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ABSTRACT 

Improvements over recent years in the performance of Integer 
Linear Programming (ILP) and Boolean Satisfiability (SAT) 
solvers have encouraged the modeling of complex engineering 
problems as ILP. An example is the Clustering Problem in Mobile 
Ad-Hoc Networks (MANETs). The Clustering Problem in 
MANETs consists of selecting the most suitable nodes of a given 
MANET topology as clusterheads, and ensuring that regular nodes 
are connected to clusterheads such that the lifetime of the network 
is maximized. This paper proposes enhanced ILP formulations for 
the Clustering Problem, through the enablement of multi-hop 
connections and intra-cluster communication, and assesses the 
performance of state-of-the art generic ILP and SAT solvers in 
solving the enhanced formulations.  

Index Terms — Integer Linear Programming, Boolean 
Satisfiability, Mobile Ad-Hoc Networks, Clustering Problem, 
Optimization. 

 
1. INTRODUCTION 

The recent introduction of intelligent algorithms in Integer Linear 
Programming (ILP) and Boolean Satisfiability (SAT) solvers 
significantly improved the performance of the solvers and allowed 
for a wide range of challenging engineering problems to be tackled 
by ILP and SAT. Generic-based ILP solvers have been successfully 
applied to solve several networking optimization problems; 
however, fewer attempts have been made using SAT solvers. One 
such problem is the clustering problem in Mobile Ad-Hoc 
Networks (MANETs). MANETs are used in a wide-range of 
applications such as battlefield communication, law enforcement 
operations, and disaster recovery [1].  The proposed solution to the 
scalability issue in flat MANET networks is the concept of 
clustering. Clustering involves the creation of a hierarchical 
network where the network is divided into clusters, with certain 
nodes in each cluster being chosen to be clusterheads. The process 
of establishing and interconnecting clusters, through the selection 
of clusterheads and connection of regular nodes to clusterheads is 
known as the clustering problem. The clustering problem can be 
modeled as an ILP optimization problem. The primary objective of 
this paper is to present enhancements to the ILP formulation of the 
clustering problem in MANETs presented in [2]. These 
enhancements include ILP formulations enabling multihop 
connections and intra-cluster communication, allowing for more 
complex network topologies to be generated through ILP. 
Additionally, this paper presents an evaluation of the performance 
of the state-of-the-art generic-based and 0-1 SAT-based ILP solvers 
in handling the proposed enhancements in the ILP formulation of 
the clustering problem. 
 

 

This paper is organized as follows. Section 2 presents 
background information on ILP, SAT, MANETs and the clustering 
problem. Section 3 describes the existing work done in modeling 
the clustering problem as ILP. Section 4 describes the proposed 
enhancements to the ILP formulation of the clustering problem in 
MANETs. Section 5 presents the tests conducted and an evaluation 
of the results obtained. The paper is concluded in Section 6. 

 
2. BACKGROUND 

This section provides background information on Integer Linear 
Programming (ILP), Boolean Satisfiability (SAT), Mobile Ad-Hoc 
Networks and a detailed look at the clustering problem. 
 
2.1. Integer Linear Programming and Boolean Satisfiability 

Integer Linear Programming (ILP) involves maximizing or 
minimizing a function with respect to certain constraints where the 
objective function and constraints are linear and the used variables 
can only take integer values [3]. Cases where the integer values are 
restricted to (0-1) are referred to as Binary ILP Problems. In 
Boolean Satisfiability (SAT) the constraints between variables are 
represented using propositional logic. Propositional logic involves 
the use of AND, OR and NOT operations to construct formulas in 
the Products-of-Sums form (also called the Conjunctive Normal 
Form (CNF)). The variables can only take Binary values (0-1). 
Given constraints expressed in CNF, the goal is to identify a 
variable assignment that will satisfy all constraints in the problem 
or prove that no such assignment exists. In a propositional formula, 
given n variables, there are 2n different possible variable 
assignments. In order to solve or rather satisfy the formula, SAT 
will go through the search space and determine whether or not there 
is a satisfying variable assignment or prove that no such assignment 
exists. Advanced decision heuristics and intelligent conflict 
diagnosis techniques can be used to avoid searching through the 
entire tree of 2n variable assignments. 

