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Abstract—Stroke survivors are vulnerable to post-stroke 

upper limb disabilities and physiotherapy is typically 

recommended to improve their movement. This paper 

introduces a patient-centered smart system where patients 

performing rehabilitation exercises can receive automated 

visuals of their improvements in the comfort of their homes. 

Moreover, the patient’s health is also monitored based on their 

heart rate, recommendations regarding their improvement 

based on the exercises performed are provided and the patient’s 

likelihood of stroke recurrence is predicted by the system. The 

system uses accelerometer and heart rate readings from a 

smartwatch along with readings from a stretch sensor attached 

to an exercise band. These readings are stored in the cloud and 

real-time databases, which are retrieved in the mobile 

application, where data is processed using algorithms to assess 

the improvement as well as generate recommendation and 

prediction models. 
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I. INTRODUCTION 

Stroke is a leading cause of death and disability in the 

world and occurs mostly due to clotting of an artery leading 

to the brain. Post-stroke patients tend to suffer from paralysis, 

weakness, awareness, learning, and memory [1]. A stroke can 

further cause loss of strength and feeling on one side of the 

body which can affect a stroke survivor’s function. 

One of the commonly prescribed stroke rehabilitation 

methods for patients with upper limb difficulties is using 

stretch bands to perform specific exercises regularly to 

improve and strengthen the affected muscles. However, 

evaluation of the patient’s improvement when using these 

exercises is usually done by physiotherapists during a 

physical visit to a medical  institution and using visual 

assessment. They then fill out different test scores such as the 

Functional Ability Scale (FAS) score to get a numerical score 

of the patient’s improvement [2]. This traditional way is not 

only inefficient, time-consuming, and tedious for the patient 

but can also result in human error and hence, an automated 

approach to conduct rehabilitation is preferred. 

To ease the rehabilitation process for stroke patients 

from the above-mentioned difficulties, this paper proposes an 

automated rehabilitation assistance in the form of a mobile 

application with the incorporation of smartwatch sensors and 

a stretch sensor system attached to their exercise band. The 

mobile application is designed to evaluate the patient’s 

improvements, provide recommendations and give a 

prediction of stroke recurrence. This system will hence help 

the patient undergo rehabilitation at home with minimal 

assistance from a professional and allows health providers to 

remotely monitor the patient’s health and hence their safety 

during the course of an exercise.  

II. LITERATURE REVIEW 

Stretch sensors have been utilized to evaluate patient 

movement as shown by Eschmann and Héroux [1]. They 

performed an observational study of the stroke patient’s 

movements by placing two stretch sensors on both fingers. 

The data is sent from the stretch sensor to a mobile 

application using Bluetooth, and then the data is stored and 

analyzed. This paper utilizes stretch sensor values to visualize 

the patient’s finger movements. With the increasing 

digitization of traditional disciplines, the use of wearable 

technology for remote patient monitoring is currently 

emerging. Hence, Lee et al. [3] and Patel et al. [4] papers 

positively reviews the use of wearable technology for 

rehabilitation. Lee et al. [3] propose using wearable sensors, 

one placed on the stroke-affected upper limb and the second 

on the other upper limb to recognize goal-directed 

movements in Activities of Daily Living (ADL). The 

wearable smartwatch has a built-in accelerometer and 

gyroscope which can be used to give feedback by measuring 

various metrics such as acceleration, velocity, displacement, 

and angular velocity. Whereas Patel et al. [4] address the 

different techniques used to incorporate sensors into worn 

textiles for rehabilitation purposes; the incorporation of 

inertial sensors such as accelerometers and gyroscopes for 

motion detection with textiles.  

Accelerometer data is essential for monitoring stroke 

patient’s movements. This data is acquired using an 

accelerometer sensor which is either attached externally or 

inbuilt within a smartwatch. Patel et al. [5] and Park et al. [6] 

both utilize an accelerometer for monitoring purposes. The 

work by Patel et al. [5] is a novel approach for assessing the 

quality of upper limb movements by providing an estimate of 

clinical scores obtained by using the FAS. The accuracy of 

the FAS scores obtained by analysis of the accelerometer data 

was compared to the actual FAS scores provided by a 

clinician. Uniaxial and biaxial accelerometers are placed on 

different aspects of the arm as shown in Fig. 1. Data 

segmentation and feature extraction is done on the 

accelerometer data and then Random Forests algorithm is 

used to train this data. This is done to estimate the FAS scores 

obtained for each motor task performed. 

