
Framework for Creating Realistic Port Scanning
Benchmarks

Mustafa Al-Tamimi
Department of Computer Science

American University of Beirut
Beirut, Lebanon

mai26@aub.edu.lb

Wassim El-Hajj
Department of Computer Science

American University of Beirut
Beirut, Lebanon

we07@aub.edu.lb

Fadi Aloul
Department of Computer Engineering

American University of Sharjah
Sharjah, UAE

faloul@aus.edu

Abstract- Port scanning is one of the most popular

reconnaissance techniques that many attackers use to profile
running services on a potential target before launching an
attack. Many port scanning detection mechanisms have been
suggested in literature. However, very little work has been
done on generating port scanning benchmarks that
researchers can use to test their detection methods. In this
paper, we suggest a simulation framework using OMNeT++ to
generate benchmarks that resemble real-life traffic. We
approach the problem by dividing it into three modules
(topology creation, good traffic generation, bad traffic
generation), each of which we make realistic, similar to
deployed and usable networks. Hence the resultant benchmark
is annotated and made public.

 Keywords— Port Scanning Benchmarks, Port Scanning,
Intrusion Detection System.

I. INTRODUCTION
In networking, new protocols and systems are usually

tested, at least in the early stages, using simulations as
opposed to testing and troubleshooting using real systems
[1]. Only when the simulation results are satisfactory,
implementation on real hardware is performed. Compared
to the cost and efforts spent in establishing a real test bed
environment, network simulators have proven to be
relatively fast, accurate, and inexpensive regardless of the
protocol being simulated or its layer [2]. Typical systems
that are tested via simulation include Intrusion Detection
Systems (IDSs) which are used as a first line of defense
against intrusions.

Although IDSs do protect the corporate network from
many intrusion attempts, malicious users are continuously
finding new ways to bypass the IDS and get access into
the internal network [3-4]. When used smartly, the
activity of port scanning is an example of such malicious
actions that can deceive the IDS and go unnoticed. Port
scanning is a targeted form of information gathering that
attempts to profile the services that are running on a
potential target by probing the target for open ports [4].
While profiling the services, the attacker’s main aim is to
discover services with weak security or well-known
vulnerability. Finding such a service allows attackers to
perform malicious activities ranging from passive attacks
such as extracting secure information to active attacks
such as implanting viruses, worms, and trojan horses in
the network. Due to their dangerous consequences, every
IDS comes with a port scanning detection module based

on one of the following approaches: time-based [5],
connection-based [6], and machine learning [7]. However,
by devising smart port scanning activities such as slow
port scanning or distributed port scanning, adversaries can
still bypass the deployed IDSs, making this field a
challenging area for researches [8]. As a result, network
administrators must perform rigorous assessments and
tests to make sure that the IDSs protecting the corporate
do provide promising results as claimed by the IDS
vendors. Consequently, it is of vital importance to
develop a benchmark that enables vendors as well as
network administrators and researchers to effectively
evaluate and test IDSs.

The main aim of testing IDSs is to evaluate the hit rate
and false alarm ratio. The hit rate ratio determines the
level of correctly detected attacks, while the false alarm
ratio indicates the wrong alarms produced by the IDS.
These tests can be either performed in real environments
or simulated ones [9]. Currently, researchers perform
these tests under simulated environments, because of the
high costs and risks involved in testing under real
environments [10]. Meanwhile, successful and effective
evaluation of IDSs requires overcoming several
challenges summarized hereafter. A challenging task in
testing IDSs is collecting attack scripts. Although many
attack scripts exist online, it takes a considerable amount
of time and effort to adapt them in simulation. Moreover,
these scripts are produced by different developers to work
in different environments, hence adding more complexity
when integrating them into the simulated environment
[10]. Another challenging task that is crucial in IDS
testing is the generation of background traffic. Most IDS
testing approaches can be classified into one of four
environments depending on the background traffic
generation patterns:

1. No back ground traffic: In this approach the IDS is
deployed to only capture and analyze the attack
scripts without any background activity. The
evaluation metrics used are attack detection accuracy
and hit rate precision. However, in this approach it is
impossible to evaluate neither the false alarms nor the
robustness of the IDS under high levels of
background activities [9].

2. Real background traffic: Testing in real environment
with realistic background traffic is very effective in

978-1-4673-2480-9/13/$31.00 ©2013 IEEE 1114

finding the hit rate and false alarm ratio because of
the background activity. However, it is impossible to
guarantee the identification of all attacks since there
is no prior knowledge about hidden ones. Another
major drawback of such approach is that the data
cannot be distributed due to privacy concerns [11].

