
Securing Low-Resource Edge Devices for IoT Systems

Shams Shapsough

Computer Science and Engineering

American University of Sharjah

Sharjah, UAE

b00046058@aus.edu

Fadi Aloul

Computer Science and Engineering

American University of Sharjah

Sharjah, UAE

faloul@aus.edu

Imran A. Zualkernan

Computer Science and Engineering

American University of Sharjah

Sharjah, UAE

izualkernan@aus.edu

Abstract— Security aspects of IoT systems are not well-

understood. Therefore, the rapid adoption of IoT technologies

may create many exposed computer systems with new security

vulnerabilities and IoT applications from a variety of domains

may face severe security holes. Edge-devices contribute

significantly to security risks for IoT systems. Edge-devices are

resource-constrained, wireless-enabled microcontrollers typically

running primitive operating systems. The resource-constrained

nature of edge devices in tandem with IoT network protocols

creates many unique security challenges. This paper examines

key security issues in an IoT systems with a special emphasis on

edge devices. A commercial IoT edge-device using MQTT (+TLS)

and CoAP (+DTLS) protocols was used to analyze the impact of

these security concerns. This chosen edge device was found to be

susceptible to sync attacks, data injection, passive

reconnaissance, and malicious nodes. Securing nodes using

TLS/DTLS resulted in only 4.7% overhead for MQTT with the

varying QoS levels, and 5% for CoAP.

Index Terms— Security, IoT, Edge Devices, MQTT, CoAP

I. INTRODUCTION

Emergence of Internet of Things (IoT) has enabled rapid

adoption of applications that utilize smart sensors and

heterogeneous networks in a variety of domains. Security holes

in edge nodes of IoT systems are not well understood. This lack

of understanding is reflected in a recent increase of cyber-

attacks that compromised and exploited these edge devices.

Edge devices in most IoT contexts are severely resource

constrained microcontroller-based systems that have limited

memory and computing power. Security concerns for edge

devices are receiving attention recently because until now

researcher have dedicated most time and effort into the

development and deployment of novel and experimental IoT

systems rather than securing them [1]. A typical edge device

collects data using sensors and transmits this data to the IoT

network. Edge devices need to optimize power consumption

because they are often remotely located and rely on small

batteries for power. Finally, the specialized communication

protocols used to communicate with these edge devices in

many IoT applications present unique security vulnerabilities

that must be addressed.

This paper attempts to evaluate the overall security of

typical edge devices in IoT systems. This is done through

finding possible exploits and vulnerabilities, measuring their

severity and impact on various systems, and using the acquired

data to improve and reinforce security measure that ensure

security while not drastically affecting operations. The

evaluation is conducted according to the CIA principles of

security, confidentiality, integrity and availability.

The rest of the paper is organized as follows. A summary of

the various IoT communication protocols with respect to edge

devices and security is discussed first. This is followed by an

analysis of the security issues for edge devices. A set of

experiments for one commercial edge device and results are

presented next. The paper ends with a conclusion.

II. IOT COMMUNICATION PROTOCOLS

Message Queue Telemetry Transport (MQTT), Constrained

Application Protocol (CoAP), Hyper Text Terminal Protocol

(HTTP) [2] and Extensible Messaging and Presence Protocol

[3] (XMPP) are popular communication protocols used in

many IoT systems. However, XMPP and HTTP require

computational resources not available in many IoT edge

devices [4]. Consequently, primarily due to resource

constraints, MQTT and CoAP are more typical protocols of

choice in IoT systems. CoAP implements the lighter version of

request-response paradigm typified by HTTP while MQTT

implements a publish-subscribe architecture. Each of these

protocols are briefly described next.

 A. MQTT

MQTT is a low-power, low-memory messaging protocol

that has been widely adopted in low-resource messaging

applications [5]. The smaller packet size and lower power

footprint of MQTT make this protocol suitable for

communicating with resource constrained IoT edge devices.

