
ABSTRACT
A Boolean-based router expresses the routing constraints as a Bool-
ean function which is satisfiable if and only if the layout is routable.
Compared to traditional routers, Boolean-based routers offer two
unique features: (1) simultaneous embedding of all nets regardless
of net ordering, and (2) ability to demonstrate routing infeasibility
by proving the unsatisfiability of the generated routing constraint
Boolean function. In this paper, we introduce a new Boolean-based
FPGA detailed routing formulation that yields an easy-to-evaluate
and more scalable routability Boolean function than the previous
methods. The routability constraints are expressed in terms of a set
of “ route”  variables each of which designating a specific detailed
route for a given net. Experimental results clearly show the superi-
ority of this formulation over an earlier formulation that expressed
the constraints in terms of “ track”  variables.

1.  INTRODUCTION
Largely due to the significant improvement in their density and perfor-
mance over the last few years, Field-Programmable Gate Arrays
(FPGAs) have become an increasingly attractive design medium. Yet
the majority of FPGA synthesis algorithms are primarily adapted from
ASIC layout techniques. Iterative improvement placers [4], annealing-
based placement algorithms [3], maze-style [12] and channel-style
routers [11] are all common examples in this class. More specifically,
most FPGA routing algorithms are based on a “net-at-a-time” para-
digm and are formulated as a search for paths in a graph that models
the FPGA routing fabric. A circuit is considered to have been success-
fully routed when each of its nets has been mapped to a path in this
graph while minimizing a suitable cost function (e.g. delay). The rout-
ers described in [2, 3, 5, 14, 16, 25] are representative of this general
approach, and have proved to be quite effective. Unlike ASICs, how-
ever, FPGAs have fixed routing resources and such algorithms might
thrash in a vain attempt to find a routing solution when none exists.
Routability estimators [6, 8], simultaneous placer/routers [17], and
routing tactics that heuristically abandon the layout when unroutability
appears inevitable [21] have been proposed as possible remedies to this
problem. Nevertheless, it is still a practical impossibility to definitively
determine the routability of a given FPGA placement.

A recent alternative algorithmic paradigm for FPGA routing ren-
ders a circuit’s routing constraints as a large, but atomic, Boolean

function whose satisfying assignments correspond to feasible rout-
ing solutions. In contrast to the net-at-a-time algorithms, this Bool-
ean-based rout i ng approach consi ders al l  ci rcui t  nets
simultaneously, and can be used to prove unroutabi l i ty. This
approach was first reported in [24] where the routing Boolean func-
tion was represented symbolically as a Binary Decision Diagram
(BDD) [7]. Using a BDD had the advantage of capturing all possi-
ble routing solutions as traversals from the BDD’s root node to the
“1”  leaf node. Additionally, unroutable layouts corresponded to the
degenerate BDD consisting of the “0”  leaf node. The only problem
with the BDD representation had to do with scale: some large
FPGA routing instances led to BDDs that grew too large to f i t
within available computer memory, even when advanced variable
ordering heuristics were employed. A compromise channel-at-a-
time approach was, therefore, adopted: the routing constraints were
decomposed in order to produce smaller BDDs that captured the
routabil ity in each of the FPGA’s channels separately. Boundary
conditions were added to insure that the solutions of the indepen-
dent channel routing functions can be stitched together to produce a
complete routing solution.

The first successful effort to model and solve the routing Bool-
ean function for an entire FPGA was reported in [19]. Instead of a
BDD, the routing constraints were represented in conjunctive nor-
mal form (CNF) and fed to a Boolean satisfiability (SAT) solver.
Using advanced techniques for implicit systematic search in the n-
dimensional Boolean space of the function’s input variables, the
SAT approach overcame the memory explosion problem of BDDs
and led to the successful representation and solution of larger rout-
ing functions. The f i rst SAT-based resul ts from routing enti re
FPGAs were quite competitive compared to other published FPGA
routers. Still, several routing instances required excessive run times
to solve; worse yet, some instances were unsolvable even after the
SAT solver ran for a substantial amounts of time (e.g., 24 hours.)