3. Sanitized background traffic: In sanitization, all the
sensitive data are removed from a realistic traffic log,
in order for it to be distributed and analyzed freely
without any concerns regarding privacy issues. After
sanitization, attack traffic is injected for testing the
IDS. However, this sanitization may remove essential
information that is needed for the attack detection
and might rule the traffic as unrealistic [12].

4. Generated background traffic: In this approach the
background traffic is generated by complex traffic
generators that model realistic traffic behavior [13].
Since it is guaranteed that the generated traffic
doesn’t contain any unknown attack, it yields to a
precise evaluation of false alarms and hit rate ratio.
One more advantage of this approach is that the tests
can be repeated by generating the same traffic again.
However, the main challenge remains to make sure
that the generated traffic resembles realistic
scenarios.

In this paper, we adopt the last environment and
develop a comprehensive framework that generates
benchmarks for port scanning testing. We first create a
topology that can be easily extended to include normal as
well as malicious users. We then create the modules that
simulate real traffic and show via simulations that our
generated normal traffic resembles self-similar traffic and
follows real traffic patterns. Finally we create the modules
that generate the port scanning attacks. The modules were
designed and implemented using the discrete event
simulator OMNeT++. It is to be noted that little work has
been done on developing benchmarks for port scanning.
Most researchers use for their testing, data from log files
that does not contain many port scanning activities or
contains manually generated port scanning traffic [4]. The
rest of this paper is structured as follows: Section II
summarizes previous works on port scanning benchmarks
development. Section III briefly overviews OMNet++.
Section IV describes the topology, background, and attack
traffic generation. Section V concludes the paper and
presents our future work.

II. RELATED WORK
In recent studies, researchers have proposed several

ways to test IDSs under various environments (real
background traffic, no back ground traffic, or generated
background traffic). For real background traffic, different
data sets have been used for testing purposes. The authors
in [14] publicly released internal enterprise traffic, known
as Lawrence Berkeley National Laboratory data sets
(LBNL), that spans more than 100 hours of activity over a
total of several thousand internal hosts. The main
applications observed were web, mail, and name services.

Meanwhile, the traffic was anonymized to ensure that
user privacy is preserved. The LBNL attack traffic mostly
consists of malicious nodes that perform TCP port scans
which are targeted at LBNL hosts. In [4], a data set
known as Endpoint background traffic was presented. The
data set consists of data exchanged in home and
university environments. Since home computers are
usually shared among multiple users and run peer-to-peer
applications, they generate significantly higher traffic
volume than university computers. The attack traffic was
mostly composed of outgoing port scans, as opposed to
LBNL traffic where attack traffic is inbound. In [15], the
authors gathered real traffic traces from a dormitory at
Seoul National University (SNU) to test their proposed
port scanning detection method. They used a fast increase
slow decrease (FISD) scheme that automatically and
adaptively sets the port scanning detection threshold,
based on traffic statistical data during prior time periods.
The proposed method outperformed Snort, BRO, and
Threshold Random Walk (TRW).

In [16], the authors created a port scanning testbed
using Deter network that uses Emulab software [18].
DScan [19] and NSAT [20] scanner tools were then used
to perform distributed port scanning activities. The
testbed was used to evaluate the proposed detection
algorithm that is based on solutions to the set covering
problem [17]. The algorithm successfully detected strobe
scan (scanning multiple ports on multiple hosts) and
horizontal scans (scanning a specific port on multiple
hosts) against contiguous address space. In [2], the
authors created their own port scanning benchmark in
OMNet++ using uniform distribution of traffic. The data
was used to test the proposed VoIP IDS. However, the
generated traffic didn’t convey a realistic behavior to test
the false alarm ratio.

In [21], the authors built a model called Realistic
Simulation Environment (ReaSE) that is developed on top
of INET framework (an extension of OMNeT++), hence
inheriting the advantages of simulating the Internet
protocols such as TCP/IP. ReaSE creates a realistic
simulation environment by considering multiple aspects
of network simulations such as topology generation and
realistic traffic patterns. The generated traffic resembles
realistic traffic and exhibits self-similar behavior.
However, ReaSE is not being updated to be compatible
with the recent INET framework that supports recent
protocols [22]. In our approach, we borrow some of the
concepts from ReaSE along with hand crafted concepts to
create and incorporate extra modules into INET
framework to be able to generate realistic traffic while
embedding port scanning activities within the generated
traffic. We next give an overview of our simulator of
choice: OMNeT++.

