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Abstract—All over the globe, significant amounts of patients miss 

their appointments without cancelling in time or even cancelling 

at all, resulting in billions of dollars wasted yearly due to 

increased idle time, overtime and waiting time that the other 

patients and hospitals face. Hospitals are actively trying to 

implement methods to try to reduce the idle time caused by 

patient no-shows by using overbooking and reminder systems. 

However, these two methods can be very costly. Overbooking can 

lead to patient dissatisfaction and constant personalized 

reminders, such as phone calls, to every patient can be annoying 

and costly in terms of manpower. This paper focuses on offering 

a solution which mitigates the global phenomenon of medical no-

shows by creating a machine learning model using existing 

patient datasets to discover patterns and relationships between 

multiple patient variables and their tendency to miss 

appointments. Therefore, the likelihood of a patient showing up, 

given their information, may be predicted. The machine learning 

model used to form the solution predictive model is based on the 

decision tree classification algorithm. Furthermore, a scheduling 

system was implemented such that the overall model detects 

whether a patient has a risk of missing an appointment with a 95% 

accuracy, upon which it automatically enables the risky patient’s 

schedule slot for overbooking and notifies medical staff or 

administration to contact them accordingly. 
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I. INTRODUCTION 

A vast majority of clinics and hospitals around the world 

face a common major problem: huge sums of profit being 

wasted in the healthcare sector due to patient no-shows. In fact, 

it is estimated that around $150 billion is lost annually due to 

no-shows within the USA alone [1]. Any clinic that allows 

patients to book appointments in advance runs a huge risk; the 

patient not showing up to the appointment or cancelling the 

appointment without a sufficient time window. Hence many 

hospitals rely on the costly approach of reminders which is 

often implemented in parallel with overbooking, which is the 

practice of booking multiple patients in a single appointment 

slot. For reasons pertaining to the aforementioned economic 

and social implications, it becomes clear that a need exists for 

a solution which realistically tackles surging no-show rates 

and reduces the idle time and overtime of medical staff [2-3]. 

In this paper, an Appointment Scheduling and Intuitive 

Management (ASIM) system is proposed that enables quick, 

hassle-free appointment scheduling for patients and provides 

convenient and practical schedule oversight, logging, and 

management for the medical staff in a hospital or a clinic. The  

proposed solution allows for the automated handling of high-

risk appointments, based on case-specific outcome predictions. 

 

For the proposed ASIM system to predict a patient no-

show, it was built to work in parallel with a machine learning 

classifier. Hence, to develop, test, and integrate a functional 

classifier, this paper utilizes a dataset which contains 110,527 

appointment logs – recording appointment features such as 

Patient ID, gender, lead time, age, clinic neighborhood, health 

insurance, pre-existing medical condition, and a flag 

indicating whether or not the patient was reminded. By 

feeding the dataset’s information into the classification 

algorithm selected, the system’s machine learning component 

is trained sufficiently such that it is able to form rigid patient 

non-attendance predictions. As such, by using the prediction 

result evaluated by the classifier component, the system is able 

to overbook slots that will have a no-show. This paper 

explores and tests different, widely-used machine learning 

algorithms prior to integrating a classifier component capable 

of formulating predictions that are highly accurate and reliable 

such that the overarching system design may handle no-shows 

accordingly. 

The remainder of the paper is organized as follows. 

Section II provides a literature review. Section III gives a 

description of the proposed system. Section IV discusses the 

implementation of the classifier. Section V explores the 

results of the classifier. Section VI evaluates the results 

obtained. The paper concludes in Section VII. 

II. LITERATURE REVIEW 

There have been significant efforts made by established 

researchers to investigate the phenomenon of hospital no-

shows, predict its occurrences, and reduce its instances. Norris 

et al [4], Triemstra and Lowery [5], and McMullen and 

Netland [6] conducted research to map correlations between a 

set of independent variables and their impact on the rates of 

no-shows. Norris et al [4] distinguish themselves from their 

predecessors by considering three discrete outcomes on 

appointment attendance: show, no-show, and informed 

cancellation. This conscious decision prevents grouping the 

latter two outcomes into one and thus sharpens their focus on 

the problem of hospital no-shows. Moreover, while [5] and [6] 

have limited their independent variables to lead time (i.e. the 

time elapsed between the booking of the appointment and the 

appointment itself) and insurance, [4] have analyzed a wider 

range of independent factors which include weather, 

appointment time, lead time, prior attendance history, patient 

age, and payment method. All results from the analyses of [4-

6] indicate that lead time plays the most important role in 

determining the attendance of a hospital appointment. It was 

observed that an increase in lead time led to an increase in the 

rates of hospital no-shows as well. [4] concluded their study 

by suggesting further research to determine the optimal lead 

time threshold that will improve appointment attendance. 