In this paper, we analyze the formulation method presented in
[19] and introduce a revised formulation that encodes the routing
constraints more efficiently leading to demonstrably easier-to-solve
SAT instances. The rest of the paper is organized as follows. Sec-
tion 2 presents the routing architectural model we employ. The pre-
vious Boolean SAT formulation of the FPGA detai led routing
problems is described in Section 3. In Section 4, we describe the
revised formulation method and compare it to the original formula-
tion. An experimental evaluation of the two formulations is pre-
sented in Section 5, and Section 6 summarizes the paper’s
conclusions and future directions of this approach to FPGA routing. 

2.  FPGA Routing Architecture
Our detailed routing formulations are based on the island-style FPGA
architecture. This style is one of the most commonly used layout mod-
els in the literature [3, 5, 14, 19], and can be easily adapted to reflect a
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variety of commercial FPGAs. As depicted in Figure. 1, an island-
style FPGA is comprised of a two-dimensional array of Configurable
Logic Blocks (CLBs), Connection Blocks (C-Blocks), and Switching
Blocks (S-Blocks). A vertical (horizontal) channel is defined as a set of
tracks between two consecutive columns (rows) of CLBs; wire seg-
ments connect CLB pins to the adjacent routing tracks. C- and S-
blocks contain programmable switches and form the routing
resources: C-blocks connect CLB pins to channel tracks; S-blocks are
surrounded by C-blocks and allow signals to either pass straight
through or to make 90-degree turns. I/O cells reside on the boundary
of the array.

The routing capacity of a given FPGA architecture is conve-
niently expressed by three parameters,  [6]. The channel
width  is the number of tracks in a vertical or horizontal chan-
nel. The C-block flexibil i ty  is the number of tracks in
adjacent channels that each CLB logic pin may connect to. The S-
block flexibility  is the total number of other tracks that each
wire segment entering an S-block can connect to. For the example
FPGA in Figure. 1 these parameters are , , and

. 

For our experiments, we configured this general layout model
to mimic the Xilinx® XC4000E/X™ series architecture [28]. In
this specific FPGA architecture, each CLB logic pin can connect to
any channel track (i.e., ), and each wire segment entering
an S-block can connect to the same-numbered tracks on each of the
other three sides (i.e., ). We also assume that every wire is
fully segmented (i.e., it spans only one block length) based on the
results of the global router [3] we used.

3.  Track-Based Routing Constraint Model
The SAT formulation of FPGA detailed routing constraints introduced
in [19] can be viewed as a net-to-track assignment problem. Each net
in the layout is represented by a set of “ track” variables that indicate
the indices of the horizontal and vertical tracks over which the net
might be routed. A routability Boolean function is then defined over
these variables to enforce two types of constraints:

• Connectivity constraints to insure the existence of a conduc-
tive path for each two-pin connection through the sequence of
C- and S-blocks specified by a global router. These constraints
model the routing flexibility available in the C- and S-blocks.

• Exclusivity constraints to guarantee that electrically distinct
nets with overlapping vertical or horizontal spans in the same
channel are assigned to different tracks. These constraints are
essentially instances of channel routing problems.

In the sequel we will refer to this formulation as the track-based
routing constraint model  to emphasize the fact that it is defined
over a set of variables that represent the tracks available for rout-
ing, and to distinguish it from the new formulation introduced in
Section 4.

An example that i l lustrates this formulation is shown in
Figure. 2 for an FPGA with . Each net is
assumed to have been assigned a global route (sequence of C- and
S-blocks) by a global router (Figure. 2-a). Track variables are then
created for each net to model its possible assignment to specific
tracks in each of the channels specified by its global route. For
instance, two track variables are associated with net A: AH and AV
to indicate its track assignment in horizontal channel 1 and vertical
channel 1 respectively. These track variables are multi-valued with
a domain . In the actual formulation, each of these
multi-valued variables is encoded by  Boolean variables
using the standard decimal-to-binary encoding.