III. OMNeT++ Highlights
OMNeT++ is a discrete event simulator which is

based on hierarchical nested modules. These modules
communicate using messages through channels. Simple

1115

modules lie at the lowest level of the hierarchy and
combine one or more C++ classes that describe the
algorithm and functionality. Compound modules consist
of one or more simple modules and define the
interconnection among them. Moreover, the compound
modules can be interconnected through incoming and
outgoing gates called channels. OMNeT++ models are
often called networks and each network contains simple
and/or compound modules where each compound module
consists of multiple simple modules as shown in Figure 1.

Figure 1. OMNeT++ Model Structure

The main components of each simulation are the NED
and INI files. The NED which is the network description
file (.ned), describes the structure and parameters of nodes
in a network. The initialization file (.ini) is used to set
values to the parameters included in the NED, for instance
traffic type and simulation behavior. OMNET++ offers
variety of services for specialized areas. The INET
framework is amongst the very well-known extensions
that support simulations of the common Internet protocols
such as Transmission Control Protocol (TCP), Internet
Protocol (IP), User Datagram Protocol (UDP), Internet
Control Message Protocol (ICMP) along with other
services such as Packet Capturing. The details of each
implemented protocol can be found in the corresponding
Request for Comment (RFC) document [23].

IV. BENCHMARK FRAMEWORK COMPONENTS
In network evaluation, a standard simulation must

define the topology of the network and traffic patterns of
the simulated hosts along with anomalous nodes. In this
section, we detail our approach to developing port
scanning benchmark with realistic logs. First we explain
the suggested network topology and what is the state of
the art in generating different topologies. Then we detail
the traffic generation methodology. We end the section by
describing the bad traffic (port scanning) generation.

A. Network Topology

To generate realistic topologies, two approaches are
mainly used [21]. The first approach is based on
observing real-life scenarios collected from BGP routing
data or Routeviews project [24]. The main drawback of
real observations is that the collected data is not easily
integrated with the simulator given the heavy load of data.
Moreover, the observed data are not updated based on
current topologies [21]. The second approach relies on
random topology generation. However, random networks
do not accurately model real topologies since major
parameters such as link metrics and internal BGP

configurations are often ignored [25]. Even with this
drawback, the research community heavily uses random
topology generation that depends on power-low
distribution [25]. In this approach, few nodes contain lots
of edges resembling the core network, while the rest of
the nodes have few edges resembling hosts and routers.
The communicating links between nodes have different
parametric values to resemble realistic network topology.
For instance the link bandwidth between core and
gateway is larger than the link bandwidth between
gateway and edges. Meanwhile, the connectivity
decreases from edges along the cores. In OMNeT++, the
INET framework is capable of generating such random
topologies. However, it doesn’t take into account the
realistic parametric values in link speeds and routers.
Another option for topology generation is BRITE [26],
which can be integrated with NS-2 and OMNeT++.

Figure 2. Network topology combining all the Autonomous Systems.

In our simulation environment, we have adopted one
of the random topologies generated by ReaSE and
modified the nodes and links characteristics to fit realistic
networks. In ReaSE, the generation of realistic topologies
is divided into two parts due to the hierarchical structure
of the Internet. On one hand, Autonomous Systems (AS)
level topology focuses on the connection of multiple
separate domains as shown in Figure 2. On the other
hand, the router level topology of each AS has to be
generated. This method is based on Positive-Feedback
Preference (PFP) that randomly implements power-low
distribution to the nodes [27].

Figure 3. Router Level Topology (core, gateway, edge)

The core routers (core0 and core1 in Figure 3 for
example) are all connected to each other through very

1116

high speed links, especially since they are used to connect
together the various Autonomous Systems. Furthermore,
each core connects to few gateway routers via high speed
links (for instance in Figure 3, core0 connects to
Gateway1 & Gateway2) and each gateway is connected to
multiple edge routers. Finally, the edges connect to
several hosts with lower speed links. Figure 3 represents
the proposed router level topology and Table I presents
the chosen parameters. The second row of Table I
(Core<----2.5Gbps--->Core) can be read as follows: bi-
directional links with speed 2.5 Gbps connect Core
routers. The last row means that Hosts connect to Edge
Routers via uni-directional links with speed 0.128 Mbps.
The other rows follow the same explanation.