Traditionally, SAT solvers have been used to solve decision 
problems, however, recently SAT solvers have been extended to 
handle pseudo-Boolean (PB) constraints [4, 5] which are simple 
inequalities that are equivalent to 0–1 ILP constraints. An 
advantage of PB constraints is the ability to express optimization 
problems traditionally handled as ILP problems. Studies have 
shown that 0-1 SAT-based ILP solvers can compete with the best 
available generic-based ILP solvers in solving 0-1 ILP problems 
arising in specific applications [4, 5]. The recent advances in SAT 
solvers as well as the availability of increasingly affordable high 
computational power, have allowed larger problem instances to be 
solved in different applications domains including: Power [6], 
FPGA [7], Communications [8], Access Control [9], Cryptography 
[10], Application Mapping [11], Genetics [12] and Scheduling [13]. 
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4. ILP FORMULATION ENHANCEMENTS 
This paper proposes two enhancements to the ILP formulation of 
the clustering problem presented in [2] which was built on the ideas 
and assumptions put forward in the EEC-CB model presented in 
[18]. The proposed enhancements include the ability for nodes to 
establish multihop connections (2-hop), and also the ability for 
nodes to communicate with other nodes in the same cluster without 
going through the designated clusterhead for that cluster (Intra-
Cluster communication). 
 
4.1. Variables and Assumptions 

The variables used in [2, 18] are maintained as follows: 
 - N: Total number of nodes in the network (predetermined) 
 - P: Number of clusters heads (predetermined) 
 - dij: Euclidean distance between nodes i and j 
 - Kj: Max number of nodes that can be connected to Clusterhead j 
(CH j) (predetermined) 
 - cij: Cost of connecting a regular node i to CH j 
(proportional to dij

2 ) 
 - hjk: Cost of connecting CH j to CH k (proportional to djk 

3) 
 - xij: Variable. 1 if node i is connected to CH j; 0 otherwise 
 - zij: Variable. 1 if CH i is connected to CH j; 0 otherwise 
 - yj: Variable. 1 if node j is chosen to be a CH; 0 otherwise 
 - wij: Variable. 1 if xij = 1and yj = 1; 0 otherwise. 
 - bj: Weight associated with CH j. 

 
The following assumptions which were made in the ILP 

formulations in [2, 18] are also applicable to the proposed ILP 
formulation. The variable b, in the objective function, which 
represents the level of the node’s capability to act as a clusterhead, 
gets its value from an external source (algorithm, tool, etc). This is 
useful as multiple approaches/algorithms, which determine the 
suitability of a node in acting as a clusterhead, can be combined 
with this model without changing the equations, although this is out 
of the scope of our research. It is assumed that nodes are able to 
determine each other’s position, either through the use of GPS, or 
other localization techniques.  

 
4.2. Intra Cluster Communication Enhancement 

Intra Cluster communication is introduced for two reasons. The 
first is that the primary responsibility of the clusterhead should be 
to route communication between clusters and not within a cluster. 
The goal is for the clusterhead to conserve as much energy as 
possible for the communication between clusters, allowing it to last 
longer in its role as a clusterhead. The second reason is that should 
a clusterhead fail, the nodes within a cluster will still be able to 
communicate. 

Equation 1 is the objective function to be minimized. The 
structure of the objective function is kept similar to the one used in 
the EEC-FCB and EEC-CB models in [18]. It is the objective 
function used in the proposed ‘Star-Ring’ model in [2], with one 
additional term. 
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(1) 

 

The first term in the objective function represents the 
connections between nodes and clusterheads. The second term 
represents the selection of nodes to be clusterheads. The third term 
represents the cost of selection of the Master clusterhead. The 
fourth term is the cost of connections between clusterheads 

(backbone). The final term is the additional term added to 
incorporate the cost of connections between regular nodes within 
the same cluster, i.e. Intra-Cluster communication. The objective 
function aims to minimize the cost of sending/receiving data along 
these connections.  

The proposed enhancement requires the introduction of the 
following new variables. Variable vi,j  and fi,j,m* are two new 
variables used when enabling Intra-Cluster connections.  
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1, ݂݅ ݁݀݋݊ ݅ ܽ݊݀ ݀݁ݐܿ݁݊݊݋ܿ	݁ݎܽ	݆	݁݀݋݊ ݋ݐ

݄݁ݐ ݁݉ܽݏ 		݄݀ܽ݁ݎ݁ݐݏݑ݈ܿ
0, ݁ݏ݅ݓݎ݄݁ݐ݋

 

௜,௝ݒ ൌ ൜
1, ݂݅ ݎ݈ܽݑ݃݁ݎ ݁݀݋݊ ݎ݈ܽݑ݃݁ݎ	݋ݐ	݀݁ݐܿ݁݊݊݋ܿ	ݏ݅	݅ ݁݀݋݊ ݆
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m* is an index starting from 0, incremented when three 
conditions (i≠j, j≠k, i≠k) are satisfied and used to indicate a 
possibility of 2 nodes being connected to the same clusterhead.  

