional metrics such as the number

of days between the appointment day and the day the

appointment was booked (lead time). The classifier service

uses the prediction classifier to compute no-show and return

the results to the HTTP server.

Meanwhile, the web app server node consists of two

major modules:

1) HTTP server: handles HTTP requests from the web

application and functions similarly to the HTTP server in the

mobile app server node.

2) Database service: provides mediation between the

HTTP server and the cloud database, similar to the database

service module in the mobile app server node.

C. Database Layer

The Database layer consists of one (virtual) node where

the system’s cloud database is stored. The cloud database node

contains the following components:

1) Hospital database: is the main overall database in the

cloud database service cluster. It consists of all collections and

records pertaining to hospital affairs only. It uses the interface

provided by the patients, appointments, and admins

collections to perform database operations such as adding,

modifying, or retrieving a document.

IV. CLASSIFIER IMPLEMENTATION

To implement the ASIM system’s prediction

functionality, a public dataset of medical appointment records

was subjected to various stages of data preprocessing, such as

categorical data encoding and class balancing, prior to being

used as input to numerous classification algorithms for early

testing, performance evaluation, and, ultimately, model

selection.

Fig. 1. System architecture for the proposed Appointment Scheduling and Intuitive Management (ASIM) System.

TABLE I. DETAILS OF HYPER-PARAMETERS TUNED FOR CLASSIFICATION.

1) Dataset used: The public dataset used in this paper

originates from Brazil. Published in May 2016, the dataset

consists of a total of 110,527 records of hospital appointments,

booked by patients, that are labeled by appointment outcome

(i.e. show/no-show) [15]. The dataset consisted of 13 features,

namely: Patient ID, Appointment ID, patient gender, day of

scheduling, appointment day scheduled, patient age, patient

neighborhood, health insurance, hypertension, diabetes,

alcoholism, disability, and an “SMS reminder used” indicator.

Patient ID and Appointment ID held discrete numerical

values. The gender attribute consisted of categorical values,

with ‘F’ denoting “female” and ‘M’ denoting “male”. The

appointment day and scheduling day attributes contained

values that included the year, month, date, hour and minutes.

The age attribute held discrete numerical values, with ages

ranging from 0 to 115, with the exceptions of a few outliers

(such as negative age). The neighborhood attribute consisted

of categorical data with up to 80 distinct neighborhoods. The

health insurance, hypertension, diabetes, alcoholism,

disability, and SMS received attributes held Boolean values 0

and 1 (0 denoting negative, or false, and 1 denoting positive

or true). The records in the dataset were labeled either “Yes”

or “No”; where “Yes” signifies that the patient did indeed miss

their appointments, and “No” meant that the patient attended

his/her appointment. Initial data exploration revealed that of

the 110,527 records, 22,319 (which makes up 20.19% of the

dataset) were labeled “Yes”, while the rest were labeled “No”.

1) Data pre-processing: The data preprocessing stages

included converting textual and categorical data into

representative numerical values. In the example of the gender

attribute, “F” was replaced by “1” and “M” was replaced by

“0”; hence, in effect, the gender attribute was in essence a

Boolean feature that indicated whether a given patient was

female or not.

Similarly, the neighborhood attribute values were altered

from names of the neighborhood to discrete numbers, where

each number represented a distinct neighborhood. In addition,

a new feature was created by finding the difference between

the existing “Booking Day” and “Appointment Day” features.

This new attribute, named “Lead time”, represents the number

of days elapsed between the scheduling day and the

appointment day. This was done such that the “lead time”

attribute - the significance of which is established by previous

literature - is explicitly taken into account by the model to be

created. The team utilized the well-documented and easy-to-

use Pandas library in Python to preprocess the original dataset.

2) Data balancing: Upon inspecting the percentage

distribution of the records between the ‘Show’ and ‘No-show’

labels defined, it was observed that a large disparity between

both classes exists, where 80% of the dataset’s records are

labelled as ‘Show’ and 20% are labelled as ‘No-show’. Such

a magnitude of class imbalance is to be expected for a dataset

which logs information on patient attendance, which is a

problem where the general trend of the majority of medical

bookings is to be attended, as opposed to a minority of

appointments which are not. In order to solve the problem of

class imbalance in the used dataset, and after testing various

undersampling and oversampling algorithms, the Instance

Hardness Threshold (IHT) undersampling algorithm provided

by the Imbalanced-learn (IMB-Learn) [16] library yielded the

largest performance improvement when tested. Not only did

IHT solve the issue of class imbalance, but this algorithm also

improved the classification performed by a factor comfortably

above 10% in all accuracy, precision, and recall measures.