Table I. Links properties in the proposed topology

Router Level Link Speed Router Level

Core <---- 2.5 Gbps ---> Core

Core <----- 1 Gbps ----> Gateway

Gateway <--- 155 Mbps---> Edge

Edge <---- 10 Mbps----> Server

Edge -- 0.768 Mbps---> Host

Host -- 0.128 Mbps---> Edge

B. Traffic Generation

Having created the appropriate topology, it is
important to make sure that the traffic generation between
hosts resembles realistic traffic patterns in order to get
meaningful and accurate evaluation results. Creating such
patterns require the generation of self-similar behavior
[16] which is based on a reasonable combination of
multiple kinds of traffic. The following tools are among
the well-known traffic generators that can produce self-
similar traffic patterns: REASE [21], BonnTraffic [13],
TrafGen [28], and D-ITG [29]. One possibility to achieve
self-similar traffic behavior is to use multiple traffic
sources that are switched on and off based on heavy-tailed
intervals [30]. Another possibility is to produce traffic at
packet level by replicating appropriate stochastic
processes for both Inter Departure Time (IDT) and Packet
Size (PS) random variables (exponential, uniform,
Cauchy, normal, pareto, etc.) [29].

Hence, ReaSE combines both mentioned mechanisms
(multiple traffic sources and packet level modification)
and adopts a reasonable mixture of different protocols
based on TCP, UDP, and ICMP to create eight different
traffic profiles and assign a selection probability to each
one of these profiles. On the other hand, TraffGen
(mentioned above) focuses on the parametric
configuration of the hosts such as inter departure time,
packet size, ON length, and OFF length to generate a self-
similar traffic pattern.

Our traffic generation module is inspired from both
TrafGen and ReaSE, where the important parameters are
extracted from each and integrated into our framework.
We created in OMNET++ traffic generation modules that
include the parameters used in ReaSE (old version) and
the parameters currently used in INET. We manually

configured the hosts to incorporate the protocols
presented in Table II. The table also shows the traffic
sources along with the traffic flow percentage. Hence, this
approach is different from that used in ReaSE which
adopts a random traffic selection approach.

Table II. Traffic sources with different flow percentages

Traffic Source Protocol Flow (%)

Http traffic
Ftp traffic
Telnet traffic
Echo traffic
UdpBurst traffic
Ping traffic

TCP
TCP
TCP
TCP
UDP
ICMP

32 %
20 %
10 %
33 %
2 %
3 %

In our implementation, the generated traffic consists
of variable traffic pattern that is achieved by configuring
the numeric parameters to random or fixed values in the
initialization file (.ini). Moreover, we use different TCP
and UDP applications such as Telnet, HTTP, FTP, and
UDP to make use of multiple traffic sources. For that, we
use the recent INET framework that provides different
TCP and UDP applications. One such application is
TCPBasicClientApp that produces HTTP and FTP traffic
by setting the parameters shown in Figure 4.

Figure 4. FTP and HTTP parameters

 Our use of truncnormal and exponential functions
varies the parameter’s values, and hence results into a
variable traffic behavior. Figure 5 demonstrates a sample
traffic pattern generated by our traffic generation module.
The traffic consists of TCP, UDP, and ICMP packets. The
number of packets varies from a minimum of 50 to a
maximum of 590 packets at a time. More than 420
thousands packets were injected from a total of 90 hosts
(note that, in Figure 3 mClients and nClients are arrays of
30 and 40 hosts respectively). Figure 5 represents the
captured traffic at Edge1 router that connects Servers 1 &
2 to the whole network. This figure assures that the traffic
behavior of our generator is self-similar and realistic in
accordance with the parameters presented in Table II.

Figure 5. Traffic generation behavior using our module

FTP:
 numRequestsPerSession = exponential(3)
 requestLength = truncnormal(20,5)
 replyLength = exponential(1000000)

HTTP:
 numRequestsPerSession = 1
 RequestPerSession = exponential(5)
 requestLength = truncnormal(350,20)

 replyLength = exponential(2000)

1117

C. Attack Traffic

In order to generate the attack traffic, first we take an
insight into the port scanning activity. Basically, there are
65536 standardly defined ports on a computer that are
classified into three ranges: (1) well known ports (0-
1023), (2) registered ports (1024-49151), and (3)
dynamic/private ports (49152-65536) [4]. Computers
connected to a network exploit many services that use
TCP/UDP protocols by connecting through these ports.
Essentially, a port scanner sends a message to each port
and waits for a certain response. Depending on the
received response, the port scanner can discover whether
the port is closed or being used and further continue
discovering the weakness to exploiting the offered
service. Most of the port scanning activities use TCP that
is based on a connection oriented protocol and provide
scanners with trustworthy results. However, some of the
port scan activities may occur using UDP which is based
on a connectionless service. The drawback of using UDP
is that it can be easily blocked by firewalls and may not
return consistent information due to the connectionless
services [4].