Unlike other protocols, an MQTT message is received by

clients based on specific interest or topic, and not the IP

address. MQTT implements a publish/subscribe architecture

which makes it easy to send a message from a publisher node

to numerous subscriber nodes and hence supporting one-to-

many and many-to-many messaging. Messaging is based on the

concept of a topic that allow a publisher or a subscriber to

specify a hierarchical addressing scheme. The specific format

of an MQTT message is, however, not defined and provides the

developer with the flexibility of defining their own message

format. MQTT operates on the TCP layer and supports the

option of running on top of WebSockets. WebSockts are used

in projects like Paho [6] and Hive [7]. The lightweight

advantage of MQTT is, however, somewhat compromised due

to the overhead of WebSockets [8-10]. MQTT supports three

levels of quality of service for sending and receiving messages.

The three QoS levels are:

• QoS0: message delivered at most once

• QoS1: message delivered at least once

• QoS2: message delivered exactly once

Fadi
Typewritten Text
 IEEE International Symposium on Sensing and Instrumentation in IoT Era (ISSI), Shanghai, China, September 2018.

Fadi
Typewritten Text

B. CoAP

Constrained Application Protocol (CoAP) [11] is a request-

response messaging protocol like HTTP developed for

constrained IoT devices. This protocol implements a

Representational State Transfer (RESTful) architecture [12].

CoAP enables constrained devices to use web services,

combining the benefits of HTTP and MQTT. CoAP uses UDP

as opposed to TCP and thus should be more power efficient

than MQTT. To reduce message loss not supported by UDP,

CoAP introduces a “message layer” [13] that handles packet

sequencing and retransmission in case of an error. A potential

challenge for CoAP is that this protocol does not provide native

support for a publish-subscribe architecture often used in IoT

architectures. Therefore, the nodes themselves need to keep

track of the exchanged messages which adds additional

workload for each node. The protocol does support a primitive

publish-subscribe architecture using the observe mode. This

protocol also restricts users to a fixed packet size (typically of 1

KB). To circumvent this issue, data compression or

segmentation can be used. However, this workaround can

increase complexity and reduce the performance of this

protocol.

C. Security in CoAP and MQTT

By default, CoAP and MQTT protocols do not use any

security layer. However, these protocols do offer the option of

extra security layers based on TLS [7, 14].

MQTT supports TLS as an optional security layer [7].

However, using secure communication with TLS requires

significant additional resources terms of CPU and bandwidth

usage. In a secure communication, a TLS handshake is required

to initiate a session. Both client and server agree on the cipher

suite and the TLS version to be used. This process is slightly

resource heavy because the client only needs to establish the

handshake once per session making this protocol better than

other competing protocols like HTTPS. In addition to

handshaking, additional buffers need to be allocated for TLS.

This increases memory requirements for the edge node. The

choice of cipher suite (decided during the handshake) is an

essential concern when using TLS. Depending on the suite

selected, the TLS overhead varies. Therefore, it is critical to

select the cipher suite that is suitable for specific requirements

of the edge node. MQTT also provides a pre-shared key over

TLS as well [15]. This is a much lighter approach than

traditional TLS, but not as commonly used. Finally, MQTT

also supports X509-certification [7]. This feature allows clients

to authenticate and verify the identity of the message broker to

avoid server spoofing.

 As opposed to MQTT, CoAP optionally offers a lighter

version of TLS called Datagram Transport Layer Security

(DTLS) [14]. For CoAP, both DTLS and IPSec are available

through third-party layers [16]. In addition to DTLS and IPSec,

CoAP also offers a native CoAP-security layer that provides

similar authentication and data security options as DTLS and

IPSec but with significantly lower resource requirements [17].

III. SECURING EDGE DEVICES

Edge devices directly interact with the physical

environment using tags, sensors, actuators and embedded

devices. As a critical component of any IoT application, the

edge layer provides an exposed target to attackers where they

can gain access and compromise or take down the entire

system. Attacks targeting edge devices can be categorized into

denial of services, information gathering or eavesdropping and

planting malicious nodes. Each type is briefly described below.