3) Classifier Implementation and Model Selection: In

this phase of model development and testing, and since the

records retrieved from the Brazilian dataset are labelled for the

outcomes of show/no-show, the subset of machine learning

algorithms required to solve patient attendance prediction is

that of classification - a form of supervised learning. Within

the scope of this paper, since the model to be developed is to

be classifying show/no-show, the classification process is

synonymous with prediction. To develop supervised learning

models which perform classification, this paper utilizes the

robust and open-source Scikit-learn (SK-Learn) library, which

implements various machine learning algorithms and model

performance analysis functions using the Python

programming language.

Within the scope of this paper, a classification model is

defined as an algorithm – implemented by a pre-defined

function from the SK-Learn library – which takes a distinct

possible set of parameters as defined in the publicly available

SK-Learn documentation [17]. For each model to be tested,

the dataset was split into a training set, consisting of 80% of

the total records, and a testing set, consisting of 20% of the

total records, 10 times in a randomized manner. The average

Algorithm Hyperparameter Tuning Range
Decision Trees min_samples_split Small values in the range of 2 to 92 (inclusive), with increments of 10.

Larger values in the range of 100 to 2000 (inclusive), with increments of

100.

Naïve Bayes var_smoothing Small values in the range of 10-9 to 100 (i.e. 1, inclusive), with a

multiplication factor of 10 per iteration. Larger values in the range of 5 to

100 (exclusive), with increments of 5.

K-Nearest Neighbor n_neighbours Values in the range of 1 to 30 (inclusive), with increments of 1.

Support Vector

Machines (Linear)

C [0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100]

gamma Defaulted to [1/(n_features * input variance)]

Support Vector

Machines (Non-linear)

C Defaulted to 1.0

gamma [0.001, 0.002, 0.003, 0.004, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.07, 0.08, 0.09, 0.1]

results across all 10 corresponding runs are reported. Table I

details all the relevant hyper-parameters used for

classification performance tuning. In addition to the relevant

hyper-parameters, the table contains the range of hyper-

parameter values selected, per algorithm, to test and fine-tune

the different models explored.

Furthermore, the following list specifies the algorithms

tested, using the SK-Learn API:

• Decision Trees (DT)

• Naïve Bayes – Gaussian (NB)

• K-Nearest Neighbors (KNN)

• Support Vector Machines (SVM) – Linear

• Support Vector Machines (SVM) – Non-linear

In this stage of model development, the dataset which

was balanced by the IHT algorithm was used. Moreover, each

algorithm was passed under an exhaustive hyper-parameter

tuning technique, called grid search – implemented in the SK-

learn library, that finds the set of optimal hyper-parameters

given an algorithm, a parameter grid (i.e. a set of ranges for

each parameter defined for that respective algorithm), and a

scoring performance function to be used as a criteria for

optimal parameter selection. The parameter grid used for grid

search is retrieved from the parameter values in Table I. In

addition, the number of features in the dataset is empirically

reduced to the minimum number of features needed to obtain

similar performance as that obtained using the complete,

balanced dataset. The two forms of feature reduction tested

include feature selection and dimensionality reduction – both

of which also have functions implemented in the SK-learn

library. Feature selection is a feature reduction technique

which truncates the columns (i.e. features) within a dataset to

keep the most important/informative K features (using a

parameter also labeled ‘K’).

Dimensionality reduction, on the other hand, reduces the

total number of dimensions in a sample set to a smaller

number of variables, called principle components, which, to a

limited extent, represent and summarize the information

existing in the original features. To perform dimensionality

reduction, this paper utilizes the Principal Component

Analysis (PCA) function provided by SK-Learn, where the

desired number of principle components obtained post-

dimensionality-reduction is stored in a parameter labelled

‘n_components’.

V. CLASSIFIER RESULTS

This section presents the results obtained after balancing

the dataset classes using IHT under-sampling, performing

feature reduction, and finding the optimal parameters per

classifier by running a grid search on each. The results below

illustrate the performance obtained when testing the models

mentioned in Section IV of this paper via multiple, defined

metrics.