The work presented by Park et al. [6] comprises a 

wireless wristband device which is created to monitor the 

movement of the forearms. This device relies on an 

accelerometer that monitors the changes in acceleration 

created on the device while exercising, and consequently 

Fadi
Typewritten Text
 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, November 2021



provides graphical analog feedback that is read and digitized 

by a custom Printed Circuit Board (PCB). This work also 

emphasizes the importance of accelerometers for measuring 

movement. 

This paper seeks to contribute to the vast majority of 

existing literature by incorporating two separate aspects 

(stretch sensor system with the exercise band and smartwatch 

sensors) into one. The proposed rehabilitation system uses 

sensors to automate the process of measuring the patient’s 

improvement; the sensors used are stretch sensors, 

accelerometer and heart rate sensor. The stretch sensor is 

placed on the elastic band, whereas the accelerometer is a 

built-in sensor in the smartwatch.  The measurements from 

the sensors are stored in a database and eventually made use 

of by a mobile application, which stores and analyzes the 

readings to evaluate the progress and provide feedback and 

recommendations to the patient. The system also utilizes 

machine learning to predict the recurrence of another stroke. 

III. PROPOSED SYSTEM 

The proposed system is visually depicted in the block 

diagram in Fig. 1. The stroke patient will be wearing a 

smartwatch and using the mobile application to perform 

exercises. The stretch sensor system, including the rubber 

resistive cord, and the NodeMCU ESP8266 chip are 

embedded together and will be attached on the TheraBand 

used to perform the rehabilitation exercises. Once the patient 

initiates the exercise service on the mobile application, the 

accelerometer and heart rate readings from the smartwatch 

are sent to the mobile phone via Bluetooth and then to the 

cloud database via Wi-Fi. Simultaneously, stretch sensor data 

(resistance of the stretch sensor) is sent to the real-time 

database, from the NodeMCU chip via Wi-Fi. The mobile 

device and the database undergo two-way communication in 

order to exchange raw sensory data, extracted feature sets and 

processed data. 

 

Fig. 1. Architectural layout of the system 

The system allows three specific exercises: pull up, pull 

down and arm to side [7]. These exercises are prescribed to 

the patient with a certain number of repetitions, that is 

adjusted based on their improvement level during 

rehabilitation. 

IV. SYSTEM IMPLEMENTATION 

A. Hardware System Implementation 

The hardware component of the system included a 10 kΩ 

resistor for voltage division, wires, and the NodeMCU 

ESP8266 [8] chip connected to a power bank as shown in Fig. 

2. The system uses a rubber cord stretch sensor to measure 

the stretch extent of the elastic exercise band; the extent of 

stretch is measured by calculating the resistance, i.e., the 

rubber cord’s tendency to resist the flow of charge (current). 

A pair of crocodile wires are used to connect the cord to the 

NodeMCU chip; one wire connects a cord’s end to the analog 

input port and the other to the ground. Additionally, the 

hardware system also comprises a Huawei Watch 2 

smartwatch, from which sensor readings such as 

accelerometer data are extracted. 

 

Fig. 2. Board connections for stretch sensor system 

B. Data Collection 

The NodeMCU chip of the stretch sensor system is 

programmed using Arduino IDE to read the resistance of the 

cord being stretched based on the below equations (1) and (2) 

where Vin and Vout are the input and output voltages of the 

chip, and Rref is the reference resistor of 10 kΩ added as a 

voltage divider in the circuit. Hence, the program uses the 

voltage division equation (1) below to find the value of the 

conductive stretch cord’s resistance (Rcord) as shown in (2). 

