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Abstract— Security aspects of IoT systems are not well-

understood. Therefore, the rapid adoption of IoT technologies 

may create many exposed computer systems with new security 

vulnerabilities and IoT applications from a variety of domains 

may face severe security holes. Edge-devices contribute 

significantly to security risks for IoT systems. Edge-devices are 

resource-constrained, wireless-enabled microcontrollers typically 

running primitive operating systems. The resource-constrained 

nature of edge devices in tandem with IoT network protocols 

creates many unique security challenges. This paper examines 

key security issues in an IoT systems with a special emphasis on 

edge devices. A commercial IoT edge-device using MQTT (+TLS) 

and CoAP (+DTLS) protocols was used to analyze the impact of 

these security concerns. This chosen edge device was found to be 

susceptible to sync attacks, data injection, passive 

reconnaissance, and malicious nodes. Securing nodes using 

TLS/DTLS resulted in only 4.7% overhead for MQTT with the 

varying QoS levels, and 5% for CoAP. 

 

Index Terms— Security, IoT, Edge Devices, MQTT, CoAP 

I. INTRODUCTION 

Emergence of Internet of Things (IoT) has enabled rapid 

adoption of applications that utilize smart sensors and 

heterogeneous networks in a variety of domains. Security holes 

in edge nodes of IoT systems are not well understood. This lack 

of understanding is reflected in a recent increase of cyber-

attacks that compromised and exploited these edge devices. 

Edge devices in most IoT contexts are severely resource 

constrained microcontroller-based systems that have limited 

memory and computing power. Security concerns for edge 

devices are receiving attention recently because until now 

researcher have dedicated most time and effort into the 

development and deployment of novel and experimental IoT 

systems rather than securing them [1]. A typical edge device 

collects data using sensors and transmits this data to the IoT 

network. Edge devices need to optimize power consumption 

because they are often remotely located and rely on small 

batteries for power. Finally, the specialized communication 

protocols used to communicate with these edge devices in 

many IoT applications present unique security vulnerabilities 

that must be addressed. 

This paper attempts to evaluate the overall security of 

typical edge devices in IoT systems. This is done through 

finding possible exploits and vulnerabilities, measuring their 

severity and impact on various systems, and using the acquired 

data to improve and reinforce security measure that ensure 

security while not drastically affecting operations. The 

evaluation is conducted according to the CIA principles of 

security, confidentiality, integrity and availability. 

The rest of the paper is organized as follows. A summary of 

the various IoT communication protocols with respect to edge 

devices and security is discussed first. This is followed by an 

analysis of the security issues for edge devices. A set of 

experiments for one commercial edge device and results are 

presented next.  The paper ends with a conclusion.  

II. IOT COMMUNICATION PROTOCOLS 

Message Queue Telemetry Transport (MQTT), Constrained 

Application Protocol (CoAP), Hyper Text Terminal Protocol 

(HTTP) [2] and Extensible Messaging and Presence Protocol 

[3] (XMPP) are popular communication protocols used in 

many IoT systems. However, XMPP and HTTP require 

computational resources not available in many IoT edge 

devices [4]. Consequently, primarily due to resource 

constraints, MQTT and CoAP are more typical protocols of 

choice in IoT systems. CoAP implements the lighter version of 

request-response paradigm typified by HTTP while MQTT 

implements a publish-subscribe architecture. Each of these 

protocols are briefly described next.  

 A. MQTT 

MQTT is a low-power, low-memory messaging protocol 

that has been widely adopted in low-resource messaging 

applications [5]. The smaller packet size and lower power 

footprint of MQTT make this protocol suitable for 

communicating with resource constrained IoT edge devices. 

Unlike other protocols, an MQTT message is received by 

clients based on specific interest or topic, and not the IP 

address. MQTT implements a publish/subscribe architecture 

which makes it easy to send a message from a publisher node 

to numerous subscriber nodes and hence supporting one-to-

many and many-to-many messaging. Messaging is based on the 

concept of a topic that allow a publisher or a subscriber to 

specify a hierarchical addressing scheme.  The specific format 

of an MQTT message is, however, not defined and provides the 

developer with the flexibility of defining their own message 

format. MQTT operates on the TCP layer and supports the 

option of running on top of WebSockets. WebSockts are used 

in projects like Paho [6] and Hive [7]. The lightweight 

advantage of MQTT is, however, somewhat compromised due 

to the overhead of WebSockets [8-10]. MQTT supports three 

levels of quality of service for sending and receiving messages.  

The three QoS levels are:  

• QoS0: message delivered at most once 

• QoS1: message delivered at least once 

• QoS2: message delivered exactly once 
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B. CoAP 

Constrained Application Protocol (CoAP) [11] is a request-

response messaging protocol like HTTP developed for 

constrained IoT devices. This protocol implements a 

Representational State Transfer (RESTful) architecture [12]. 

