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Abstract— Social Internet of Vehicles (SIoV) represents 

the next stage in the evolution of Internet of Vehicles (IoV). 

Vehicles can form potentially short-term and anonymous 

relationships in an SIoV to address mobility issues. SIoV 

enables a driver and a vehicle to be aware of their 

surrounding context and to act accordingly. This paper 

presents the design and implementation of an SIoV that is 

local in nature and does not rely on 5G or a similar global 

network connection. The SIoV is based on the DigiMesh 

ad-hoc wireless network that dynamically forms an SoIV 

among vehicles traveling together within a prescribed 

radius and time. A small on-board microcontroller is used 

in conjunction with a DigiMesh Radio to transmit and 

receive bad driving behaviors of surrounding vehicles in 

the network. Dynamic Time Warping (DTW) is applied to 

sensor data pulled from the OBD-II interface from each 

vehicle to create driver alerts. These alerts include, harsh 

speeding, swerving, sudden braking and tailgating. The 

system achieved a 98.6 % accuracy in detecting these 

behaviors and can respond to anomalous events within a 

time window of 3 seconds in vehicles traveling up to 120 

km/hr.  
 

Index Terms— Social Internet of Vehicles, SIoV, DigiMesh, 

ZigBee, Dynamic Time Warping, Driver safety, Smart cities 

I. INTRODUCTION 

Internet of Vehicles (IoV) has emerged as term to describe 

vehicles connected through the internet [1]. To realize the IoV, 

a host of technologies have been proposed to build cyber-

physical systems for vehicles [3]. In addition, many 

communicating technologies have been proposed to connect 

vehicles in the IoV [4]. In order to solve a number of mobility 

problems, smart cities are poised to move towards Vehicular 

Social Networks (VSNs) that combine IoV with social media 

networks [2]. More recently, social internet of vehicles (SIoV) 

[5] [6] has been proposed as an extension of the Social 

Internet of Things (SIoT) to be a network of socially 

connected vehicles. The SIoV have several unique 

characteristics like highly dynamic vehicle nodes that can 

enter and leave the network at any time, rapidly changing 

network topology, anonymous identity and interaction 

between vehicles, and message exchange tied to some specific 

context of use.   

   Due to the increasingly large number of vehicles, bad driver 

behavior causes many fatalities. According to a report by 

National Highway Traffic Safety Administration 37,461 

people were killed in crashes on U.S. roadways during 2016 

[7]. Therefore, prevention and detection of anomalous driver 

behavior that may lead to fatalities is an important problem to 

be addressed by smart cities.   

   Various technological approaches have been used to address 

problem of detecting and preventing bad driver behavior. One 

class of solutions to detecting and preventing anomalous 

driver behavior relies on sensors attached to the driver. For 

example, He et al. [8] used google glass worn by drivers to 

detect sleepy behavior.  Hand gestures based on a wrist-worn 

device have also been used to detect distracted driver behavior 

[9]. Other similar approaches use strategically placed cameras 

in the car to detect anomalous driver behavior [10].  Video 

analytics of street traffic data have also been used to detect 

anomalous vehicle/driver behavior [11] [12]. Since most 

drivers carry smart phones, sensors from smartphone in the car 

have been used to detect anomalous driving behavior.  For 

example, Castignani et al. [13] used data collected using a 

dash-mounted smart phone to distinguish between calm and 

aggressive behaviors based on acceleration, braking and 

steering, slalom maneuvers, and U-turns. Similarly, Singh et 

al. [14] used sensor data from drivers’ mobile phone to detect 

various types of anomalous behavior like harsh braking, etc.  

Smart phone Apps have been proposed to provide bad driving 

feedback, and to exert social pressure on drivers to reduce bad 

driving behaviors [15]. Finally, Zhang et. al [16] described a 

system that uses data like speed, RPM, swerve angle, and gear 

position collected directly from the OBD interface of 29,000 

vehicles connected through an IoV to detect anomalous driver 

behavior.  

  One key aspect of safe driving is context awareness [17]. 

Context-awareness is about a vehicle being aware of its 

surroundings and reacting accordingly.  For example, a tail-

gating vehicle needs to be recognized and acted upon. 
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Similarly, a recognition that a vehicle in the near vicinity is 

accelerating or braking in a reckless manner should alert the 

driver and the vehicle about a possible collision. In such 

situations, autonomous vehicles can react automatically while 

alerts can be issued to drivers of conventional vehicles.  

   This paper proposes a system based on a dynamic SIoV that 

allows a vehicle to report its own anomalous driving behavior 

to other vehicles in the vicinity, and at the same time receive 

warnings about bad driving behavior of surrounding drivers.  