Similarly, [6] note that no-show rates are likely to decrease by 

as much as 60% if lead time were restricted to 0-2 weeks.
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Aside from the surface analyses of data, researchers such 

as Mohammadi el al [7], Levy et al [8], and Alaeddini et al [9], 

have delved into the development of machine learning models 

to predict no-shows using a variety of algorithms. For instance, 

[7] created models using logistic regression, Naive Bayes, and 

artificial neural networks. Their dataset consisted of a vast 

array of independent variables such as clinic type, lead time, 

patient age, race, gender, marital status, cell-phone ownership, 

insurance, and tobacco usage. The resulting models reported 

accuracies of 73% for logistic regression, 71% for artificial 

neural networks, and 82% for Naive Bayes. Similarly, [8] also 

considered factors such as patient age, gender, and marital 

status, number of appointments that day, and patient diagnosis, 

producing a prediction model with an accuracy of 65%. [9] 

also worked with similar independent variables and produced 

a hybrid model of logistic regression and Naive Bayes, 

reporting an accuracy of 80%. Similar to [4-6], [7]’s models 

indicated that lead time once again played a significant role in 

the outcome of appointment attendance. [9]’s hybrid model on 

the other hand suggests a strong correlation between days 

close to holidays and no-shows, as well as types of clinics and 

no-shows.  

On the aspect of no-show prevention, the two most 

popular methods observed in existing literature are 

overbooking and patient reminders. While overbooking does 

not directly address the problem of hospital no-shows, it is 

known to mitigate the consequences of no-shows, namely an 

increase in hospital idle time and decreased operational 

efficiency. Cao and Tang [10] and Chen [11] utilized different 

models for overbooking strategies in their works. [10] 

developed a Markov Decision Process (MDP) model to 

determine optimal overbooking strategy and proved the 

optimal overbooking policy is a threshold type policy; each 

appointment slot has a no-show probability and a threshold 

beyond which it is not optimal to book additional 

appointments on that slot. Similarly, [11] developed a 

simulation model to represent hospital appointments as a 

multi-server queue - each queue having its distinct 

overbooking strategy. [11]’s simulation results successfully 

improved the operational efficiency of the clinic by reducing 

overtime by 58%, idle time by 23%, and increasing the 

number of patients served by 16%. 

While [10] and [11] have chosen to employ overbooking 

strategies, Walji and Zhang [12], and Percac-Lima et al [13] 

have chosen to research intervention systems such as patient 

reminders in an effort to reduce hospital no-shows and thus 

reduce wastage of resources. For instance, [12] uses human-

computer interaction principles to test the type of messages 

that are more likely to appeal to patients and thus encourage 

them to attend their appointments on time. Through multiple 

iterations in their methodology, they were able to develop 

scripts for reminder emails that had a significant appeal to 

patients in terms of personalization, accuracy of the message, 

and an overall optimistic and “genuine” tone. While [13]’s 

study involved the development of classification models to 

predict no-shows much like [7-9], their research went a step 

further and employed an intervention method called the 

Patient Navigation System in an effort to minimize no-shows. 

[13] randomized and split their predicted no-show patients 

into a control group and intervention group of approximately 

the same size. Patients in the intervention group were called 

by trained callers to remind them of their appointments and 

resolve any barriers that they may experience. [13] were then 

able to conclude their study by stating that the intervention 

group reported a no-show rate 7.3% lower than that of the 

control group. 

It is worth noting that [13], as well as Kaplan-Lewis and 

Percac-Lima [14], have also investigated the reasons for 

patient no-shows. The studies revealed that the main reasons 

for no-shows were forgetfulness and miscommunication. 

Miscommunication was further explained as patients being 

misinformed of the date and time of the appointment, patients 

incorrectly thinking that their appointments were cancelled, 

and patients being unaware of the existence of a cancellation 

process. This further strengthens the case for installing patient 

reminder systems as an intervention method to reduce hospital 

no-shows.  