The construction of the connectivity and exclusivity constraints
is depicted in Figure. 2-b and c. The connectivity constraint for a
given net restricts the net’s track variables to those values that
insure a continuous conductive path between the net’s pins. For
example, net A can be assigned to any track in horizontal channel 1
as well as vertical channel 1 as long as the same track number is
used in both channels. This reflects the connectivity requirement
through S-block(1,1) which has a f lexibi l i ty  (see
Figure. 1.) The exclusivity constraints in this example insure that
nets A and B as well as A and C are assigned to different track
numbers in horizontal channel 1. Figure. 2-d shows the actual CNF
representation of an exclusivity constraint between two 3-valued
track variables. In general, an exclusivity constraint between two
track variables leads to a set of  CNF clauses each consisting of

 l i terals. The Boolean function that models the
routability of these three nets is simply the conjunction of all the
connectivity and exclusivity requirements:

(1)

where  is a vector of Boolean variables that encode the track vari-
ables .

Compared to previous conventional  routing methods, this
method has the following unique properties:

Figure 1.  Island-style FPGA Routing Architecture Model.
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• Simultaneous net embedding: The conventional net-at-a-
time routing approach is notorious for being dependent on net
ordering because previously-routed nets act as obstacles to the
yet-to-be-routed nets. In this method, all the routing constraints
are considered concurrently by a Boolean SAT solver, making
net ordering irrelevant.

• Flexible formulation ability: This method can readily accom-
modate the constraints of any routing fabric. For example,
using an FPGA with different C- and S-block architectural
parameters requires only a slight modification of the connec-
tivity constraint function . 

• Routability decision: The unsatisfiability of the generated
routing constraint Boolean function , as proven by a
Boolean SAT solver, directly implies that there is no feasible
routing solution with the given placement and global routing
configuration. On the other hand, each assignment to the Bool-
ean vector  that satisfies  corresponds to a complete
feasible detailed routing solution for that placement and global
routing configuration.

Despite these advantages, this formulation still leads to routing
instances that cannot be solved in a reasonable amount of time
(e.g. one day.) The formulation described next is motivated by the
desirability of generating “easier”  SAT instances that are scalable
to larger FPGA routing problems.

4.  Route-Based Routing Constraint Model
In the route-based formulation [18], the routability of a netlist is
directly modeled in terms of Boolean variables that represent all of the
detailed routes admissible by the given global routing solution. This
choice of variables leads to a simpler set of constraints than those
described above and enables the solution of larger routing instances.

Figure 2.  Example of track-based detailed routing formulation.
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Net A: [pin 0 of CLB(4,2), C-block(4,1), S-block(3,1),
C-block(2,1), S-block(1,1), C-block(1,2),
pin 1 of CLB(2,2)]

Net B: [pin 2 of CLB(4,0), C-block(4,1), S-block(3,1),
C-block(3,0), pin 3 of CLB(2,0)]

Net C: [pin 3 of CLB(0,0), C-block(1,0), S-block(1,1),
C-block(2,1), pin 2 of CLB(2,0)]

enum { 0, 1, 2}
BH, BV, // Net B track variables
CH, CV; // Net C track variables

AH, AV, // Net A track variables

(a) Global routing configuration for nets A, B and C, and
corresponding variable declarations.

Conn A( ) AH 0≡( ) AH 1≡( ) AH 2≡( )∨ ∨[ ] ∧=

AV AH=[ ] ∧
AV 0≡( ) AV 1≡( ) AV 2≡( )∨ ∨[ ]

Conn B( ) BH 0≡( ) BH 1≡( ) BH 2≡( )∨ ∨[ ] ∧=

BV BH=[ ] ∧
BV 0≡( ) BV 1≡( ) BV 2≡( )∨ ∨[ ]

Conn C( ) CV 0≡( ) CV 1≡( ) CV 2≡( )∨ ∨[ ] ∧=

CH CV=[ ] ∧
CH 0≡( ) CH 1≡( ) CH 2≡( )∨ ∨[ ]

(b) Connectivity constraints.

Excl H1( ) AH BH≠( ) AH CH≠( )∧[ ]=

(c) Exclusivity constraints.

X Y≠ X 0≡ Y 0≡∧( ) X 1≡ Y 1≡∧( ) X 2≡ Y 2≡∧( )∨ ∨=

X 0≡ Y 0≡∧( ) X 1≡ Y 1≡∧( ) X 2≡ Y 2≡∧( )∧ ∧=

X0 X1 Y0 Y1∨ ∨ ∨( ) X0 X1 Y0 Y1∨ ∨ ∨( )∧ ∧=

X0 X1 Y0 Y1∨ ∨ ∨( )

(d) CNF representation of an exclusivity constraint 
between track variables X and Y.

