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Abstract- Port scanning is one of the most popular 

reconnaissance techniques that many attackers use to profile 
running services on a potential target before launching an 
attack. Many port scanning detection mechanisms have been 
suggested in literature. However, very little work has been 
done on generating port scanning benchmarks that 
researchers can use to test their detection methods. In this 
paper, we suggest a simulation framework using OMNeT++ to 
generate benchmarks that resemble real-life traffic. We 
approach the problem by dividing it into three modules 
(topology creation, good traffic generation, bad traffic 
generation), each of which we make realistic, similar to 
deployed and usable networks. Hence the resultant benchmark 
is annotated and made public. 

 Keywords— Port Scanning Benchmarks, Port Scanning, 
Intrusion Detection System. 

I. INTRODUCTION 
In networking, new protocols and systems are usually 

tested, at least in the early stages, using simulations as 
opposed to testing and troubleshooting using real systems 
[1]. Only when the simulation results are satisfactory, 
implementation on real hardware is performed. Compared 
to the cost and efforts spent in establishing a real test bed 
environment, network simulators have proven to be 
relatively fast, accurate, and inexpensive regardless of the 
protocol being simulated or its layer [2]. Typical systems 
that are tested via simulation include Intrusion Detection 
Systems (IDSs) which are used as a first line of defense 
against intrusions.  

Although IDSs do protect the corporate network from 
many intrusion attempts, malicious users are continuously 
finding new ways to bypass the IDS and get access into 
the internal network [3-4]. When used smartly, the 
activity of port scanning is an example of such malicious 
actions that can deceive the IDS and go unnoticed. Port 
scanning is a targeted form of information gathering that 
attempts to profile the services that are running on a 
potential target by probing the target for open ports [4]. 
While profiling the services, the attacker’s main aim is to 
discover services with weak security or well-known 
vulnerability. Finding such a service allows attackers to 
perform malicious activities ranging from passive attacks 
such as extracting secure information to active attacks 
such as implanting viruses, worms, and trojan horses in 
the network. Due to their dangerous consequences, every 
IDS comes with a port scanning detection module based 

on one of the following approaches: time-based [5], 
connection-based [6], and machine learning [7]. However, 
by devising smart port scanning activities such as slow 
port scanning or distributed port scanning, adversaries can 
still bypass the deployed IDSs, making this field a 
challenging area for researches [8]. As a result, network 
administrators must perform rigorous assessments and 
tests to make sure that the IDSs protecting the corporate 
do provide promising results as claimed by the IDS 
vendors. Consequently, it is of vital importance to 
develop a benchmark that enables vendors as well as 
network administrators and researchers to effectively 
evaluate and test IDSs.  

The main aim of testing IDSs is to evaluate the hit rate 
and false alarm ratio. The hit rate ratio determines the 
level of correctly detected attacks, while the false alarm 
ratio indicates the wrong alarms produced by the IDS. 
These tests can be either performed in real environments 
or simulated ones [9]. Currently, researchers perform 
these tests under simulated environments, because of the 
high costs and risks involved in testing under real 
environments [10]. Meanwhile, successful and effective 
evaluation of IDSs requires overcoming several 
challenges summarized hereafter. A challenging task in 
testing IDSs is collecting attack scripts. Although many 
attack scripts exist online, it takes a considerable amount 
of time and effort to adapt them in simulation. Moreover, 
these scripts are produced by different developers to work 
in different environments, hence adding more complexity 
when integrating them into the simulated environment 
[10]. Another challenging task that is crucial in IDS 
testing is the generation of background traffic. Most IDS 
testing approaches can be classified into one of four 
environments depending on the background traffic 
generation patterns:  

1. No back ground traffic: In this approach the IDS is 
deployed to only capture and analyze the attack 
scripts without any background activity. The 
evaluation metrics used are attack detection accuracy 
and hit rate precision. However, in this approach it is 
impossible to evaluate neither the false alarms nor the 
robustness of the IDS under high levels of 
background activities [9]. 

2. Real background traffic: Testing in real environment 
with realistic background traffic is very effective in 
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finding the hit rate and false alarm ratio because of 
the background activity. However, it is impossible to 
guarantee the identification of all attacks since there 
is no prior knowledge about hidden ones. Another 
major drawback of such approach is that the data 
cannot be distributed due to privacy concerns [11]. 