CoAP enables constrained devices to use web services, 

combining the benefits of HTTP and MQTT. CoAP uses UDP 

as opposed to TCP and thus should be more power efficient 

than MQTT. To reduce message loss not supported by UDP, 

CoAP introduces a “message layer” [13] that handles packet 

sequencing and retransmission in case of an error. A potential 

challenge for CoAP is that this protocol does not provide native 

support for a publish-subscribe architecture often used in IoT 

architectures. Therefore, the nodes themselves need to keep 

track of the exchanged messages which adds additional 

workload for each node. The protocol does support a primitive 

publish-subscribe architecture using the observe mode. This 

protocol also restricts users to a fixed packet size (typically of 1 

KB). To circumvent this issue, data compression or 

segmentation can be used. However, this workaround can 

increase complexity and reduce the performance of this 

protocol. 

C. Security in CoAP and MQTT 

By default, CoAP and MQTT protocols do not use any 

security layer. However, these protocols do offer the option of 

extra security layers based on TLS [7, 14].  

MQTT supports TLS as an optional security layer [7]. 

However, using secure communication with TLS requires 

significant additional resources terms of CPU and bandwidth 

usage. In a secure communication, a TLS handshake is required 

to initiate a session. Both client and server agree on the cipher 

suite and the TLS version to be used. This process is slightly 

resource heavy because the client only needs to establish the 

handshake once per session making this protocol better than 

other competing protocols like HTTPS. In addition to 

handshaking, additional buffers need to be allocated for TLS. 

This increases memory requirements for the edge node. The 

choice of cipher suite (decided during the handshake) is an 

essential concern when using TLS. Depending on the suite 

selected, the TLS overhead varies. Therefore, it is critical to 

select the cipher suite that is suitable for specific requirements 

of the edge node. MQTT also provides a pre-shared key over 

TLS as well [15]. This is a much lighter approach than 

traditional TLS, but not as commonly used. Finally, MQTT 

also supports X509-certification [7]. This feature allows clients 

to authenticate and verify the identity of the message broker to 

avoid server spoofing.  

    As opposed to MQTT, CoAP optionally offers a lighter 

version of TLS called Datagram Transport Layer Security 

(DTLS) [14]. For CoAP, both DTLS and IPSec are available 

through third-party layers [16]. In addition to DTLS and IPSec, 

CoAP also offers a native CoAP-security layer that provides 

similar authentication and data security options as DTLS and 

IPSec but with significantly lower resource requirements [17].  

III. SECURING EDGE DEVICES 

Edge devices directly interact with the physical 

environment using tags, sensors, actuators and embedded 

devices. As a critical component of any IoT application, the 

edge layer provides an exposed target to attackers where they 

can gain access and compromise or take down the entire 

system. Attacks targeting edge devices can be categorized into 

denial of services, information gathering or eavesdropping and 

planting malicious nodes. Each type is briefly described below.  

A. Denial of Service (DoS) 

Denial of Service (DoS) attacks aim to interrupt a systems 

operation and block access to its services by overwhelming it in 

various ways. In the case of edge devices, this is done in three 

ways: battery draining, sleep deprivation, and outage attack.  

Battery draining aims to exploit the fact that most edge 

devices rely on small power units for operation due to size 

constraints. Attackers try to deplete the battery of an edge 

device by any means possible. For example, this might involve 

forcing the edge device to execute power-consuming 

subroutines. If a node is integral to the system and is difficult to 

physically access (like the ones used to monitor natural 

resources) this could take down the entire system and render it 

useless [18]. This makes battery draining a very serious issue.  

The second method under DoS for edge devices is sleep 

deprivation. In this type of attack, the attacker sends numerous 

requests that appear to be legitimate. This forces the node to 

reply or address those requests. This stops the node from 

sleeping, and hence not conserving energy [19].  

A third method for DoS for edge devices is outage attack. 

Here the attacker targets an administrative device or a master 

node with code-injection, physical tampering, sleep deprivation 

or battery draining. Once the administrative node stops 

functioning, the other nodes relying on it are rendered useless. 

B. Information Gathering and Eavesdropping 

The second group of attacks is concerned with 

reconnaissance. Here, the attacker tries to collect as much 

information as possible on the edge device. This information is 

critical to the device and provides insight to its status. In the 

least, this type of attack may lead to serious privacy issues. An 

example of this type of attack is the side-channel attack in 

which a node reveals information about its operation through 

an electromagnetic signature or power consumption and can be 

used to break or compromise the cryptography [20]. Moreover, 

attackers can capitalize on the limitations of the technologies 

used in these systems. For example, by default MQTT and 

CoAP are not encrypted and are widely used. Eavesdropping 

and sniffing the plain text communication compromises data 

and might lead to fatal attacks to the system like battery 

draining. 

C. Planting Malicious Nodes 

The third category of attacks is closely connected to 

reconnaissance. In this type of attack the information known 

about a systems operation allows the attacker to falsify data, 



plant malicious nodes, replicated existing nodes and 

compromise the entire system. 

IV. EXPERIMENTS 

This section describes a series of experiments to evaluate 

vulnerabilities of edge devices. The purpose of these 

experiments was to evaluate security aspects of MQTT and 

CoAP protocols when implemented on one resource limited 

IoT edge device available commercially.  