A. Denial of Service (DoS)

Denial of Service (DoS) attacks aim to interrupt a systems

operation and block access to its services by overwhelming it in

various ways. In the case of edge devices, this is done in three

ways: battery draining, sleep deprivation, and outage attack.

Battery draining aims to exploit the fact that most edge

devices rely on small power units for operation due to size

constraints. Attackers try to deplete the battery of an edge

device by any means possible. For example, this might involve

forcing the edge device to execute power-consuming

subroutines. If a node is integral to the system and is difficult to

physically access (like the ones used to monitor natural

resources) this could take down the entire system and render it

useless [18]. This makes battery draining a very serious issue.

The second method under DoS for edge devices is sleep

deprivation. In this type of attack, the attacker sends numerous

requests that appear to be legitimate. This forces the node to

reply or address those requests. This stops the node from

sleeping, and hence not conserving energy [19].

A third method for DoS for edge devices is outage attack.

Here the attacker targets an administrative device or a master

node with code-injection, physical tampering, sleep deprivation

or battery draining. Once the administrative node stops

functioning, the other nodes relying on it are rendered useless.

B. Information Gathering and Eavesdropping

The second group of attacks is concerned with

reconnaissance. Here, the attacker tries to collect as much

information as possible on the edge device. This information is

critical to the device and provides insight to its status. In the

least, this type of attack may lead to serious privacy issues. An

example of this type of attack is the side-channel attack in

which a node reveals information about its operation through

an electromagnetic signature or power consumption and can be

used to break or compromise the cryptography [20]. Moreover,

attackers can capitalize on the limitations of the technologies

used in these systems. For example, by default MQTT and

CoAP are not encrypted and are widely used. Eavesdropping

and sniffing the plain text communication compromises data

and might lead to fatal attacks to the system like battery

draining.

C. Planting Malicious Nodes

The third category of attacks is closely connected to

reconnaissance. In this type of attack the information known

about a systems operation allows the attacker to falsify data,

plant malicious nodes, replicated existing nodes and

compromise the entire system.

IV. EXPERIMENTS

This section describes a series of experiments to evaluate

vulnerabilities of edge devices. The purpose of these

experiments was to evaluate security aspects of MQTT and

CoAP protocols when implemented on one resource limited

IoT edge device available commercially.

A. The Edge Device

The edge device used for these experiments was the Particle

Photon board which is an emerging commercial development

board for implementing edge devices in IoT systems. The

Photon board supports ease of use, built-in WIFI capabilities,

cloud-based development and platform, and over the air update

(OTA). These features make this board a good edge-device

candidate for implementing a wide range of IoT applications.

The hardware specification for the Particle Photon hardware

used in these experiments are shown in Table I.

TABLE I. HARDWARE SPECIFICATION FOR THE EDGE DEVICE

Specification Particle Photon

Processor 32-bit ARM Cortex-M3 120MHz

SRAM 128kB

Networking 802.11b/g/n, soft-AP

Storage 1MB flash

I/O 24pins (GPIO/ PWM/ USB/ CAN/ SPI/ I2C/ I2S/

ADC/ DAC)

On-board

peripherals

RGB LED

B. Experimental Setup

Fig. 1 shows the experimental testbed created for

conducting the experiments. It is important to note that the

attacks tested on the system were generic and applicable to

other IoT development boards besides the Photon board

considered here.

 As shown in Fig. 1, the setup consisted of an edge node

connected to a message broker using WIFI. The edge devices

were all Photon devices connected to sensors and actuators and

using the following options: MQTT (using all three QoS

options), MQTT with TLS, CoAP, and CoAP with DTLS. A

YoctoAmp [21] device was connected to each of the edge

nodes to measure the power consumption for each node to

compare the resource requirements for each configuration. A

messaging broker was needed to implement the reference

networking architectures (i.e., MQTT). An attacker node was

used to perform penetration testing and gather data to/from the

connected edge nodes.

 A generic IoT edge node functionality was implemented for

each edge device. This type of functionality is typical to smart

grid and resource monitoring systems and is a reasonable

simulation of actual IoT systems. The operation of each edge

device was as follows:

• Send data to a consumer/control node and sleep.