3. Sanitized background traffic: In sanitization, all the 
sensitive data are removed from a realistic traffic log, 
in order for it to be distributed and analyzed freely 
without any concerns regarding privacy issues. After 
sanitization, attack traffic is injected for testing the 
IDS. However, this sanitization may remove essential 
information that is needed for the attack detection 
and might rule the traffic as unrealistic [12]. 

4. Generated background traffic: In this approach the 
background traffic is generated by complex traffic 
generators that model realistic traffic behavior [13]. 
Since it is guaranteed that the generated traffic 
doesn’t contain any unknown attack, it yields to a 
precise evaluation of false alarms and hit rate ratio. 
One more advantage of this approach is that the tests 
can be repeated by generating the same traffic again. 
However, the main challenge remains to make sure 
that the generated traffic resembles realistic 
scenarios. 

In this paper, we adopt the last environment and 
develop a comprehensive framework that generates 
benchmarks for port scanning testing. We first create a 
topology that can be easily extended to include normal as 
well as malicious users. We then create the modules that 
simulate real traffic and show via simulations that our 
generated normal traffic resembles self-similar traffic and 
follows real traffic patterns. Finally we create the modules 
that generate the port scanning attacks. The modules were 
designed and implemented using the discrete event 
simulator OMNeT++. It is to be noted that little work has 
been done on developing benchmarks for port scanning. 
Most researchers use for their testing, data from log files 
that does not contain many port scanning activities or 
contains manually generated port scanning traffic [4]. The 
rest of this paper is structured as follows: Section II 
summarizes previous works on port scanning benchmarks 
development. Section III briefly overviews OMNet++. 
Section IV describes the topology, background, and attack 
traffic generation. Section V concludes the paper and 
presents our future work. 

II. RELATED WORK 
In recent studies, researchers have proposed several 

ways to test IDSs under various environments (real 
background traffic, no back ground traffic, or generated 
background traffic). For real background traffic, different 
data sets have been used for testing purposes. The authors 
in [14] publicly released internal enterprise traffic, known 
as Lawrence Berkeley National Laboratory data sets 
(LBNL), that spans more than 100 hours of activity over a 
total of several thousand internal hosts. The main 
applications observed were web, mail, and name services. 

Meanwhile, the traffic was anonymized to ensure that 
user privacy is preserved. The LBNL attack traffic mostly 
consists of malicious nodes that perform TCP port scans 
which are targeted at LBNL hosts. In [4], a data set 
known as Endpoint background traffic was presented. The 
data set consists of data exchanged in home and 
university environments. Since home computers are 
usually shared among multiple users and run peer-to-peer 
applications, they generate significantly higher traffic 
volume than university computers. The attack traffic was 
mostly composed of outgoing port scans, as opposed to 
LBNL traffic where attack traffic is inbound. In [15], the 
authors gathered real traffic traces from a dormitory at 
Seoul National University (SNU) to test their proposed 
port scanning detection method. They used a fast increase 
slow decrease (FISD) scheme that automatically and 
adaptively sets the port scanning detection threshold, 
based on traffic statistical data during prior time periods. 
The proposed method outperformed Snort, BRO, and 
Threshold Random Walk (TRW).  

In [16], the authors created a port scanning testbed 
using Deter network that uses Emulab software [18]. 
DScan [19] and NSAT [20] scanner tools were then used 
to perform distributed port scanning activities. The 
testbed was used to evaluate the proposed detection 
algorithm that is based on solutions to the set covering 
problem [17]. The algorithm successfully detected strobe 
scan (scanning multiple ports on multiple hosts) and 
horizontal scans (scanning a specific port on multiple 
hosts) against contiguous address space. In [2], the 
authors created their own port scanning benchmark in 
OMNet++ using uniform distribution of traffic. The data 
was used to test the proposed VoIP IDS. However, the 
generated traffic didn’t convey a realistic behavior to test 
the false alarm ratio.  