This paper seeks to contribute to the vast array of existing 

literature on two fronts. It was noted that the classification 

models developed by previous researchers reported accuracy 

measures between 65% to 82%; thus, one of the goals of this 

paper is to develop a classification model to predict hospital 

no-shows with an improved accuracy than that of its 

predecessors, paired with high precision and recall measures. 

Furthermore, this paper seeks to employ overbooking 

strategies limited to just those booked appointment slots 

which are predicted by the classifier to be no-shows, instead 

of a standardized, unadaptable mechanism including all 

patients. This will increase the overall operational efficiency 

of the hospital or clinic without imposing inconveniences on 

patients who show punctuality by attending their 

appointments on time. 

III. PROPOSED SYSTEM 

The system proposed, as shown in Figure 1, consists of 

the following major components: a mobile application, web 

application, mobile app server, web app server, machine 

learning component, and a database. The system is 

implemented using the 3-tier architecture that contains the 

User Interface layer, Application Logic layer, and Database 

layer. The layered approach allows for decoupling, whose 

benefits include more manageable code, increased flexibility 

and ease in changing or upgrading parts of the implementation 

in the future, to name a few. 

A. User Interface Layer 

The User Interface consists of two client nodes, each node 

dedicated one type of client: either a patient client or a hospital 

admin client. Each client node consists of a component that 

allows the end user to interact with the system; the patient 

client node holds the mobile application component, whereas 

the admin client node holds the web application component. 

The patient accesses the mobile application to receive 

functionalities such as registering their profile and booking an 

appointment. The functionalities are achieved through the 

mobile application using the web interfaces provided by the 



 

mobile app server. Similarly, the hospital admin accesses the 

web application to use functionalities such as adding 

appointment slots and viewing appointment schedules and 

details. These functionalities are once again achieved via the 

web application’s use of web interfaces provided by the web 

app server. 

B. Application Logic Layer 

The Application Logic layer consists of two nodes, each 

node functioning as an application server to each type of client 

node. The mobile app server consists of 4 major components: 

1) HTTP server: handles HTTP requests such, as GET 

and POST, from the mobile application. It provides the web 

interfaces for the mobile application to use to achieve its 

functionalities. 

2) Database service: provides mediation between the 

server and the cloud database by providing web interfaces for 

the HTTP server to use, so it may achieve functionalities such 

as adding, modifying, or retrieving documents from the 

database. 

3) Classifier service: provides mediation between the 

server and the trained machine learning classifier by providing 

the interface for the server to send patient and appointment 

information and receive the no-show prediction. 

4) Prediction classifier: is the trained classifier used to 

predict the no-show likelihood of a patient, given their 

information and other additional metrics such as the number 

of days between the appointment day and the day the 

appointment was booked (lead time). The classifier service  

uses the prediction classifier to compute no-show and return 

the results to the HTTP server. 

Meanwhile, the web app server node consists of two 

major modules: 

1) HTTP server: handles HTTP requests from the web 

application and functions similarly to the HTTP server in the 

mobile app server node. 

2) Database service: provides mediation between the 

HTTP server and the cloud database, similar to the database 

service module in the mobile app server node. 

C. Database Layer 

The Database layer consists of one (virtual) node where 

the system’s cloud database is stored. The cloud database node 

contains the following components: 

1) Hospital database: is the main overall database in the 

cloud database service cluster. It consists of all collections and 

records pertaining to hospital affairs only. It uses the interface 

provided by the patients, appointments, and admins 

collections to perform database operations such as adding, 

modifying, or retrieving a document. 

IV. CLASSIFIER IMPLEMENTATION 

To implement the ASIM system’s prediction 

functionality, a public dataset of medical appointment records 

was subjected to various stages of data preprocessing, such as 

categorical data encoding and class balancing, prior to being 

used as input to numerous classification algorithms for early 

testing, performance evaluation, and, ultimately, model 

selection. 

Fig. 1. System architecture for the proposed Appointment Scheduling and Intuitive Management (ASIM) System. 



 

TABLE I. DETAILS OF HYPER-PARAMETERS TUNED FOR CLASSIFICATION. 

1) Dataset used: The public dataset used in this paper 

originates from Brazil. Published in May 2016, the dataset 

consists of a total of 110,527 records of hospital appointments, 

booked by patients, that are labeled by appointment outcome 

(i.e. show/no-show) [15]. The dataset consisted of 13 features, 

namely: Patient ID, Appointment ID, patient gender, day of 

scheduling, appointment day scheduled, patient age, patient 

neighborhood, health insurance, hypertension, diabetes, 

alcoholism, disability, and an “SMS reminder used” indicator. 