The system relies on the DigiMesh ad-hoc wireless technology 

that allows vehicles to join and leave the network as required 

without any central coordination. Dynamic time-warping 

(DTW) is used to classify drivers’ behavior data collected 

from the OBD-II interface of each vehicle.   

   The rest of the paper is organized as follows. Architecture of 

the proposed system is presented next. This is followed by a 

description of the data collection activities. Justification of the 

algorithm, and the algorithm used to build a behavior classifier 

based on this data is presented next. The paper ends with an 

evaluation and a conclusion.  

II. THE PROPOSED SYSTEM 

Fig. 1 shows the architecture of the system. As the Figure 

shows, an OBD-II adapter is used to collect data from the 

vehicle. This data is serially transmitted to the Raspberry PI 3 

which is a small microcontroller. The Raspberry PI has an 

attached ultrasonic sensor for tailgating and has an LCD 

screen attached to it. The ultrasound sensor has a range of 4 

meters. Raspberry PI 3 is connected to an XBEE Pro 900HP 

Radio that is a node in the DigiMesh ad-hoc wireless network 

[18]. DigiMesh is like the ZigBee network except that it does 

not require a coordinator for a PAN.  

 

 

Fig. 1 Architecture of SIoV for anomalous driver behavior 

  In a DigiMesh ad-hoc network, all nodes can operate on a 

battery and can sleep at will. Most importantly, this network 

does not rely on a coordinator or a gateway to maintain time 

synchronization, and therefore, has no single point of failure. 

This also means that nearby vehicles can dynamically enter or 

exit the neighborhood network of a vehicle. This wireless 

network can have a range of up to 60+ kilometers for each hop 

which is more than sufficient for the proposed system. In most 

cases, the nearby vehicles being entertained can be restricted 

based on the strength of the RSSI signal to determine an 

operative radius of SIoV neighborhood. DigiMesh network 

supports bandwidth of up to 256 Kbps which is appropriate for 

sending various types of sensor data and messages from each 

vehicle.  The network is secure because it supports both 128 

and 256-bit AES encryption. Finally, the network is resilient 

against interference because it supports either Frequency-

Hopping Spread Spectrum (FHSS) or Direct-Sequence Spread 

Spectrum (DSSS) depending on the frequency being used.  

   The driver interacts with the system through the simple LCD 

screen as shown in Fig 3.  The system presents the driver with 

four options each indicating dangerous drivers’ behavior in 

vehicle’s surrounding context.  For example, if another vehicle 

within the determined radius of the vehicle is speeding, the 

speeding button in the screen lights up warning the driver that 

someone in the vicinity is speeding and to be cautious.  

 

Fig. 2  Using OBD-II to collect and transmit data 

   Note that the system is not able to indicate who is speeding 

but only that one vehicle in the surrounding context is 

speeding.  The ultrasonic detector mounted in the rear of the 

car simply indicates the approximated distance of the 

tailgating car.  

 

 

Fig. 3 LCD screen showing driver safety interface 

III. DATA COLLECTION 

To train the system to recognize anomalous driver behaviors, 

various types of bad driving behavioral data like harsh 

acceleration, harsh breaking, etc. were collected using the 

Raspberry PI using the OBD-II interface.  Python language 

was used to program the Raspberry PI microcontroller. 



 

 
Fig 4.  Data collection using OBD-II interface 

  As Fig. 4 shows, the Y-axis of the accelerometer data was 

used to detect acceleration and breaking behavior while Y and 

Z-axes were used to detect turning and swerving behaviors.   

Many samples were collected for each behavior (e.g., harsh 

breaking), and ten representative samples each were selected 

to represent variations of each behavior. Each representative 

sample consisted of a sequence of accelerometer data for 3 

seconds sampled every 0.2 seconds. Hence each sample had 

15 accelerometer data points in time. Fig. 5 shows sample data 

for Y-axis acceleration with the OBD-II device mounted in-

line with the vehicle’s direction of movement for continuous 

soft braking. Each data point was taken with a 0.2 seconds 

interval. For training purpose, windows of 15 points (3 

seconds) were used.  

 

 

Fig. 5 Sample of data collected for soft braking 

  Fig. 6 shows sample data for harsh braking behavior that 

needs to be distinguished from soft braking behavior.  As the 

Figure shows, the form of the curve is like soft braking, but 

the magnitude is different with harsh braking having much 

higher deceleration as expected.    