In [21], the authors built a model called Realistic 
Simulation Environment (ReaSE) that is developed on top 
of INET framework (an extension of OMNeT++), hence 
inheriting the advantages of simulating the Internet 
protocols such as TCP/IP. ReaSE creates a realistic 
simulation environment by considering multiple aspects 
of network simulations such as topology generation and 
realistic traffic patterns. The generated traffic resembles 
realistic traffic and exhibits self-similar behavior. 
However, ReaSE is not being updated to be compatible 
with the recent INET framework that supports recent 
protocols [22]. In our approach, we borrow some of the 
concepts from ReaSE along with hand crafted concepts to 
create and incorporate extra modules into INET 
framework to be able to generate realistic traffic while 
embedding port scanning activities within the generated 
traffic.  We next give an overview of our simulator of 
choice: OMNeT++.  

III. OMNeT++ Highlights 
OMNeT++ is a discrete event simulator which is 

based on hierarchical nested modules. These modules 
communicate using messages through channels. Simple 
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modules lie at the lowest level of the hierarchy and 
combine one or more C++ classes that describe the 
algorithm and functionality. Compound modules consist 
of one or more simple modules and define the 
interconnection among them. Moreover, the compound 
modules can be interconnected through incoming and 
outgoing gates called channels. OMNeT++ models are 
often called networks and each network contains simple 
and/or compound modules where each compound module 
consists of multiple simple modules as shown in Figure 1. 

 
Figure 1. OMNeT++ Model Structure 

The main components of each simulation are the NED 
and INI files. The NED which is the network description 
file (.ned), describes the structure and parameters of nodes 
in a network. The initialization file (.ini) is used to set 
values to the parameters included in the NED, for instance 
traffic type and simulation behavior. OMNET++ offers 
variety of services for specialized areas. The INET 
framework is amongst the very well-known extensions 
that support simulations of the common Internet protocols 
such as Transmission Control Protocol (TCP), Internet 
Protocol (IP), User Datagram Protocol (UDP), Internet 
Control Message Protocol (ICMP) along with other 
services such as Packet Capturing. The details of each 
implemented protocol can be found in the corresponding 
Request for Comment (RFC) document [23]. 

IV. BENCHMARK FRAMEWORK COMPONENTS 
In network evaluation, a standard simulation must 

define the topology of the network and traffic patterns of 
the simulated hosts along with anomalous nodes. In this 
section, we detail our approach to developing port 
scanning benchmark with realistic logs. First we explain 
the suggested network topology and what is the state of 
the art in generating different topologies. Then we detail 
the traffic generation methodology. We end the section by 
describing the bad traffic (port scanning) generation. 

A. Network Topology 

To generate realistic topologies, two approaches are 
mainly used [21]. The first approach is based on 
observing real-life scenarios collected from BGP routing 
data or Routeviews project [24]. The main drawback of 
real observations is that the collected data is not easily 
integrated with the simulator given the heavy load of data. 
Moreover, the observed data are not updated based on 
current topologies [21]. The second approach relies on 
random topology generation. However, random networks 
do not accurately model real topologies since major 
parameters such as link metrics and internal BGP 

configurations are often ignored [25]. Even with this 
drawback, the research community heavily uses random 
topology generation that depends on power-low 
distribution [25]. In this approach, few nodes contain lots 
of edges resembling the core network, while the rest of 
the nodes have few edges resembling hosts and routers. 
The communicating links between nodes have different 
parametric values to resemble realistic network topology. 
For instance the link bandwidth between core and 
gateway is larger than the link bandwidth between 
gateway and edges. Meanwhile, the connectivity 
decreases from edges along the cores. In OMNeT++, the 
INET framework is capable of generating such random 
topologies. However, it doesn’t take into account the 
realistic parametric values in link speeds and routers. 
Another option for topology generation is BRITE [26], 
which can be integrated with NS-2 and OMNeT++. 

 
Figure 2. Network topology combining all the Autonomous Systems. 

In our simulation environment, we have adopted one 
of the random topologies generated by ReaSE and 
modified the nodes and links characteristics to fit realistic 
networks. In ReaSE, the generation of realistic topologies 
is divided into two parts due to the hierarchical structure 
of the Internet. On one hand, Autonomous Systems (AS) 
level topology focuses on the connection of multiple 
separate domains as shown in Figure 2. On the other 
hand, the router level topology of each AS has to be 
generated. This method is based on Positive-Feedback 
Preference (PFP) that randomly implements power-low 
distribution to the nodes [27].  