A. The Edge Device 

The edge device used for these experiments was the Particle 

Photon board which is an emerging commercial development 

board for implementing edge devices in IoT systems. The 

Photon board supports ease of use, built-in WIFI capabilities, 

cloud-based development and platform, and over the air update 

(OTA). These features make this board a good edge-device 

candidate for implementing a wide range of IoT applications. 

The hardware specification for the Particle Photon hardware 

used in these experiments are shown in Table I. 

TABLE I. HARDWARE SPECIFICATION FOR THE EDGE DEVICE 

Specification Particle Photon 

Processor 32-bit ARM Cortex-M3 120MHz 

SRAM 128kB 

Networking 802.11b/g/n, soft-AP 

Storage 1MB flash 

I/O 24pins (GPIO/ PWM/ USB/ CAN/ SPI/ I2C/ I2S/ 

ADC/ DAC) 

On-board 

peripherals 

RGB LED 

B. Experimental Setup 

Fig. 1 shows the experimental testbed created for 

conducting the experiments. It is important to note that the 

attacks tested on the system were generic and applicable to 

other IoT development boards besides the Photon board 

considered here. 

   As shown in Fig. 1, the setup consisted of an edge node 

connected to a message broker using WIFI. The edge devices 

were all Photon devices connected to sensors and actuators and 

using the following options: MQTT (using all three QoS 

options), MQTT with TLS, CoAP, and CoAP with DTLS. A 

YoctoAmp [21] device was connected to each of the edge 

nodes to measure the power consumption for each node to 

compare the resource requirements for each configuration. A 

messaging broker was needed to implement the reference 

networking architectures (i.e., MQTT). An attacker node was 

used to perform penetration testing and gather data to/from the 

connected edge nodes.  

   A generic IoT edge node functionality was implemented for 

each edge device.  This type of functionality is typical to smart 

grid and resource monitoring systems and is a reasonable 

simulation of actual IoT systems. The operation of each edge 

device was as follows: 

• Send data to a consumer/control node and sleep. 

• Based on the received data, the control device issues 

commands to each node. 

• The commands were: to continue normal operation 

or execute subroutine to enable actuators and complex 

operations, or to kill code and cease operation. 

 
Fig. 1.  Experimental setup 

C. Results 

The list of attacks the system was subjected to and the tools 

used to simulate the attacks and their outcome are shown in 

Table II.  Results in Table II can be summarized as follows: 

• Neither of the options (e.g., MQTT+TLS) were 

subservient to attacks like ping of death or malware.  

• Introducing TLS or DTLS resulted in mediating attacks 

like sleep deprivation, packet sniffing, and node 

replication only.  

• All options were still susceptible to sync attacks, data 

injection, passive reconnaissance and malicious nodes.  

• Code injection was not possible on this edge node.  

    Table II also lists the various potential countermeasures that 

could be taken for each of the attacks.   

   Fig. 2 shows the average power consumption of an edge node 

over a full day of continuous use. Surprisingly, for the Photon 

board, MQTT’s implementation was more energy-efficient 

than CoAP.  Adding security layer, however, only added an 

average of 4.7% overhead for MQTT with the varying QoS 

levels, and 5% for CoAP which is quite reasonable. In addition, 

as expected, the power requirements for MQTT, with and 

without TLS increase as well when the QoS level was 

increased. 

 

Fig. 2.  Energy consumption of various architectural variants 



TABLE II. RESULT OF VARIOUS ATTACKS ON FOUR TYPES OF NODES 

Vulnerability 
Types of Edge-Nodes  

Tools 

 

Countermeasure 
MQTT 

MQTT
+TLS 

CoAP 
CoAP+
DTLS 

Battery Draining 
S* F S 

F Python Script Cryptographic Scheme, IDS, Authentication, Role-Based 

authorization [23,25] 

Sleep Deprivation 
S F S 

F Python Script Cryptographic Scheme, IDS, Authentication, Role-Based 

authorization [23,25] 

Sync S S S S Metasploit IDS, Firewall [23,25] 

Ping of Death F F F F Hyenae IDS, Firewall [23,25] 

Packet Sniffing S F S F Wireshark, Metasploit Cryptographic Scheme [23,25] 

Code Injection [22] F F F F Not possible on Photon N/A 

Data Injection 
S S S 

S Python Script Cryptographic Scheme AND Authentication. Role-Based 

authorization [22,24] 

Basic 

Reconnaissance  
S S S 

S IoTSeeker, Nmap Firewall, IPS  [23,25] 

Node Replication S F S F Python Script Cryptographic Scheme AND Authentication [23,25] 

Camouflage S S S S Python Script Cryptographic Scheme AND Authentication [23,25] 

Corrupted Node S S S S Python Script Cryptographic Scheme AND Authentication [23,25] 

Malware F F F F IoTroops Antivirus [22-25] 

* S means attack was successful, and F means that the attack failed.

V. CONCLUSION 

As the use of IoT enabled devices increases, so does the 

attack surface area and the severity of attacks causing new 

vulnerabilities to come to light and in some cases exploited 

routinely. The low-cost, low-power nature of many IoT edge-

devices offers a challenge for both developers and security 

researchers and this research is a first step in addressing these 

challenges.   
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