  Based on this data thus collected, one key problem was to 

build a classifier that could distinguish between situations of 

normal behavior like left turn, right turn, soft braking and soft 

acceleration, and abnormal behavior like harsh acceleration, 

harsh braking, and swerving.  

IV. ANOMALY DETECTION ALGORITHM 

For this system the anomaly detection algorithm is a classifier 

that would observe a window of accelerometer data from the 

OBD-II interface and classify the vehicle’s current behavior 

into one of the seven classes (e.g., harsh barking) described 

earlier. Several techniques have been used in the past to build 

classifiers based on accelerometer data.  First, Hidden Markov 

Machines (HMM) have been used to successfully classify 2-D 

gestures based on accelerometer data [19]. HMMs also 

generalize to handle data with larger dimensions. For example, 

HMMs have been used with very high dimensioned joint data 

from camera-based sensors [20].   

 

 

Fig. 6 Sample data for harsh braking behavior 

   A second approach is to use neural networks to build 

classifiers from accelerometer data. For example, Xie and Cao 

[21] used a Feed Forward Neural Network (FFNN) and 

Similarity Matching (SM) to build a classifier based on 

accelerometer data from a pen. More recently, deep learning 

has also been used for activity detection and classification 

from triaxial accelerometer data [22].   

   A third approach to classifying accelerometer-based activity 

is to use Dynamic Time Warping (DTW) [23]. For example, 

Wang and Lee [24] used DTW to build a gesture classifier 

based on accelerometer data from a smart phone. 

  It is interesting to note that the three approaches discussed 

earlier have resulted in similar performance in terms of 

accuracy and precision of classification. Therefore, any of 

these techniques could be used in our case.  One consideration, 

however, is the size of the training data set. Calin [25] has 

shown that HMM tends to perform better than DTW as the 

size of the training data increases. Similarly, neural networks 

are also data hungry.  Since at this stage, we had limited data 

available, as a first step, we decided to use DTW for 

classifying driver’s behavior. Because the time complexity of 

DTW is O(N2) where N is the length of the sequences being 

compared (e.g., N =15 in our case), one key potential issue 

will be the ability of the onboard microcontroller to keep up 

with processing the real-time accelerometer data.  In the 

future, as more data is acquired, we intend to experiment with 

using HMM’s or deep neural networks for building classifiers.  

   Fig. 7 shows the anomaly detection algorithm based on 

DTW. As Fig. 7 shows, accelerometer data is collected from 

the OBD-II interface every 3 seconds with a sampling 

frequency of 0.2 seconds.  A low-pass filter is applied to 

smooth the data.  This distance of the collected data with each 

representative sample of each behavior is then calculated using 

the DTW algorithm.  For example, for each driving behavior 



like smooth braking, ten representative samples were used, 

and therefore, the average distance for smooth braking is the 

average distance of the data collected from all ten samples.  In 

the end, the algorithm selects the behavior whose average 

distance from the collected data is the smallest for all 

behaviors. The system broadcasts a warning to all vehicles in 

vicinity if the deduced behavior is anomalous (e.g., hard 

braking). All drivers participating in the SIoV are 

consequently alerted about the anomalous behavior of one or 

more drivers in the group with minimum time lag of 3 

seconds.  

 

Fig. 7 Algorithm for data collection and transmission 

V. EVALUATION   

The code shown in Fig. 7 took 1.6 seconds on average to run 

on the microcontroller which is fast enough because the data is 

sampled for a 3-second time window.  To evaluate the 

algorithm, 10 newly collected independent samples each of the 

7 behaviors (i.e., 70 samples in total) were used to calculate 

the predicted value based on the algorithm.  The algorithm 

achieved an accuracy of 98.6% accuracy in distinguishing 

between the test scenarios. In addition, the wireless system 

performed well in practical driving tests with participating 

vehicles traveling at speeds of up to 120 km/hr.  

VI. CONCLUSION 

While the proposed system works well, each vehicle will have 

to be equipped with our system to work.  This limitation can 

be overcome only if major manufacturers agree on a standard.  

In addition to forming a local SIoV, however, a 5G or a 

narrow-band IoT (NB-IoT) network card can be added to the 

system to transmit each car’s location based on a GPS to a 

central server. Such a configuration can allow for additional 

modalities like knowing the approximate location of the 

vehicle which is speeding nearby.  However, the proposed 

system will continue to work even when the 5G coverage is 

not available. The proposed SIoV can also be enriched by 

adding social media data for each driver through their smart 

phone.  Finally, the current system only used accelerometer 

data from the OBD-II interface. However, additional data like 

RPM, engine temperature etc. can be used to further refine the 

classification process.  
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