In order to report on and evaluate model performance,

this paper utilizes the following performance metrics:

1) Accuracy: a simple ratio of total correct predictions

over total incorrect predictions.

2) Precision: (Also called positive predictive value) is

the ratio of correctly predicted instances per class to all

predictions made for that same class.

3) Recall: (Also known as sensitivity) is the ratio of the

correctly predicted instances per class to the total amount of

actual instances labelled to that class in the dataset.

4) F1-measure: a harmonic mean of recall and

precision.

Moreover, in order to verify the predictive performance

of the fine-tuned models reported below and judge

performance consistency when subjected to a new data set (i.e.

newly seen test data), each precision and recall measure

obtained was compared to a set of exactly five respective

precision and recall measures estimated through K-fold cross-

validation (where K=5, in the case of this experiment); which

is a method of a resampling a dataset by which the total data

is split into K folds, after which, K model-testing iterations

are created where each iteration represents a different fold

used as a testing set, whilst all other folds are used for model

training. In doing so, since such cross-validation ensures that

the testing folds are diversified and that each subset within the

data is used within a testing set at least once, the precision and

recall performance of each classification model is empirically

proven to perform well on unseen, limited data samples.

Further, after performing 5-fold verification for each tuned

model, the precision and recall measures obtained at each

iteration of the cross-validation test was identical to the post-

tuning measures reported in the sections below (with an error

of +/- 1%).

A. Decision Trees

Without any feature reduction applied to the input dataset,

the DT classifier yielded the averaged metrics shown in Table

II.

TABLE II. CLASSIFIER PERFORMANCE WITH NO FEATURE SELECTION.

The objective of feature reduction is to find the lowest

values for K - the number of features to select using the

SelectKBest algorithm, Percentile - the percentage of features

to select using the SelectPercentile algorithm (which is

similar to SelectKBest - except it uses percentage of features

instead of number of reduced features K), or n_components –

the number of components for dimensionality reduction

which yield similar performance measures as the ones

obtained with no feature reduction. According to the afore-

described criteria, and as is demonstrated in the reported

measures below, the values of 1, 10%, and 3 for K, Percentile,

and n_components, respectively, are the best fit.

DT Performance (No feature reduction in dataset)

Training

Accuracy

Testing

Accuracy
Precision Recall

F1-

measure

95.3% 94.5% 95% 95% 95%

When K = 1, which is the lowest value possible for K, the

DT classifier yielded the post-feature-selection metrics shown

in Table III.

TABLE III. CLASSIFIER PERFORMANCE WITH K=1.

When Percentile = 10%, which is the lowest value

possible for ‘Percentile’, the DT classifier yielded the metrics

post-feature-selection as shown in Table IV.

TABLE IV. CLASSIFIER PERFORMANCE WITH PERCENTILE = 0.1.

 When n_components (using PCA) = 2, the DT classifier

yielded the metrics post-dimensionality reduction as shown in

Table V.

TABLE V. CLASSIFIER PERFORMANCE WITH N_COMPONENTS = 2.

However, after increasing n_components to 3, the DT

classifier yielded the metrics post-dimensionality reduction as

shown in Table VI.

TABLE VI. CLASSIFIER PERFORMANCE WITH N_COMPONENTS = 3.

After performing a grid search on the DT classifier, the

optimal parameter value to maximize precision was found to

be min_samples_split = 1400. However, min_samples_split =

2000 also returns a maximized identical precision value. The

grid search algorithm returned 1400, which represents a more

complex decision tree constructed by the DT model,

compared to 2000, since the algorithm is designed such that

the lowest value for a parameter is returned. In other words,

the SKLearn grid search algorithm used was implemented

such that a lower hyper-parameter value is assumed to

represent a less costly model; which isn't the case with DT

algorithm and min_samples_split.

B. Other Prediction Models (NB, KNN, SVM)

Using an identical criterion as the one explained in the

previous section, and compared to the performance obtained

for each model without applying any feature reduction, each

of the NB, KNN, Linear SVM, and Non-Linear SVM

classifier models was found to perform just as well post-

feature-reduction using the values of 1, 10%, and 3 for K,

Percentile, and n_components, respectively. The results are

displayed in Table VII.

TABLE VII. CLASSIFIER RESULTS FOR ALL ALGORITHMS.