 𝑉𝑜𝑢𝑡 =  
𝑉𝑖𝑛 × 𝑅𝑐𝑜𝑟𝑑

𝑅𝑟𝑒𝑓 + 𝑅𝑐𝑜𝑟𝑑
 () 

 𝑅𝑐𝑜𝑟𝑑 =
𝑅𝑟𝑒𝑓

𝑉𝑖𝑛
𝑉𝑜𝑢𝑡 ⁄ − 1

 () 

After finding the resistance value read from the analog 

input, it is pushed to the Firebase real-time database. The 

system records the value of resistance in kΩ every 3 seconds 

and an array of resistance values for a particular exercise are 

stored under the start timestamp of the exercise. 

An Android smartwatch application is used to read and 

send the accelerometer and heart rate readings to Firestore 

using background processes. The readings from the sensor 

were read every 3 seconds and stored under a document of 

the start timestamp, to match the interval and labelling used 

for the NodeMCU readings.  

C. Software Entities 

1) Improvement Model 

The improvement model is designed such that the patient 

can see graphical views of their improvement for a specific 

exercise throughout their rehabilitation. The stretch 

improvement is plotted based on the stretch sensor data 

retrieved from the Firebase real-time database, whereas the 



distance/speed improvement is plotted based on the 

accelerometer data retrieved from the Firestore database. The 

patient can choose whether to view the improvement 

overtime or the current improvement based on the exercise 

performed on that current day.  

Improvement overtime: The improvement overtime 

graphs show the maximum stretch and maximum 

distance/speed (depending on the exercise chosen) that the 

patient has been able to achieve every day for that chosen 

exercise. If the exercise chosen is pull up, for example, the 

maximum stretch and maximum distance the patient has 

achieved in every pull up exercise performed will be 

displayed in a bar graph format, as shown in Fig. 3.  

Current improvement: The patient can choose to view 

their current improvement of their last performed exercise. 

The current improvement is found by comparing the exercise 

performed on the specified day to the initial exercise 

performed on the first day and plotting both sets as line charts 

to show comparison as displayed in Fig. 3. 

 

Fig. 3. Improvement model graphs 

Before achieving the current improvement graphs shown 

in Fig. 3, both the accelerometer data and stretch sensor data 

must be processed.  

Stretch sensor data: Fig. 4 shows the preprocessed 

stretch sensor data. This raw data is processed by finding the 

local maximum and minimum points in the graph. A local 

maximum is defined to be a point that is higher than the value 

before and the value after; a local minimum is a point that is 

lower than its adjacent points. After finding the local 

maximum and minimum points, the difference of each high 

peak and its following low trough represents the amount the 

cord has been stretched. The processed clean sets of data are 

shown in Fig. 5. 

 

Fig. 4. Pre-processed stretch improvement data 

 

Fig. 5. Processed stretch improvement data 

Accelerometer sensor data: Accelerometer readings are 

recorded and stored into the Cloud Firestore via the 

smartwatch that the patient wears. There are different values 

that can be extracted using these accelerometer values, such 

as velocity, position, angle rotation and so on. The raw 

accelerometer values are plotted in the graph shown in Fig. 

68. These values mirror the patient's arm acceleration which 

includes speed and direction during their exercises. Another 

variable extracted from the accelerometer is the pitch  angle 

which quantifies the arm’s angle with the horizontal as shown 

in Fig. 7. This angle ranges from -90 degrees to +90 degrees. 

The -90 degrees indicates the arm to be completely 

downwards, whilst the +90 degrees indicates the arm to be 

completely upwards when performing the exercises. Hence, 

to monitor improvement using accelerometer values, the 

pitch angle was calculated from the accelerometer readings 

using the following equation: 

 𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒 =  tan−1 (
𝑎𝑐𝑐𝑥

√𝑎𝑐𝑐𝑦
2+𝑎𝑐𝑐𝑧

2
)        () 

The current day raw values of the pitch angle are plotted 

against the baseline pitch angle values for the three specific 

exercises. Next, like the stretch measurements, these raw 

pitch angle values are processed and the difference between 

the max and min angles are calculated to see the amount of 

angle changed by the patient. Both the current and baseline 

graphs are plotted against each other to visualize the 

improvement of the patient as shown in Fig. 7.  