Patient ID and Appointment ID held discrete numerical 

values. The gender attribute consisted of categorical values, 

with ‘F’ denoting “female” and ‘M’ denoting “male”. The 

appointment day and scheduling day attributes contained 

values that included the year, month, date, hour and minutes. 

The age attribute held discrete numerical values, with ages 

ranging from 0 to 115, with the exceptions of a few outliers 

(such as negative age). The neighborhood attribute consisted 

of categorical data with up to 80 distinct neighborhoods. The 

health insurance, hypertension, diabetes, alcoholism, 

disability, and SMS received attributes held Boolean values 0 

and 1 (0 denoting negative, or false, and 1 denoting positive 

or true). The records in the dataset were labeled either “Yes” 

or “No”; where “Yes” signifies that the patient did indeed miss 

their appointments, and “No” meant that the patient attended 

his/her appointment. Initial data exploration revealed that of 

the 110,527 records, 22,319 (which makes up 20.19% of the 

dataset) were labeled “Yes”, while the rest were labeled “No”. 

1) Data pre-processing: The data preprocessing stages 

included converting textual and categorical data into 

representative numerical values. In the example of the gender 

attribute, “F” was replaced by “1” and “M” was replaced by 

“0”; hence, in effect, the gender attribute was in essence a 

Boolean feature that indicated whether a given patient was 

female or not. 

Similarly, the neighborhood attribute values were altered 

from names of the neighborhood to discrete numbers, where 

each number represented a distinct neighborhood. In addition, 

a new feature was created by finding the difference between 

the existing “Booking Day” and “Appointment Day” features. 

This new attribute, named “Lead time”, represents the number 

of days elapsed between the scheduling day and the 

appointment day. This was done such that the “lead time” 

attribute - the significance of which is established by previous 

literature - is explicitly taken into account by the model to be 

created. The team utilized the well-documented and easy-to-

use Pandas library in Python to preprocess the original dataset. 

2) Data balancing: Upon inspecting the percentage 

distribution of the records between the ‘Show’ and ‘No-show’ 

labels defined, it was observed that a large disparity between 

both classes exists, where 80% of the dataset’s records are 

labelled as ‘Show’ and 20% are labelled as ‘No-show’. Such 

a magnitude of class imbalance is to be expected for a dataset 

which logs information on patient attendance, which is a 

problem where the general trend of the majority of medical 

bookings is to be attended, as opposed to a minority of 

appointments which are not. In order to solve the problem of 

class imbalance in the used dataset, and after testing various 

undersampling and oversampling algorithms, the Instance 

Hardness Threshold (IHT) undersampling algorithm provided 

by the Imbalanced-learn (IMB-Learn) [16] library yielded the 

largest performance improvement when tested. Not only did 

IHT solve the issue of class imbalance, but this algorithm also 

improved the classification performed by a factor comfortably 

above 10% in all accuracy, precision, and recall measures. 

3) Classifier Implementation and Model Selection: In 

this phase of model development and testing, and since the 

records retrieved from the Brazilian dataset are labelled for the 

outcomes of show/no-show, the subset of machine learning 

algorithms required to solve patient attendance prediction is 

that of classification - a form of supervised learning. Within 

the scope of this paper, since the model to be developed is to 

be classifying show/no-show, the classification process is 

synonymous with prediction. To develop supervised learning 

models which perform classification, this paper utilizes the 

robust and open-source Scikit-learn (SK-Learn) library, which 

implements various machine learning algorithms and model 

performance analysis functions using the Python 

programming language. 

Within the scope of this paper, a classification model is 

defined as an algorithm – implemented by a pre-defined 

function from the SK-Learn library – which takes a distinct 

possible set of parameters as defined in the publicly available 

SK-Learn documentation [17]. For each model to be tested, 

the dataset was split into a training set, consisting of 80% of 

the total records, and a testing set, consisting of 20% of the 

total records, 10 times in a randomized manner. The average 

Algorithm Hyperparameter Tuning Range 
Decision Trees min_samples_split Small values in the range of 2 to 92 (inclusive), with increments of 10. 

Larger values in the range of 100 to 2000 (inclusive), with increments of 

100. 