X X1X0[ ]≡ Y Y1Y0[ ]≡

Conn X( )

R X( )

X R X( )

Figure 3.  Example of route-based detailed routing formulation.
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bool
BR0, BR1, BR2, // Net B route variables
CR0, CR1, CR2; // Net C route variables

AR0, AR1, AR2, // Net A route variables

(a) Global routing configuration for nets A, B and C and
three possible detailed routes for net A.

Live A( ) AR0 AR1 AR2∨ ∨( )=

Live B( ) BR0 BR1 BR2∨ ∨( )=

Live C( ) CR0 CR1 CR2∨ ∨( )=

(b) Liveness constraints.

(c) Exclusivity constraints.

Excl Resource 4 1 0, ,( )( ) AR0 BR0∨( )=

Excl Resource 4 1 1, ,( )( ) AR1 BR1∨( )=

Excl Resource 4 1 2, ,( )( ) AR2 BR2∨( )=

Excl Resource 2 1 0, ,( )( ) AR0 CR0∨( )=

Excl Resource 2 1 1, ,( )( ) AR1 CR1∨( )=

Excl Resource 2 1 2, ,( )( ) AR2 CR2∨( )=



This formulation is illustrated in Figure. 3. Within the global routing
region specified for net A, for example, there are only three possible
detailed routes indicated by the three Boolean variables

. A similar set of routes and corresponding
route variables is created for nets B and C. A particular route is
included in the final routing solution if its corresponding Boolean vari-
able is assigned the logic value 1, and is excluded as a routing option
otherwise. With this choice of variables, the FPGA detailed routing
problem is transformed from a track assignment to a “routability
checking” problem. The routability of a netlist in terms of these
“route” variables can now be expressed with two types of constraints:

• Liveness constraints to ensure that each two-pin connection
has at least one detailed route selected in the final routing solu-
tion. The liveness constraint for a given two-pin connection has a
simple form, namely an OR over the connection’s  route vari-
ables (see Figure. 3-b). For a netlist with n two-pin connections,
liveness constraints yield a set of n CNF clauses, each contain-
ing  positive literals.

• Exclusivity constraints to guarantee that electrically distinct
nets with overlapping vertical or horizontal spans in the same
channel are assigned to different tracks. These constraints are
semantically identical to those described earlier for the track-
based formulation but have a much simpler CNF representa-
tion (see Figure. 3-c). For example, 
=  indicates that the routing resource, track seg-
ment 0 of C-block(4,1), can only be used by either detailed route 0
of net A or detailed route 0 of net B, but not both. In general, if 
different detailed routes from different nets are competing for the
same routing resource, a set of  exclusivity con-
straints are created to insure that at most one of those detailed
routes are assigned to that resource. Each of those constraints, in
turn, is a simple CNF clause consisting of two complemented lit-
erals.

One possible concern of the route-based formulation is that when
, the number of feasible detailed routes within a global routing

path grows exponentially. Most of modern FPGA routing architecture,
however, employ a switching block of type . With even more
flexible switching block type, it is possible to bound the number of
detailed routes with a global routing region to overcome this problem.

Each two-pin connection forms a complete path from a source
pin to a sink pin and no further constraint is needed to stitch them

together into a single multi-pin net.

The routabil ity of a netl ist for a given placement and global
routing configuration is expressed by a single Boolean function
which is the conjunction of all liveness and exclusivity constraints:

   , 

(2)

where  is a vector of Boolean variables that represent the possible
detailed routes for each of the nets. With  and 
architectural assumption, the route-based formulation is truly equiva-
lent to the track-based formulation, and preserves all the advantages of
the previous Boolean-based routing formulation. In addition, for most
circuits it requires fewer variables and is expressed in terms of a sim-
pler set of CNF constraints as will be shown in the next section.