 

Fig. 6. Raw accelerometer values 

 

Fig. 7. Processed pitch angle values 

2) Recommendation Model 

A rule-based expert system is developed and used for the 

recommendation model. To monitor the patient’s normal 

resting heart rate (nhr) rules were created based on the 

information and data provided by Ms. Margeaux Blignaut [8], 

the Stroke Rehabilitation Team Lead, and her team at Amana 

Healthcare [9]. As per the team’s instructions, the patient is 

notified to use the system to record their heart rate at the 

beginning of the day before any food or medication to acquire 

their nhr. This is then checked against rules based on their 

initial nhr from the database, recorded during the pre-

evaluation stage and also mapped to a provided scoring chart 

to ensure regular monitoring of the patient’s heart health. 

Based on the stroke rehabilitation team’s approval, the 

rule-based engine to provide recommendations based on their 

performance in their respective exercises was built in such a 

way that if the patient is going beyond their capabilities and 

putting themselves at risk, they are advised to decrease the 

angle at which the band is pulled (if the patient exceeds their 

maximum possible pitch value set by the doctor) or decrease 

the amount of force applied when stretching the band (if the 

patient exceeds their maximum possible stretch value set by 

the doctor). In addition to this, if the patient is not stretching 

the band to their full potential based on their improvement 

level and their best stretch and pitch value achieved 

throughout their rehabilitation, they are advised accordingly. 

Finally, based on the mode of the stretch sensor resistances, 

if the mode or is not as high or close to their maximum 

obtained stretch, then the patient is informed that they are not 

maintaining their energy throughout the exercise and are 

advised to do so in order to maximize their improvement. 

Note that the physicians are provided with their own access 

to all patient records and can provide their own 

recommendations, when required. 

3) Prediction Model 

The stroke prediction dataset was obtained from ‘kaggle’ 

(an online platform for datasets) [10] . The original dataset 

contains 5110 records of different patients with 12 features; 

‘id’, ‘gender’ (male or female), ‘age’ (in years), 

‘hypertension’ (binary - if the patient has hypertension or 

not), ‘heart_disease’ (binary - if the patient has any heart 

disease(s) or not), ever_married (binary - if the patient was 

ever married or not), ‘work_type’, ‘residence_type’ (rural or 

urban), average glucose level (mg/dL), BMI (Body Mass 

Index in kg/m2), ‘smoking_status’ (if the patient does not 

smoke, has formerly smoked or is currently smoking) and 

finally the target feature, stroke (if the patient has suffered 

from a stroke or not). All the aforementioned features are 

numerical, except for gender, work type, ever married, 

residence type and smoking status, which require encoding as 

a method of data preprocessing. However, based on the heat 

map plot and further research and consultation with the 

Stroke Rehabilitation Lead at Amana Healthcare [8][9], the 

features with very low correlation with the target feature 

(‘ever_married’, ‘work_type’, ‘residence_type’ and 

‘gender’) were dropped. 

a) Class imbalance countermeasures 

The original dataset contains 5110 records, 4861 

belonging to patients who did not have a stroke while 249 

belonging to stroke survivors. The clear and significant 

difference between both classes leads to an imbalance. 

Consequently, a measure to handle this imbalance is through 

the use of resampling techniques, such as over-sampling or 

under-sampling the majority class. A study conducted by V. 

Abedi et al. [11] to predict the recurrence of stroke using 

machine learning models, also used an imbalanced dataset 

with a majority class of non-recurrence of stroke and it was 

observed that the models performed better when 

undersampling the majority class. Additionally, when 

comparing both techniques, undersampling performed better 

for the dataset used for this system as well.  Thus, random 

records from each age group of the majority class (‘stroke’ = 

0) were dropped to form a more balanced dataset. This was 

the last stage of preprocessing the data resulting in a dataset 

of 3006 records with 7 features. To further enhance the 

performance of the model, Synthetic Minority Oversampling 

Technique (SMOTE) from the imblearn library, which 

generates new and synthetic minority training samples using 

a nearest neighbors algorithm, is used to further reduce the 

imbalance of the training dataset. 

b) Selection of performance metrics 

In order to carry out a fair comparison on the less 

imbalanced dataset produced, some evaluation measures 

need to be calculated, such as, precision, accuracy, recall 

(sensitivity), f1-score and AUROC curve [11]. The higher the 

diagonal values of the confusion matrix the better, indicating 

many correct predictions, and it is important to ensure the 

false positives are minimal as they cause the highest cost for 

a model. Thus, solely depending on the accuracy as a measure 

to evaluate the algorithms is impractical.  