Naïve Bayes var_smoothing Small values in the range of 10-9 to 100 (i.e. 1, inclusive), with a 

multiplication factor of 10 per iteration. Larger values in the range of 5 to 

100 (exclusive), with increments of 5. 

K-Nearest Neighbor n_neighbours Values in the range of 1 to 30 (inclusive), with increments of 1. 

Support Vector 

Machines (Linear) 

C [0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100] 

gamma Defaulted to [1/(n_features * input variance)] 

Support Vector 

Machines (Non-linear) 

C Defaulted to 1.0 

gamma [0.001, 0.002, 0.003, 0.004, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 

0.07, 0.08, 0.09, 0.1] 



 

results across all 10 corresponding runs are reported. Table I 

details all the relevant hyper-parameters used for 

classification performance tuning. In addition to the relevant 

hyper-parameters, the table contains the range of hyper-

parameter values selected, per algorithm, to test and fine-tune 

the different models explored. 

Furthermore, the following list specifies the algorithms 

tested, using the SK-Learn API: 

• Decision Trees (DT) 

• Naïve Bayes – Gaussian (NB) 

• K-Nearest Neighbors (KNN) 

• Support Vector Machines (SVM) – Linear 

• Support Vector Machines (SVM) – Non-linear 

In this stage of model development, the dataset which 

was balanced by the IHT algorithm was used. Moreover, each 

algorithm was passed under an exhaustive hyper-parameter 

tuning technique, called grid search – implemented in the SK-

learn library, that finds the set of optimal hyper-parameters 

given an algorithm, a parameter grid (i.e. a set of ranges for 

each parameter defined for that respective algorithm), and a 

scoring performance function to be used as a criteria for 

optimal parameter selection. The parameter grid used for grid 

search is retrieved from the parameter values in Table I. In 

addition, the number of features in the dataset is empirically 

reduced to the minimum number of features needed to obtain 

similar performance as that obtained using the complete, 

balanced dataset. The two forms of feature reduction tested 

include feature selection and dimensionality reduction – both 

of which also have functions implemented in the SK-learn 

library. Feature selection is a feature reduction technique 

which truncates the columns (i.e. features) within a dataset to 

keep the most important/informative K features (using a 

parameter also labeled ‘K’). 

Dimensionality reduction, on the other hand, reduces the 

total number of dimensions in a sample set to a smaller 

number of variables, called principle components, which, to a 

limited extent, represent and summarize the information 

existing in the original features. To perform dimensionality 

reduction, this paper utilizes the Principal Component 

Analysis (PCA) function provided by SK-Learn, where the 

desired number of principle components obtained post-

dimensionality-reduction is stored in a parameter labelled 

‘n_components’. 

V. CLASSIFIER RESULTS 

This section presents the results obtained after balancing 

the dataset classes using IHT under-sampling, performing 

feature reduction, and finding the optimal parameters per 

classifier by running a grid search on each. The results below 

illustrate the performance obtained when testing the models 

mentioned in Section IV of this paper via multiple, defined 

metrics. 

In order to report on and evaluate model performance, 

this paper utilizes the following performance metrics: 

1)  Accuracy: a simple ratio of total correct predictions 

over total incorrect predictions. 

2) Precision: (Also called positive predictive value) is 

the ratio of correctly predicted instances per class to all 

predictions made for that same class. 

3) Recall: (Also known as sensitivity) is the ratio of the 

correctly predicted instances per class to the total amount of 

actual instances labelled to that class in the dataset. 

4) F1-measure: a harmonic mean of recall and 

precision. 

Moreover, in order to verify the predictive performance 

of the fine-tuned models reported below and judge 

performance consistency when subjected to a new data set (i.e. 

newly seen test data), each precision and recall measure 

obtained was compared to a set of exactly five respective 

precision and recall measures estimated through K-fold cross-

validation (where K=5, in the case of this experiment); which 

is a method of a resampling a dataset by which the total data 

is split into K folds, after which, K model-testing iterations 

are created where each iteration represents a different fold 

used as a testing set, whilst all other folds are used for model 

training. In doing so, since such cross-validation ensures that 

the testing folds are diversified and that each subset within the 

data is used within a testing set at least once, the precision and 

recall performance of each classification model is empirically 

proven to perform well on unseen, limited data samples. 

Further, after performing 5-fold verification for each tuned 

model, the precision and recall measures obtained at each 

iteration of the cross-validation test was identical to the post-

tuning measures reported in the sections below (with an error 

of +/- 1%). 