 
Figure 3. Router Level Topology (core, gateway, edge) 

The core routers (core0 and core1 in Figure 3 for 
example) are all connected to each other through very 
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high speed links, especially since they are used to connect 
together the various Autonomous Systems. Furthermore, 
each core connects to few gateway routers via high speed 
links (for instance in Figure 3, core0 connects to 
Gateway1 & Gateway2) and each gateway is connected to 
multiple edge routers. Finally, the edges connect to 
several hosts with lower speed links. Figure 3 represents 
the proposed router level topology and Table I presents 
the chosen parameters. The second row of Table I  
(Core<----2.5Gbps--->Core) can be read as follows: bi-
directional links with speed 2.5 Gbps connect Core 
routers. The last row means that Hosts connect to Edge 
Routers via uni-directional links with speed 0.128 Mbps. 
The other rows follow the same explanation. 

Table I. Links properties in the proposed topology 

Router Level Link Speed Router Level 

Core <---- 2.5 Gbps ---> Core 

Core <----- 1 Gbps ----> Gateway 

Gateway <--- 155 Mbps---> Edge 

Edge <---- 10 Mbps----> Server 

Edge -- 0.768 Mbps---> Host 

Host -- 0.128 Mbps---> Edge 

B. Traffic Generation 

Having created the appropriate topology, it is 
important to make sure that the traffic generation between 
hosts resembles realistic traffic patterns in order to get 
meaningful and accurate evaluation results. Creating such 
patterns require the generation of self-similar behavior 
[16] which is based on a reasonable combination of 
multiple kinds of traffic. The following tools are among 
the well-known traffic generators that can produce self-
similar traffic patterns: REASE [21], BonnTraffic [13], 
TrafGen [28], and D-ITG [29]. One possibility to achieve 
self-similar traffic behavior is to use multiple traffic 
sources that are switched on and off based on heavy-tailed 
intervals [30]. Another possibility is to produce traffic at 
packet level by replicating appropriate stochastic 
processes for both Inter Departure Time (IDT) and Packet 
Size (PS) random variables (exponential, uniform, 
Cauchy, normal, pareto, etc.) [29]. 

Hence, ReaSE combines both mentioned mechanisms 
(multiple traffic sources and packet level modification) 
and adopts a reasonable mixture of different protocols 
based on TCP, UDP, and ICMP to create eight different 
traffic profiles and assign a selection probability to each 
one of these profiles. On the other hand, TraffGen 
(mentioned above) focuses on the parametric 
configuration of the hosts such as inter departure time, 
packet size, ON length, and OFF length to generate a self-
similar traffic pattern.  

Our traffic generation module is inspired from both 
TrafGen and ReaSE, where the important parameters are 
extracted from each and integrated into our framework. 
We created in OMNET++ traffic generation modules that 
include the parameters used in ReaSE (old version) and 
the parameters currently used in INET. We manually 

configured the hosts to incorporate the protocols 
presented in Table II. The table also shows the traffic 
sources along with the traffic flow percentage. Hence, this 
approach is different from that used in ReaSE which 
adopts a random traffic selection approach. 

Table II. Traffic sources with different flow percentages 

Traffic Source Protocol Flow (%)  

Http traffic 
Ftp traffic 
Telnet traffic 
Echo traffic 
UdpBurst traffic 
Ping               traffic 

TCP 
TCP 
TCP 
TCP 
UDP 
ICMP 

32 % 
20 % 
10 % 
33 % 
2 % 
3 % 

In our implementation, the generated traffic consists 
of variable traffic pattern that is achieved by configuring 
the numeric parameters to random or fixed values in the 
initialization file (.ini). Moreover, we use different TCP 
and UDP applications such as Telnet, HTTP, FTP, and 
UDP to make use of multiple traffic sources. For that, we 
use the recent INET framework that provides different 
TCP and UDP applications. One such application is 
TCPBasicClientApp that produces HTTP and FTP traffic 
by setting the parameters shown in Figure 4.  