The f1-score gives a better indication on the performance 

of the implemented algorithm, as it takes into account both 

recall and precision. Moreover, even with the resampling 

techniques applied, the dataset is still not completely 

balanced and when the number of samples in each class are 

unequal, the accuracy can be misleading in evaluating a 

machine learning algorithm, but better performance metrics 



are confusion matrix, precision, recall and f1-score and so our 

focus would be on these metrics [11]. Throughout the 

implemented algorithms a test size of 20% was maintained, 

which is the ideal proportion of testing to training percentages 

[11].  

c) Training and testing 

In order to select the most suitable training algorithm, 

five machine learning (ML) algorithms were implemented. 

The selected ML algorithms were k-Nearest Neigbors (k-

NN), Support Vector Classifier (SVC),  Logistic Regression 

(LR), Random Forest (RF) and Decision Tree (DT) using the 

scikit-learn library [12]. For the decision tree, the main 

parameters tuned were the ‘max_depth’, ‘min_samples_split’ 

and ‘max_leaf_nodes’. The max_depth parameter decides 

how deep the tree can get, the deeper the tree the greater the 

number of splits the higher the chance of overfitting. While 

the min_samples_split parameter indicates the minimum 

number of samples in a node required to split the node. 

Lastly, the max_leaf_nodes parameter,  which indicates the 

maximum number of leaf nodes, also known as terminal 

nodes and these nodes represent class labels. 

Regardless of the hyperparameters, the effect of 

importing Synthetic Minority Oversampling Technique 

(SMOTE), on the model was experimented. As 

aforementioned, since the dataset labels are imbalanced some 

measures need to be taken in order to provide enough 

representation for ‘stroke’ and ‘no stroke’ records. SMOTE, 

is an oversampling technique that works by creating synthetic 

samples for the minority class, in our case it is the stroke 

patients class (‘stroke’ = 1). Another solution experimented 

was changing the class weights, which works by increasing 

the weight of the minority class and decreasing the weight of 

the majority class, while maintaining a specified threshold in 

order to prevent bias towards the minority class. However, 

SMOTE was observed to have performed better compared to 

modifying the class weights. 

d) Deployment 

Consequently, to avoid re-training the model every time 

a run occurs, the model is saved and restored using the pickle 

module in sklearn. The model was then easily loaded back 

and then was deployed onto the web using the Flask 

framework and ngrok. The Flask framework helps us to web-

enable the python model via an HTTPS local URL and ngrok 

basically creates the server to run our model on the internet 

and hosts it to the public internet over secure tunnels without 

the requirement of any public domain or IP address. Using 

the URL generated by ngrok, we can acquire the prediction 

result for a patient based on their data, as a JSON object. The 

mobile application uses the patient’s required fields from 

their ‘Profile_data’ collection in Firebase and gets the 

prediction result from the deployed model as a JSON object 

with the help of Volley API, which is then parsed. If the 

patient navigates to the ‘view prediction’ activity, based on 

the prediction result, a message is first printed out to the 

patient stating whether they are likely or not to suffer from 

another stroke and their risk factors are printed along with 

recommendations based on them generated using a rule-

based expert system.  

V. RESULTS AND EVALUATION 

In a 'relaxed' state, the resistance of the stretch sensor is 

about 350-400 Ω per inch. Therefore, before integrating the 

sensor in the system, the length of the cord and its resistance 

value in the relaxed state must be recorded and compared 

with the theoretical value, which should be between 

350*length and 400*length. As the cord gets stretched, the 

resistance increases because the particles get further apart. 