5.  Experimental Results
We experimentally tested the effectiveness of the route-based formu-
lation method on the standard MCNC benchmark circuits download-
able from [26]. The relevant properties of each of these circuit, listed
in Table1, include the size of the target FPGA CLB arrays (column
“X x Y” ), the actual number of CLBs used by the circuit (“#C”), the
number of multi-pin nets (“#N”), and the corresponding number of
two-pin connections that are routed individually (“#2p”). It should be
noted that our formulation is based on two-pin connections; a multi-
pin net whose global route is specified as a steiner-tree is decomposed
into a set of two-pin connections prior to construction of the routabil-
ity function. Such a decomposition facilitates pin-dogleggings at CLB
output pins which generally yields layouts with fewer tracks [19].

The first experiment we conducted compares the performance
of the track- and route-based detailed routing formulations. Using
the placements and global routing solutions generated by VPR [3],
routing functions based on templates Eq. (1) and Eq. (2) were pro-
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Table 1: Benchmark Circuits.

Cir. X x Y #C #N #2p Cir. X x Y #C #N #2p

9symml 9 x 9 70 79 259 exam2 19 x 19 120 205 444
alu2 12 x 12 143 153 510 k2 19 x 19 358 404 1257
apex7 11 x 11 77 126 300 term1 8 x 8 54 88 202
C499 10 x 10 74 115 312 too_lrg 13 x 13 148 186 519
C880 14 x 14 174 234 656 vda 15 x 15 208 225 722

Table 2: Performance Comparison Between Two Boolean Formulations of FPGA Detailed Routing.

Name W
Track-based Formulation [19] Route-based Formulation

R? Speedup
V CL Dec Conf G. Time S. Time V CL Dec Conf G. Time S. Time

9symml
6 2604 36994 11883 9910 0.74 471.12 1554 29119 347 0 0.67 1.94 Yes 242.85

5 2604 32450 13896 11687 0.69 521.39 1295 24309 344 272 0.59 6.11 No 85.33

apex7
5 1983 15358 606 220 0.37 3.63 1500 11695 568 0 0.31 1.51 Yes 2.40

4 1322 10940 445 336 0.25 3.59 1200 9416 293 191 0.23 1.38 No 2.60

exam2
6 3603 41023 1347 708 0.94 24.12 2664 27684 993 1 1.20 5.65 Yes 4.27

5 3603 36344 12613 11063 0.83 531.42 2220 23144 1331 1245 1.00 25.16 No 21.12

term1
4 746 3964 322 134 0.11 0.51 808 3290 207 6 0.07 0.11 Yes 4.63

3 746 3517 71 48 0.11 0.19 606 2518 12 12 0.07 0.03 No 6.33

C499
6 2070 22470 11381 10141 0.47 255.34 1872 18870 395 18 0.43 1.51 Yes 169.10

5 2070 19908 11755 10696 0.42 322.76 1560 15777 372 355 0.38 4.66 No 69.26



duced for decreasing values of the channel width . These
routability Boolean functions were subsequently evaluated by the
GRASP SAT solver [15]. In any practical situation, the main inter-
est is to know whether designs can fit into target FPGAs or not,
rather than to optimize the number of routing tracks used. How-
ever, we performed the experiments under the optimization sce-
nario to facilitate the comparisons with other conventional routers
later. Table 2 summarizes the results of the last two “ iterations”  in
this process for six of the twelve benchmark circuits: the minimum
channel width for which the benchmark circuit was still routable,
and the maximum channel width for which it was proven to be
unroutable (for the remaining benchmarks not listed in Table2, the
minimum width for routability could not be found using the track-
based formulation; the performance of the route-based formulation
on these benchmarks is discussed later). The columns in this table
record, for each benchmark ci rcui t, the fol lowing data: the
assumed channel width (“W” ), the number of Boolean variables
and CNF clauses in the routability function (“V”  and “CL” ), the
number of decisions and confl icts during the SAT search for a
solution (“Dec”  and “Conf” ), and the CPU time spent for generat-
ing routabi l i ty Boolean functions (“ G.Time” ) and actual SAT
search by GRASP (“S.Time”). Column “R?” indicates whether the
routabil i ty function had a feasible solution; the computational
advantage of the route-based formulation is shown in column
“Speedup” which is the ratio of the CPU times taken by GRASP to
solve the respective routability functions. The experiment was con-
ducted on a Pentium III PC running Debian linux 2.2.18 with 512
MB of physical memory. The GRASP SAT solver was configured
to use the “DLCS”  decision heuristic. 