 
Figure 4. FTP and HTTP parameters  

 Our use of truncnormal and exponential functions 
varies the parameter’s values, and hence results into a 
variable traffic behavior. Figure 5 demonstrates a sample 
traffic pattern generated by our traffic generation module. 
The traffic consists of TCP, UDP, and ICMP packets. The 
number of packets varies from a minimum of 50 to a 
maximum of 590 packets at a time. More than 420 
thousands packets were injected from a total of 90 hosts 
(note that, in Figure 3 mClients and nClients are arrays of 
30 and 40 hosts respectively). Figure 5 represents the 
captured traffic at Edge1 router that connects Servers 1 & 
2 to the whole network. This figure assures that the traffic 
behavior of our generator is self-similar and realistic in 
accordance with the parameters presented in Table II.  

 
Figure 5. Traffic generation behavior using our module 

FTP: 
   numRequestsPerSession = exponential(3) 
   requestLength = truncnormal(20,5) 
   replyLength = exponential(1000000) 

HTTP: 
   numRequestsPerSession = 1 
   RequestPerSession = exponential(5) 
   requestLength = truncnormal(350,20) 

   replyLength = exponential(2000) 
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C. Attack Traffic 

In order to generate the attack traffic, first we take an 
insight into the port scanning activity. Basically, there are 
65536 standardly defined ports on a computer that are 
classified into three ranges: (1) well known ports (0-
1023), (2) registered ports (1024-49151), and (3) 
dynamic/private ports (49152-65536) [4]. Computers 
connected to a network exploit many services that use 
TCP/UDP protocols by connecting through these ports. 
Essentially, a port scanner sends a message to each port 
and waits for a certain response. Depending on the 
received response, the port scanner can discover whether 
the port is closed or being used and further continue 
discovering the weakness to exploiting the offered 
service. Most of the port scanning activities use TCP that 
is based on a connection oriented protocol and provide 
scanners with trustworthy results. However, some of the 
port scan activities may occur using UDP which is based 
on a connectionless service. The drawback of using UDP 
is that it can be easily blocked by firewalls and may not 
return consistent information due to the connectionless 
services [4]. 

 
Figure 6. TCP 3-way handshake. (a) The 3-way handshake with an 

open port. (b) Connection attempt on a closed port. 

A TCP connection is established by a 3-way 
handshake which is explained in Figure 6, and the 
listening application (server) is informed only when the 
handshake is successful. When a user initiates a 
connection, it first sends a TCP packet that carries a SYN 
flag. If the port is open on the server side, it will respond 
with a TCP packet containing the SYN+ACK flag after 
which the initiating user will respond with a TCP ACK 
message and finally the connection is established. On the 
other hand, if the port is closed the server will reply with 
a TCP containing RST flag [31]. 

Among the well-known port scanning attacks that use 
TCP, the following are the mostly used [4]: 
Connect Scan: a TCP connect scan completes the 3-way 
handshake and after successful attempt it is logged as a 
connection. If the connection is successful, the attacker 
sends a FIN packet to tear down the connection. This type 
of scan is recorded in the log. SYN Scan: It is considered 
the most popular type of port scanning and usually 
referred to as TCP half connect scan. The scanner initiates 
by sending a SYN packet and after receiving SYN+ACK 
(open port) the attacker responds with RST not 
completing the 3-way handshake. This way the scan 
doesn’t show up in the application level logs since the 
connection is not established. This way gives more 
advantage to the scanner to remain stealthy. FIN Scan: 
This type of attack is used when the network firewall 
drops all SYN-ACK packets to closed ports. The firewall 

however allows all inbound packets with FIN, hence the 
scanner sends a FIN packet to the destination and upon 
receiving an RST response, it means the port is closed. If 
the port is open after sending a FIN, there will be no 
response. 

In our implementation of the attack traffic, we 
modified the INET tcp source files (TCPConnection.h, 
TCPConnectionBase.cc, TCPConnectionRcvSegment.cc, 
TCPConnectionUtil.cc, TCPConnectionEventProc.cc, and 
TCP.cc) to launch Connect, SYN, and FIN port scanning 
attacks. For testing purposes we modified the scanning 
process in such a way that after targeting a specific port 
number, we target the 4 ports just after it.  