The cord used in the system is 19 inches long. Hence, the 

expected resistance range of the cord in its relaxed state 

should be in the range of 6.65-7.60 kΩ, while the 

experimental value measured is 5.306428 kΩ. It is important 

to know the length of the cord used before integrating it in the 

system because it can only be stretched about 50-70% longer 

than the resting length; hence, if a 19” cord is stretched more 

than more than 28.8”, there is a risk the sensor gets damaged. 

The smartwatch application used background processes, 

leaving the smartwatch unaffected. Since the smartwatch 

sensor readings were sent to the cloud database (Firestore), 

the readings were not sent in real-time but the document as a 

whole was uploaded after the completion of an exercise, 

which took on average 3 minutes to be uploaded onto the 

database from the smartwatch, via Bluetooth and WiFi. This 

in-turn affected the response time of the services on our 

mobile app that use the smartwatch readings, if the patient 

chose any of those services right after performing the 

exercise. 

For the prediction model, as mentioned all five ML 

algorithms were tested and produced the results listed in table 

1. Firstly, the k-NN algorithm under-represented the positive 

stroke records. Further, the SVC is of high computational 

complexity and thus, was not ideal for this problem with a 

moderately large dataset. LR resulted in a significant number 

of false negatives and false positives. Finally, RF’s 

performance is slightly higher than DT’s but may be slowed 

down with increasing number of trees as the number of 

records increases. The chosen ML model is using decision 

tree classification, which is a non-parametric supervised 

learning algorithm. The reason we chose this algorithm is 

because it maximizes the information gain. Additionally, it is 

relatively faster than aforementioned algorithms in 

classifying unknown records and more efficient in training 

datasets with categorical attributes. Furthermore, it was also 

observed in the tabulated results of [11], that the highest 

performance metrics were for that of the DT model using 

under-sampling. 

As an evaluation measure of the algorithm’s 

performance the Area Under the Receiver Operating 

Characteristics (AUROC) curve was plotted, it basically 

gives an indication on the model’s ability to distinguish 

between classes. The higher the AUC probability, the better 

the model. The model showed promising results with an area 

under the AUROC  curve of 0.672 as shown in Fig 8.  



 

Fig. 8. AUROC curve of stroke prediction model 

TABLE I.  CLASSIFIER RESULTS FOR ALL ALGORITHMS 

Algorithm 

Classifier Results for All Tested Algorithms 

Weighted 

precision 

Weighted 

recall 

Weighted 

f1-score 
Accuracy 

k-NN 84% 90% 87% 90% 

SVC 83% 91% 87% 91% 

LR 87% 69% 75% 69% 

RF 92% 88% 90% 88% 

DT 86% 84% 85% 84% 

 

The proposed system was tested using 2 test subjects. 

Both the test subjects were females, age range of 20-25 years, 

and no pre-existing condition. The accuracy of the data 

collected was verified by visually mapping the subjects arm 

movements with the pitch angle and stretch values obtained 

from the system. Then, two medical profiles were created for 

each subject, and they began exercising with different levels 

to check the graphical views and recommendations provided, 

which produced positive results. These positive results 

indicate that appropriate graphs, recommendations, and 

prediction was displayed to the subjects on the mobile app 

based on their condition and the exercises that they 

performed. 

VI. CONCLUSION 

This paper attempts to help stroke patients performing 

rehabilitation. Stretching elastic bands is a common method 

used in stroke rehabilitation to strengthen the patient’s 

muscles. The main objective highlighted is to build a mobile 

application to automate the process of rehabilitation by using 

the inbuilt sensors in the smartwatch, such as the 

accelerometer and heart rate sensors along with the stretch 

sensor attached to the elastic exercise band. All the sensor 

readings are used to measure the patients’ improvements and 

provide recommendations and predictions to help them 

during rehabilitation without direct doctor intervention. 

Based on the tests executed on the system using the subjects, 

the overall system performance is satisfactory as it gives 

expected results. 

A potential extension of the paper is to tackle more 

stretch band exercises that include the rotation of the arm. 

Such exercises require measuring the rate of rotation done 

during the exercise, and hence it requires using an additional 

sensor such as a gyroscope. Another extension would be to 

test the proposed system with additional subjects for further 

accuracy.  
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