We can observe immediately that typical solution times of the
route-based formulation are much faster than the track-based
method achieving 66x speedups on average. The actual numbers of
decisions and conf l icts during the SAT search val idate the
achieved speedups. In both formulations, the number of Boolean
variables of the routability functions can be computed in the fol-
lowing way: assuming that the benchmark circuit has total  two-
pin connections, the total number of Boolean variables in the
routabil ity function is exactly  in the route-based method
whereas it is approximately  in the track-based
formulation, where  is the average number of channels each glo-
bal route of a two-pin connection passes through. Table2 empiri-

cally demonstrates that the route-based formulation generates the
routability function with few variables and clauses in all cases but
one. The term1 circuit with 4 tracks per channel is the only exam-
ple that the route-based formulation requires more Boolean vari-
ables than the track-based formulation. This is because term1 is a
simply routable circuit requiring only 4 different global route chan-
nels, on average, per two-pin connection.

The numbers of variables and clauses, however, are not suffi-
cient to explain the order-of-magnitude reduction in runtime. The
analysis of clause size distribution (Table3) reveals that the route-
based formulation is mostly composed of 2-li teral CNF clauses
whereas the track-based formulation is composed mostly of
clauses containing 3 or more literals. It is a well-known fact that 2-
SAT has P class complexity while 3-SAT or higher SAT problems
are NP-complete [10]. This is because, in 2-SAT, it is feasible to
construct an implication graph to deduce solutions efficiently,
which is impossible with higher order of SAT problems. Accord-
ingly, the performance gain can be justified by the CNF clauses
structure of the route-based constraint function, which are close to
2-SAT problem (albeit it is not exactly 2-SAT due to liveness con-
straint CNF clauses). Overall, this experiment suggests that it is
more straightforward to find solutions for Boolean SAT instances
from the route-based formulation.

In Table4, we show the performance of the route-based formu-
lation method over routing problems where the track-based
method was not able to solve them within 24 hours limit--i.e, no
conclusion was drawn whether given circuits are routable or not--.
The number of decisions and conflicts are larger than those num-
bers in Table2 suggesting that these are harder SAT instances. For
only two cases, --k2 with  and -- even the route-
based method could not solve the routability Boolean SAT prob-
lems. One interesting observation is that it is most difficult to make
the routability decision (either routable or unroutable) with mar-
ginal track counts per channel. When a target FPGA has ample
routing tracks per channel, the corresponding FPGA detailed rout-
ing solution should be straightforward to find. Similarly, if there
are significantly insufficient routing resources, it is relatively easy
to prove unroutability. The range of these marginal track counts--
which form the boundary between routable and unroutable deci-

W

Table 3: Size Distribution of the CNF Formulas.

Name W

#Clauses of Size

Track-based Formulation Route-based Formulation

1 2 3 4 >4 1 2 3 4 >4

9symml
6 0 4522 0 0 32472 0 28860 0 0 259

5 0 5390 0 0 27060 0 24050 0 0 259

apex7
5 0 3488 0 0 11870 0 11395 0 0 300

4 0 1444 0 0 9496 0 9116 0 0 300

exam2
6 0 5743 0 0 35280 0 27240 0 0 444

5 0 6944 0 0 29400 0 22700 0 0 444

term1
4 0 684 0 3280 0 0 3088 0 0 202

3 0 1057 0 2460 0 0 2316 0 202 0

C499
6 0 2958 0 0 19512 0 18558 0 0 312

5 0 3648 0 0 16260 0 15465 0 0 312

n

n W⋅
n W2log m⋅ ⋅

m

Table 4: The route-based formulation results for cases where 
the track-based one was unable to solve.

Circuit W V Cl Dec Conf G.Time S.Time R?

alu2 8 4080 83902 986 2 1.87 13.02 Yes
7 3570 73478 9014 8968 1.66 1191.6 No

C880 7 4592 61745 1143 81 1.41 13.82 Yes
6 3936 53018 40327 39546 1.21 52364.70 No
5 3280 44291 612 598 1.02 21.83 No

k2 11 13827 372694 4199 16 8.93 280.61 Yes
10 12570 338927 2902 51 8.01 186.08 Yes
9 11313 305160 N.Ca

a. N.C stands for “Not Complete” . Thus, the data is not available.