A. Decision Trees 

Without any feature reduction applied to the input dataset, 

the DT classifier yielded the averaged metrics shown in Table 

II. 

TABLE II. CLASSIFIER PERFORMANCE WITH NO FEATURE SELECTION. 

The objective of feature reduction is to find the lowest 

values for K - the number of features to select using the 

SelectKBest algorithm, Percentile - the percentage of features 

to select using the SelectPercentile algorithm (which is 

similar to SelectKBest - except it uses percentage of features 

instead of number of reduced features K), or n_components – 

the number of components for dimensionality reduction 

which yield similar performance measures as the ones 

obtained with no feature reduction. According to the afore-

described criteria, and as is demonstrated in the reported 

measures below, the values of 1, 10%, and 3 for K, Percentile, 

and n_components, respectively, are the best fit.

DT Performance (No feature reduction in dataset) 

Training 

Accuracy 

Testing 

Accuracy 
Precision Recall 

F1-

measure 

95.3% 94.5% 95% 95% 95% 



 

When K = 1, which is the lowest value possible for K, the 

DT classifier yielded the post-feature-selection metrics shown 

in Table III. 

TABLE III. CLASSIFIER PERFORMANCE WITH K=1. 

When Percentile = 10%, which is the lowest value 

possible for ‘Percentile’, the DT classifier yielded the metrics 

post-feature-selection as shown in Table IV. 

TABLE IV. CLASSIFIER PERFORMANCE WITH PERCENTILE = 0.1. 

 When n_components (using PCA) = 2, the DT classifier 

yielded the metrics post-dimensionality reduction as shown in 

Table V. 

TABLE V. CLASSIFIER PERFORMANCE WITH N_COMPONENTS = 2. 

However, after increasing n_components to 3, the DT 

classifier yielded the metrics post-dimensionality reduction as 

shown in Table VI. 

TABLE VI. CLASSIFIER PERFORMANCE WITH N_COMPONENTS = 3. 

After performing a grid search on the DT classifier, the 

optimal parameter value to maximize precision was found to 

be min_samples_split = 1400. However, min_samples_split = 

2000 also returns a maximized identical precision value. The 

grid search algorithm returned 1400, which represents a more 

complex decision tree constructed by the DT model, 

compared to 2000, since the algorithm is designed such that 

the lowest value for a parameter is returned. In other words, 

the SKLearn grid search algorithm used was implemented 

such that a lower hyper-parameter value is assumed to 

represent a less costly model; which isn't the case with DT 

algorithm and min_samples_split. 

B. Other Prediction Models (NB, KNN, SVM) 

Using an identical criterion as the one explained in the 

previous section, and compared to the performance obtained 

for each model without applying any feature reduction, each 

of the NB, KNN, Linear SVM, and Non-Linear SVM 

classifier models was found to perform just as well post-

feature-reduction using the values of 1, 10%, and 3 for K, 

Percentile, and n_components, respectively. The results are 

displayed in Table VII. 

TABLE VII. CLASSIFIER RESULTS FOR ALL ALGORITHMS. 

Algorithm Accuracy Precision Recall 
F1-

measure 

DT 94.5% 95% 95% 95% 

NB 85% 80% 85% 85% 

KNN 92.5% 90.5% 90.5% 90.5% 

SVM 

(Linear) 
92% 89% 88% 88% 

SVM (Non-

linear) 
94.5% 95% 95% 95% 

C. Grid Search Results 

By performing a grid search on each of the classification 

models constructed and tested, the optimal combination of 

parameter values - retrieved from the hyper-parameter grid 

defined within the scope of this paper - for each model was 

found. Table VIII shows the grid search results for all hyper-

parameter value sets which maximize precision, and other 

hyper-parameter sets which maximize recall. 

TABLE VIII. GRID SEARCH RESULTS 

Score Function  Precision Recall 

Decision Trees 
min_samples_split 

= 2000 

min_samples_split 

= 2 

Naïve Bayes 
var_smoothing = 

0.1 

var_smoothing = 

100 

KNN n_neighbors = 2 n_neighbors = 1 

SVM (Linear) C = 0.1 C = 50 

SVM (Non-

linear) 
gamma = 0.002 gamma = 0.1 

VI. EVALUATION 

 As can be seen in the prediction results reported for all 

five classification models in Table VII, this paper manages to 

construct reasonably high-performing no-show prediction 

models given the dataset used; where some of the classifiers 

reached accuracy and f-measure scores both hovering the 95% 

benchmark. Moreover, both the DT and Non-linear SVM 

classification models were the best performers with identical 

performance reported via all average accuracy, average 

precision, average recall, and average F-measure metrics. 