m*  is used to indicate the number of possibility, not the 
identity of nodes involved.. There will always be N—2 possibilities. 
For example: 7 node network. When considering whether node i 
and node j, one must check if they are both connected to the same 
clusterhead which could be anyone of the 5 remaining nodes 
(should they be selected to be clusterheads).The following 
constraints are implemented in addition to the constraints used to 
implement the Star-Ring formulation in [2]. The following 
constraints enable Intra-Cluster communication. Constraints 2 and 
3 are used to identify that node i is connected to node j if one of the 
possibilities of the both of them being connected to the same 
clusterhead has occurred. (N = total number of nodes) 
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Constraint 4 is used to enforce the restriction that a node cannot 
connect to itself through a hop. 
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ൌ 0 (4) 

Constraint 5 is used to state that node i being connected to node 
j in the same cluster also implies that node j is connected to node i 
(Matrix is diagonal). 
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Constraints 6 and 7 are used together to implement an ‘AND’ 
logic. Node i and node j are connected through an Intra-Cluster 
connection if they are both connected to clusterhead k, satisfying 
the m*th possible clusterhead connection. 
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6. CONCLUSION 

This paper proposes two enhancements to the ILP formulation 
developed in [2]. The enhancements include the ability for nodes 
within the same cluster to communicate without going through the 
designated clusterhead, and the ability to establish multihop links. 
Using the proposed ILP formulations and enhancements together 
with a custom designed tool, it was possible to test the performance 
and analyze the performance of generic-based ILP and 0-1 SAT-
based ILP solvers. The SAT solver, BSOLO, performed well for 
small scale networks while the generic-based ILP solvers CPLEX 
and SCIP were able to handle the larger scale topologies without 
timing out. It is observed that while these enhanced formulations 
enable the generation of complex network solutions, and are 
suitable for small scale networks, the time taken to generate the 
corresponding solution does not meet the strict requirements of a 
practical environment. 
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TABLE I: SOLVER PERFORMANCE IN SOLVING THE SR+IC  ILP 
FORMULATIONS OF THE CLUSTERING PROBLEM. ‘-‘ AND ‘!’ REPRESENTS 

‘CANNOT SOLVE’ AND ‘TIMEOUT’, RESPECTIVELY. 

Network 
Configurations 

Solver Times (seconds) 

Proposed SR Model +Intra Cluster Communication 

#
N 

#C
H 

#M
CS 

CPLEX SCIP BSOLO Pueblo 
Minisat

+ 
5 3 1 0.459 0.019 0.004 0.002 0.061 

7 3 2 1.810 1.657 0.055 0.022 0.366 

9 3 3 1.810 10.168 0.172 0.106 4.244 

11 3 4 13.701 44.178 0.500 0.566 48.341 

13 3 5 58.213 167.48 3.642 - 453.63 

15 3 6 310.03 ! 30.127 - ! 

7 4 1 0.354 0.070 0.022 0.025 0.764 

9 4 2 1.463 5.791 0.207 0.139 25.139 

11 4 3 5.543 28.558 0.645 1.066 367.87 

13 4 3 31.538 116.23 9.057 - ! 

15 4 4 119.61 589.97 74.844 - ! 

9 5 1 0.898 0.387 0.132 0.174 22.154 

11 5 2 4.197 16.867 1.047 2.462 456.81 

13 5 2 28.365 71.119 7.314 - ! 

15 5 3 75.028 204.69 74.363 - ! 

TABLE I I: SOLVER PERFORMANCE IN SOLVING THE SR+MH ILP 
FORMULATIONS OF THE CLUSTERING PROBLEMS. ‘-‘ AND ‘!’ 

REPRESENTS ‘CANNOT SOLVE’ AND ‘TIMEOUT’, RESPECTIVELY. 

Network 
Configurations 

Solver Times (seconds) 

Proposed SR Model+Multihop Links 

#
N 

#C
H 

#M
CS 

CPLEX SCIP BSOLO Pueblo 
Minisat

+ 
5 3 1 0.277 0.038 0.007 - 0.372 

7 3 2 0.600 2.005 0.187 - 237.85 

9 3 3 1.621 9.485 2.451 - ! 

11 3 4 11.116 28.294 75.725 - ! 

13 3 5 50.044 125.69 765.24 - ! 

15 3 6 168.97 329.92 ! - ! 

7 4 1 50.225 150.82 688.56 - ! 

9 4 2 190.57 401.77 ! - ! 

11 4 3 0.705 0.599 0.231 - 135.94 

13 4 3 12.102 68.562 8.449 - ! 

15 4 4 69.610 255.45 310.90 - ! 

9 5 1 1.621 9.485 2.451 - ! 

11 5 2 11.116 28.294 75.725 - ! 

13 5 2 50.044 125.69 765.24 - ! 

15 5 3 168.97 329.92 ! - ! 
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