• Based on the received data, the control device issues

commands to each node.

• The commands were: to continue normal operation

or execute subroutine to enable actuators and complex

operations, or to kill code and cease operation.

Fig. 1. Experimental setup

C. Results

The list of attacks the system was subjected to and the tools

used to simulate the attacks and their outcome are shown in

Table II. Results in Table II can be summarized as follows:

• Neither of the options (e.g., MQTT+TLS) were

subservient to attacks like ping of death or malware.

• Introducing TLS or DTLS resulted in mediating attacks

like sleep deprivation, packet sniffing, and node

replication only.

• All options were still susceptible to sync attacks, data

injection, passive reconnaissance and malicious nodes.

• Code injection was not possible on this edge node.

 Table II also lists the various potential countermeasures that

could be taken for each of the attacks.

 Fig. 2 shows the average power consumption of an edge node

over a full day of continuous use. Surprisingly, for the Photon

board, MQTT’s implementation was more energy-efficient

than CoAP. Adding security layer, however, only added an

average of 4.7% overhead for MQTT with the varying QoS

levels, and 5% for CoAP which is quite reasonable. In addition,

as expected, the power requirements for MQTT, with and

without TLS increase as well when the QoS level was

increased.

Fig. 2. Energy consumption of various architectural variants

TABLE II. RESULT OF VARIOUS ATTACKS ON FOUR TYPES OF NODES

Vulnerability
Types of Edge-Nodes

Tools

Countermeasure
MQTT

MQTT
+TLS

CoAP
CoAP+
DTLS

Battery Draining
S* F S

F Python Script Cryptographic Scheme, IDS, Authentication, Role-Based

authorization [23,25]

Sleep Deprivation
S F S

F Python Script Cryptographic Scheme, IDS, Authentication, Role-Based

authorization [23,25]

Sync S S S S Metasploit IDS, Firewall [23,25]

Ping of Death F F F F Hyenae IDS, Firewall [23,25]

Packet Sniffing S F S F Wireshark, Metasploit Cryptographic Scheme [23,25]

Code Injection [22] F F F F Not possible on Photon N/A

Data Injection
S S S

S Python Script Cryptographic Scheme AND Authentication. Role-Based

authorization [22,24]

Basic

Reconnaissance
S S S

S IoTSeeker, Nmap Firewall, IPS [23,25]

Node Replication S F S F Python Script Cryptographic Scheme AND Authentication [23,25]

Camouflage S S S S Python Script Cryptographic Scheme AND Authentication [23,25]

Corrupted Node S S S S Python Script Cryptographic Scheme AND Authentication [23,25]

Malware F F F F IoTroops Antivirus [22-25]

* S means attack was successful, and F means that the attack failed.

V. CONCLUSION

As the use of IoT enabled devices increases, so does the

attack surface area and the severity of attacks causing new

vulnerabilities to come to light and in some cases exploited

routinely. The low-cost, low-power nature of many IoT edge-

devices offers a challenge for both developers and security

researchers and this research is a first step in addressing these

challenges.

REFERENCES

[1] C. (Defta) Costinela-Luminiţa and C. (Iacob) Nicoleta-Magdalena, “E-

learning Security Vulnerabilities,” Procedia - Soc. Behav. Sci., vol. 46,

pp. 2297–2301, Jan. 2012.

[2] IETF, “HTTP - Hypertext Transfer Protocol,” 1999.

[3] “XMPP | XMPP Main.” [Online]. Available: https://xmpp.org/.

[Accessed: 09-Sep-2017].

[4] A. Talaminos-Barroso, M. A. Estudillo-Valderrama, L. M. Roa, J.

Reina-Tosina, and F. Ortega-Ruiz, “A Machine-to-Machine protocol

benchmark for eHealth applications – Use case: Respiratory

rehabilitation,” Comput. Methods Programs Biomed., vol. 129, pp. 1–11,

Jun. 2016.