However, since the DT algorithm has a significantly smaller 

time complexity with respect to that of the Non-linear SVM 

model, the DT classifier was selected to be integrated into the 

proposed ASIM system design documented by this report. 

Furthermore, to confirm whether the review of literature, 

which emphasized lead time, was accurate, Table IX shows 

the estimated performance measures of the DT classifier when 

the input dataset contains the lead time attribute compared to 

its performance when the lead time attribute is omitted from 

the dataset. The differences exhibited in performance with and  

DT Performance (SelectKBest, K=1)  

Training 

Accuracy 

Testing 

Accuracy 
Precision Recall 

F1-

measure 

95.2% 95.4% 96% 95% 95% 

DT Performance (SelectPercentile, Percentile = 0.1) 

Training 

Accuracy 

Testing 

Accuracy 
Precision Recall 

F1-

measure 

95.3% 94.9% 95% 95% 95% 

DT Classifier Performance (PCA, n_components = 2) 

Training 

Accuracy 

Testing 

Accuracy 
Precision Recall 

F1-

measure 

63.3% 60.3% 60% 60% 60% 

DT Classifier Performance (PCA, n_components = 3)  

Training 

Accuracy 

Testing 

Accuracy 
Precision Recall 

F1-

measure 

94.4% 94.5% 95% 95% 95% 



 

TABLE IX. LEAD TIME VS. NO LEAD TIME 

without the lead time attribute in the input dataset by the DT 

classifier is significant. 

With lead time, the DT classifier was able to obtain 

performance measures comfortably above 92% in all 

measures used. However, after running the exact same model 

with the lead-time attribute eliminated from the input dataset, 

a drop of over 30% was observed in all classification 

performance metrics yielded. After performing the same test 

for the NB, KNN, Linear SVM, and Non-linear SVM models, 

a similar drop in performance was observed. This observation 

confirms a key literature review finding that most relevant 

works consider, emphasize, or even explicitly list lead-time as 

a highly informative determinant variable when analyzing 

patient non-attendance or formulating a no-show prediction 

[4-9]. 

VII. CONCLUSION 

In this work, the Appointment Scheduling and Intuitive 

Management (ASIM) system was able to detect patient no-

shows using a machine learning classifier. This paper was able 

to achieve a highly rigid prediction performance rate with a 

score of 95% for both accuracy and F1-score measures. 

As the paper outlines, various algorithms were used to 

build and test the multiple models reported. The models built 

were tested using the dataset, after which different metrics 

such as accuracy, precision and f-measure were used to 

compare the results of the different algorithms and classifiers 

built. As shown earlier, in order to get optimal results from 

each algorithm, different parameters were tweaked and tested 

via multiple grid search runs. It was also observed that the 

most determining factor in obtaining an accurate result was 

the existence of the lead time attribute in the dataset, without 

which classifier performance - resembled in accuracy, for 

instance - drops by an astonishing 30%. After all the tests, the 

best accuracy and F1-measure achieved for the dataset used in 

this paper was that of 95% for both. This was accomplished 

by using the decision trees classifier, with the parameter 

“min_samples_split” set at 2000. 

Ultimately, the system proposed in this paper allows for 

a reduction of financial losses globally due to no-shows. By 

deploying the ASIM system and further improving its design, 

clinics can now reliably predict a no-show and, in turn, 

overbook or remind the patient in question to minimize 

opportunity cost. The proposed system may also be extended 

to other businesses that have a high chance of customer 

congestion, cancellation possibility, and inherent financial 

losses per booking missed, such as hotels and restaurants. 
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Attribute Lead time No Lead time 

Avg. Training Accuracy  95.26% 60.13% 

Avg. Testing Accuracy  95.28% 59.24% 

Avg. Precision 92.60% 58.23% 

Avg. Recall 98.37% 65.59% 

Avg. F1-measure 95.39% 61.59% 

Avg. True Positives 4411.9 2925.3 

Avg. False Negatives 73.3 1536 

Avg. False Positives 352.7 2102.3 

Avg. True Negatives 4089.1 2363.4 