N.C 7.19 N.C N.C
8 10056 271393 N.C N.C 6.33 N.C N.C
7 8799 237626 17823 9873 5.81 4870.56 No

too_lrg 7 3633 50373 828 19 1.11 8.63 Yes
6 3114 43251 1669 1184 0.93 59.01 No
5 2595 36129 1163 1122 0.82 36.93 No

vda 9 6498 130997 1387 3 3.00 31.78 Yes
8 5776 116522 25924 24861 2.72 6146.20 Yes
7 5054 102547 23333 22098 2.28 12383.50 No

W 9= W 8=



sions-- seems to be narrow, usually 1 track per channel based on
our experimental results. Typically, when the SAT-based approach
cannot find a routing solution with T tracks per channel, the new
routing SAT instance with T + 1 tracks per channel seems be
straightforward. This opens an interesting possibility that the SAT-
based routing approach can serve as an estimator of the difficulty
of routing problems. If a routing instance cannot be solved within a
hard execution time limit, the problem is considered very difficult,
and most likely, a more flexible routing architecture is needed.

Finally, in Table5, we compare performance of various FPGA
detailed routers including our route-based formulation method
shown under “SAT” heading. The table shows the number of tracks
required to successfully route each benchmark circuit with the
specified placement and global routing programs under track mini-
mization scenario. The most meaningful comparison in this table is
between the route-based method, VPR and SEGA because they
differ only in how detailed routing was done. The data for the rest
of routers are provided only for reference. Our route-based routing
method shows the second best results among them, next to VPR
[3] while beating the rest of them. Interestingly however, for 4
cases out of those 5 circuits (shaded cells in the table), our method
proved the unroutabili ty whereas VPR was able to successfully
route them with the same numbers of tracks per channel. This dif-
ference is due to the fact that our method performs only detailed
routing while VPR does both global and detailed routing. Thus
VPR can change the global routing configuration when it cannot
find a detailed routing solution easily. A more fair comparison is to
extract the final detailed routing results from VPR and use them as
a global routing solution for the route-based detailed routing for-
mulation. Indeed, the route-based formulation approach was able
to produce the exactly same routing results as VPR except one
case. The route-based approach gave up finding a detailed routing
solution of k2 with 9 tracks per channel after 24 hours.

6.  Conclusions and Future Work
In this paper, we introduced an improved Boolean SAT-based FPGA
detailed routing formulation. This work differs from other SAT-based
FPGA routing approaches because the routability constraints are

expressed in terms of a set of “route” variables each of which desig-
nating a specific detailed route for a given net. The comparative exper-
iments demonstrate that the route-based formulation yields an easy-to-
evaluate and more scalable routability Boolean function than the pre-
vious methods.

Despite the success of Boolean methods so far, they still cannot
compete with traditional routers on large-scale FPGAs. One possi-
ble approach to extend the applicability to larger FPGAs is to limit
the number of detailed routes considered per connection. Instead of
considering all  the detai led routes within given global routing
regions, only a small number of promising detailed routes can be
selected based on projected routing congestions. In this way, we
can not only reduce the size of the generated routability Boolean
function, but also incorporate multiple global routing paths concur-
rently in order to escape from bad global routes.
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Table 5: Track number comparison with other conventional 
routers; VPR [3], SEGA [14], SROUTE [23], TRACER [13], 

IKMB [2], GBP [25] and FPR [1].

Placer
VPR

SPLACE ALTOR [20]

FPRG. Router
SROUTE TRA-

CER
IKMB GBP

D. Router SAT VPR SEGA

9symml 6 5 6 7 6 8 9 9
alu2 8 7 9 8 9 9 11 10
apex7 5 4 6 6 8 10 11 9
exam2 6 6 6 7 10 11 13 13
term1 4 4 6 5 7 8 10 8
too_lrg 7 6 9 8 9 10 12 11
k2 10 9 11 11 14 15 17 17
vda 8 8 10 10 11 12 13 13
C499 6 6 7 *a

a. These data were not available. For “Total W”  calculation, we used the smallest val-
ues available in the table for the corresponding circuit.

* * * *
C880 7 7 8 * * * * *

Total 
W

67 62 78 75 87 96 109 103Σ