[5] L. Zhang, "Building Facebook Messenger," ed: Facebook, 2011

[6] Paho. Available: https://eclipse.org/paho/

[7] HiveMQ: Enterprise MQTT Broker. Available: http://www.hivemq.com/

[8] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, "MQTT-S - A

publish/subscribe protocol for Wireless Sensor Networks," in 2008 3rd

International Conference on Communication Systems Software and

Middleware and Workshops (COMSWARE '08), pp. 791-798.

[9] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,

"Performance evaluation of MQTT and CoAP via a common

middleware," in 2014 IEEE Ninth International Conference on

Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), 2014.

[10] I. Mashal, O. Alsaryrah, T.-Y. Chung, C.-Z. Yang, W.-H. Kuo, and D. P.

Agrawal, "Choices for interaction with things on Internet and underlying

issues," Ad Hoc Networks, vol. 28, pp. 68-90, 2015.

[11] C. Bormann, "CoAP - Constrained Application Protocol," T.-Z. I. u.

Informationstechnik, Ed., ed, 2014.

[12] M. Castro, A. J. Jara, and A. F. Skarmeta, "Enabling end-to-end CoAP-

based communications for the Web of Things," Journal of network and

computer applications, vol. 59, pp. 230-236, 01/2016 2016.

[13] C. Bormann, A. P. Castellani, and Z. Shelby, "CoAP: An Application

Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing,

vol. 16, pp. 62-67, 2012.

[14] N. Modadugu and E. Rescorla, “Datagram Transport Layer Security.”

[Online]. Available: https://tools.ietf.org/html/rfc4347. [Accessed: 19-

Apr-2017].

[15] H. Tschofenig and P. Eronen, “Pre-Shared Key Ciphersuites for

Transport Layer Security (TLS).” [Online]. Available:

https://tools.ietf.org/html/rfc4279. [Accessed: 19-Apr-2017].

[16] R. Atkinson and S. Kent, “IP Encapsulating Security Payload (ESP).”

[Online]. Available: https://tools.ietf.org/html/draft-ietf-ipsec-esp-v2-05.

[Accessed: 19-Apr-2017].

[17] A. Yegin and Z. Shelby, “CoAP Security Options.” [Online]. Available:

https://tools.ietf.org/html/draft-yegin-coap-security-options-00.

[Accessed: 19-Apr-2017].

[18] A. M. Nia and N. K. Jha, “A Comprehensive Study of Security of

Internet-of-Things,” IEEE Trans. Emerg. Top. Comput., vol. PP, no. 99,

pp. 1–1, 2016.

[19] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-of-service

attacks on battery powered mobile computers,” in Proc. IEEE 2nd Conf.

Pervasive Computing and Communications, 2004, pp. 309–318.

[20] J. Ambrose, A. Ignjatovic, and S. Parameswaran, Power Analysis Side

Channel Attacks: The Processor Design-level Context. Omniscriptum

Gmbh & Company Kg., 2010.

[21] “Yocto-Amp - Tiny isolated USB ammeter (AC/DC).” [Online].

Available: http://www.yoctopuce.com/EN/products/usb-electrical-

sensors/yocto-amp. [Accessed: 11-Sep-2017].

[22] A. Francillon and C. Castelluccia. Code injection attacks on harvard-

architecture devices. In ACM CCS 2008, pages 15–26. ACM, 2008.

[23] H. Suo, J. Wan, C. Zou and J. Liu, "Security in the Internet of Things: A

Review," 2012 International Conference on Computer Science and

Electronics Engineering, Hangzhou, 2012, pp. 648-651.

[24] J. Habibi, A. Gupta, S. Carlsony, A. Panicker, and E. Bertino. Mavr:

Code reuse stealthy attacks and mitigation on unmanned aerial vehicles.

In IEEE ICDCS 2015, pages 642–652. IEEE, 2015.

[25] A. Mosenia and N. K. Jha, "A Comprehensive Study of Security of

Internet-of-Things," in IEEE Transactions on Emerging Topics in

Computing, vol. 5, no. 4, pp. 586-602, Oct.-Dec. 1 2017.