In our used simulation topology (Figure 3), Server1 
has 5 open ports (80, 200, 300, 1000, and 2000), while 
Server2 has only 2 open ports (80 and 1000). We set 
Malicious_1&2 and nClients[0..29] to launch the attacks 
by targeting the ports and incrementing them up to 4. For 
instance Malicious_1 (row 2 of Table III) launches a FIN 
attack from its local port 22 to port 1000 on Server 1, then 
1001, 1002, 1003, and 1004. Similarly, Malicious_1 
launches another FIN attack from port 23 to port 200 on 
Server 1, followed by scanning ports 201, 202, 203, and 
204.  On the other hand and to attempt to fool IDSs, we 
set each of the mClients[30] hosts to generate normal 
HTTP and FTP traffic to Server 2 resulting in 60 different 
connections. Table III shows the simulated attack traffic. 

Table III. Attack traffic statistics 

Source Name Source Port Port Scan Dest Name Dest Port 

Malicious_1 22 FIN  Server 1 1000 

Malicious_1 23 FIN  Server 1 200 

Malicious_1 26 SYN  Server 1 80 

Malicious_1 27 SYN Server 1 300 

Malicious_2 18 FIN  Server 1 2000 

Malicious_2 24 FIN  Server 1 1000 

Malicious_2 33 SYN Server 1 80 

Malicious_2 48 SYN Server 1 3000 

nClients[0..10] 19 FIN  Server 1 80 

nClients[11..20] 20 FIN  Server 1 200 

nClients[21..29] 21 FIN Server 1 2000 

To create the benchmark, we kept the simulation 
running for 20 minutes with a high load of traffic while 
recording the log on the Edge-1 router, since it connects 
the servers to other hosts and can be visualized as the IDS 
proper position. Then we analyze the recorded log in the 
PCAP format using MalwareAnalysis (PCAP analyzer 
that uses Snort database) under Ubuntu 12.04. 
MalwareAnalysis was able to successfully detect all the 
port scanning attacks we launched, but it also reported a 
lot of normal traffic as attacks (false alarms). Table IV 
shows a summary of the detected attacks. Row 2 of Table 
IV indicates that port 80 on Server 1 experienced multiple 
port scanning activities, out of which 63% are Maimon 
(an alternative for FIN scan) and 37% are connect scan. 
This is consistent with the attacks we generated (rows 4, 
8, and 10 of Table III). However, we didn’t attempt any 
port scan on Server 2, but MalwareAnalysis showed that 
there exist alarms on ports 80 and 1000 (last 2 rows of 
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Table IV).  These alarms are false alarms and should not 
have been classified as attacks. This might be due to the 
connections established by mClients[30]. Hence, this 
shows the inability of MalwareAnalysis (which uses 
Snort) to correctly and accurately classify port scanning 
attacks. It also shows the usefulness of our generated 
traffic in analyzing port scanning detection systems. The 
code and port scanning benchmarks are made public on 
the following link: http://staff.aub.edu.lb/~we07/Tools/ 

Table IV. Detected attacks using MalwareAnalysis 

Destination : Port Source Description 

Server 1 : 80 Multiple Maimon:63% Connect: 37%  

Server 1 : 1000 Multiple Maimon:9% Connect:2% 
Other:89% 

Server 1 : 300 Multiple Connect: 100% 

Server 1 : 200 Multiple Maimon: 100%  

Server 1 : 2000 Multiple Maimon: 100%  

Server 2 : 80 Multiple Connect: 40% Other: 60% 

Server 2 : 1000 Multiple Other: 100% 

V. Conclusion & Future Work 
In this paper, we presented a simulation framework 

that we used to create realistic traffic logs with entries 
annotated as malicious or not. Our major aim was to 
create network logs that resemble real-life traffic. To do 
that, we created realistic modules for the network 
topology, background traffic, and bad traffic. Two types 
of port scans were implemented and injected within the 
normal traffic. OMNeT++ was used for simulations. 
Future work involves enhancing the prototype to include 
various topologies and a wide range of port scans.  
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