Algorithm Accuracy Precision Recall
F1-

measure

DT 94.5% 95% 95% 95%

NB 85% 80% 85% 85%

KNN 92.5% 90.5% 90.5% 90.5%

SVM

(Linear)
92% 89% 88% 88%

SVM (Non-

linear)
94.5% 95% 95% 95%

C. Grid Search Results

By performing a grid search on each of the classification

models constructed and tested, the optimal combination of

parameter values - retrieved from the hyper-parameter grid

defined within the scope of this paper - for each model was

found. Table VIII shows the grid search results for all hyper-

parameter value sets which maximize precision, and other

hyper-parameter sets which maximize recall.

TABLE VIII. GRID SEARCH RESULTS

Score Function Precision Recall

Decision Trees
min_samples_split

= 2000

min_samples_split

= 2

Naïve Bayes
var_smoothing =

0.1

var_smoothing =

100

KNN n_neighbors = 2 n_neighbors = 1

SVM (Linear) C = 0.1 C = 50

SVM (Non-

linear)
gamma = 0.002 gamma = 0.1

VI. EVALUATION

 As can be seen in the prediction results reported for all

five classification models in Table VII, this paper manages to

construct reasonably high-performing no-show prediction

models given the dataset used; where some of the classifiers

reached accuracy and f-measure scores both hovering the 95%

benchmark. Moreover, both the DT and Non-linear SVM

classification models were the best performers with identical

performance reported via all average accuracy, average

precision, average recall, and average F-measure metrics.

However, since the DT algorithm has a significantly smaller

time complexity with respect to that of the Non-linear SVM

model, the DT classifier was selected to be integrated into the

proposed ASIM system design documented by this report.

Furthermore, to confirm whether the review of literature,

which emphasized lead time, was accurate, Table IX shows

the estimated performance measures of the DT classifier when

the input dataset contains the lead time attribute compared to

its performance when the lead time attribute is omitted from

the dataset. The differences exhibited in performance with and

DT Performance (SelectKBest, K=1)

Training

Accuracy

Testing

Accuracy
Precision Recall

F1-

measure

95.2% 95.4% 96% 95% 95%

DT Performance (SelectPercentile, Percentile = 0.1)

Training

Accuracy

Testing

Accuracy
Precision Recall

F1-

measure

95.3% 94.9% 95% 95% 95%

DT Classifier Performance (PCA, n_components = 2)

Training

Accuracy

Testing

Accuracy
Precision Recall

F1-

measure

63.3% 60.3% 60% 60% 60%

DT Classifier Performance (PCA, n_components = 3)

Training

Accuracy

Testing

Accuracy
Precision Recall

F1-

measure

94.4% 94.5% 95% 95% 95%

TABLE IX. LEAD TIME VS. NO LEAD TIME

without the lead time attribute in the input dataset by the DT

classifier is significant.

With lead time, the DT classifier was able to obtain

performance measures comfortably above 92% in all

measures used. However, after running the exact same model

with the lead-time attribute eliminated from the input dataset,

a drop of over 30% was observed in all classification

performance metrics yielded. After performing the same test

for the NB, KNN, Linear SVM, and Non-linear SVM models,

a similar drop in performance was observed. This observation

confirms a key literature review finding that most relevant

works consider, emphasize, or even explicitly list lead-time as

a highly informative determinant variable when analyzing

patient non-attendance or formulating a no-show prediction

[4-9].

VII. CONCLUSION

In this work, the Appointment Scheduling and Intuitive

Management (ASIM) system was able to detect patient no-

shows using a machine learning classifier. This paper was able

to achieve a highly rigid prediction performance rate with a

score of 95% for both accuracy and F1-score measures.

As the paper outlines, various algorithms were used to

build and test the multiple models reported. The models built

were tested using the dataset, after which different metrics

such as accuracy, precision and f-measure were used to

compare the results of the different algorithms and classifiers

built. As shown earlier, in order to get optimal results from

each algorithm, different parameters were tweaked and tested

via multiple grid search runs. It was also observed that the

most determining factor in obtaining an accurate result was

the existence of the lead time attribute in the dataset, without

which classifier performance - resembled in accuracy, for

instance - drops by an astonishing 30%. After all the tests, the

best accuracy and F1-measure achieved for the dataset used in

this paper was that of 95% for both. This was accomplished

by using the decision trees classifier, with the parameter

“min_samples_split” set at 2000.

Ultimately, the system proposed in this paper allows for

a reduction of financial losses globally due to no-shows. By

deploying the ASIM system and further improving its design,

clinics can now reliably predict a no-show and, in turn,

overbook or remind the patient in question to minimize

opportunity cost. The proposed system may also be extended

to other businesses that have a high chance of customer

congestion, cancellation possibility, and inherent financial

losses per booking missed, such as hotels and restaurants.

REFERENCES

[1] J. Gier, “Missed appointments cost the U.S. healthcare system $150B
each year,” Clinical IT, April 2017.

[2] S. Dhal, “How patient no shows have a ripple effect on clinics,
hospitals,” Gulf News, April 2019.

[3] “Missed GP appointments costing NHS millions,” National Health
Service, January 2019.

[4] J. Norris, C. Kumar, S. Chand, H. Moskowitz, S. Shade, and D. Willis,
“An empirical investigation into factors affecting patient cancellations
and no-shows at outpatient clinics,” Decision Support Systems, vol. 57,
428-443, January 2014.

[5] J. Triemstra and L. Lowery, “Prevalence, Predictors, and the Financial
Impact of Missed Appointments in an Academic Adolescent Clinic,”
Cureus, vol. 10, no. 11, e3613, November 2018.

[6] M. McMullen and P. Netland, “Lead time for appointment and the no-
show rate in an ophthalmology clinic,” Clinical ophthalmology, vol. 9,
513-516, March 2015.

[7] I. Mohammadi, H. Wu, A. Turkcan, T. Toscos, and B. Doebbeling,
“Data Analytics and Modeling for Appointment No-show in
Community Health Centers,” Journal of primary care & community
health, vol. 9, Jan-Dec 2018.

[8] V. Levy, “A predictive tool for nonattendance at a specialty clinic: An
application of multivariate probabilistic big data analytics,” in Proc. of
the 10th International Conference and Expo on Emerging Technologies
for a Smarter World (CEWIT), October 2013.

[9] A. Alaeddini, K. Yang, C. Reddy, and S. Yu, “A probabilistic model
for predicting the probability of no-show in hospital appointments,”
Health care management science, 14(2), 146-157, June 2011.

[10] P. Cao and J. Tang, “Hybrid appointment for a single-physician clinic
with no-shows and overbooking,” in Proc. of the IEEE Chinese
Control and Decision Conference (CCDC), June 2014.

[11] J. Chen, “Show or No Show? Visualization and Prediction,”
Kaggle.com, 2020. [Online]. Available:
https://www.kaggle.com/jchen2186/show-or-no-show-visualization-
and-prediction.

[12] M. Walji and J. Zhang, “Human-Centered Design of Persuasive
Appointment Reminders,” in Proc. of the IEEE Annual Hawaii
International Conference on System Sciences (HICSS), January 2008.

[13] S. Percac-Lima, P. Cronin, D. Ryan, B. Chabner, E. Daly, and A.
Kimball, “Patient navigation based on predictive modeling decreases
no-show rates in cancer care,” Cancer, 121(10), 1662-1670, May
2015.

[14] E. Kaplan-Lewis and S. Percac-Lima, “No-Show to Primary Care
Appointments: Why Patients Do Not Come,” Journal of Primary Care
& Community Health, 4(4), 251-255, October 2013.

[15] JoniHoppen, “Medical Appointment No Shows,” Kaggle, 20-Aug-
2017. Available:
https://www.kaggle.com/joniarroba/noshowappointments

[16] “Welcome to imbalanced-learn documentation!” imbalanced.
[Online]. Available: https://imbalanced-
learn.readthedocs.io/en/stable/index.html

[17] Pedregosa et al. “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, 2825-2830, October 2011.

Attribute Lead time No Lead time

Avg. Training Accuracy 95.26% 60.13%

Avg. Testing Accuracy 95.28% 59.24%

Avg. Precision 92.60% 58.23%

Avg. Recall 98.37% 65.59%

Avg. F1-measure 95.39% 61.59%

Avg. True Positives 4411.9 2925.3

Avg. False Negatives 73.3 1536

Avg. False Positives 352.7 2102.3

Avg. True Negatives 4089.1 2363.4