Figure 6. TCP 3-way handshake. (a) The 3-way handshake with an

open port. (b) Connection attempt on a closed port.

A TCP connection is established by a 3-way
handshake which is explained in Figure 6, and the
listening application (server) is informed only when the
handshake is successful. When a user initiates a
connection, it first sends a TCP packet that carries a SYN
flag. If the port is open on the server side, it will respond
with a TCP packet containing the SYN+ACK flag after
which the initiating user will respond with a TCP ACK
message and finally the connection is established. On the
other hand, if the port is closed the server will reply with
a TCP containing RST flag [31].

Among the well-known port scanning attacks that use
TCP, the following are the mostly used [4]:
Connect Scan: a TCP connect scan completes the 3-way
handshake and after successful attempt it is logged as a
connection. If the connection is successful, the attacker
sends a FIN packet to tear down the connection. This type
of scan is recorded in the log. SYN Scan: It is considered
the most popular type of port scanning and usually
referred to as TCP half connect scan. The scanner initiates
by sending a SYN packet and after receiving SYN+ACK
(open port) the attacker responds with RST not
completing the 3-way handshake. This way the scan
doesn’t show up in the application level logs since the
connection is not established. This way gives more
advantage to the scanner to remain stealthy. FIN Scan:
This type of attack is used when the network firewall
drops all SYN-ACK packets to closed ports. The firewall

however allows all inbound packets with FIN, hence the
scanner sends a FIN packet to the destination and upon
receiving an RST response, it means the port is closed. If
the port is open after sending a FIN, there will be no
response.

In our implementation of the attack traffic, we
modified the INET tcp source files (TCPConnection.h,
TCPConnectionBase.cc, TCPConnectionRcvSegment.cc,
TCPConnectionUtil.cc, TCPConnectionEventProc.cc, and
TCP.cc) to launch Connect, SYN, and FIN port scanning
attacks. For testing purposes we modified the scanning
process in such a way that after targeting a specific port
number, we target the 4 ports just after it.

In our used simulation topology (Figure 3), Server1
has 5 open ports (80, 200, 300, 1000, and 2000), while
Server2 has only 2 open ports (80 and 1000). We set
Malicious_1&2 and nClients[0..29] to launch the attacks
by targeting the ports and incrementing them up to 4. For
instance Malicious_1 (row 2 of Table III) launches a FIN
attack from its local port 22 to port 1000 on Server 1, then
1001, 1002, 1003, and 1004. Similarly, Malicious_1
launches another FIN attack from port 23 to port 200 on
Server 1, followed by scanning ports 201, 202, 203, and
204. On the other hand and to attempt to fool IDSs, we
set each of the mClients[30] hosts to generate normal
HTTP and FTP traffic to Server 2 resulting in 60 different
connections. Table III shows the simulated attack traffic.

Table III. Attack traffic statistics

Source Name Source Port Port Scan Dest Name Dest Port

Malicious_1 22 FIN Server 1 1000

Malicious_1 23 FIN Server 1 200

Malicious_1 26 SYN Server 1 80

Malicious_1 27 SYN Server 1 300

Malicious_2 18 FIN Server 1 2000

Malicious_2 24 FIN Server 1 1000

Malicious_2 33 SYN Server 1 80

Malicious_2 48 SYN Server 1 3000

nClients[0..10] 19 FIN Server 1 80

nClients[11..20] 20 FIN Server 1 200

nClients[21..29] 21 FIN Server 1 2000

To create the benchmark, we kept the simulation
running for 20 minutes with a high load of traffic while
recording the log on the Edge-1 router, since it connects
the servers to other hosts and can be visualized as the IDS
proper position. Then we analyze the recorded log in the
PCAP format using MalwareAnalysis (PCAP analyzer
that uses Snort database) under Ubuntu 12.04.
MalwareAnalysis was able to successfully detect all the
port scanning attacks we launched, but it also reported a
lot of normal traffic as attacks (false alarms). Table IV
shows a summary of the detected attacks. Row 2 of Table
IV indicates that port 80 on Server 1 experienced multiple
port scanning activities, out of which 63% are Maimon
(an alternative for FIN scan) and 37% are connect scan.
This is consistent with the attacks we generated (rows 4,
8, and 10 of Table III). However, we didn’t attempt any
port scan on Server 2, but MalwareAnalysis showed that
there exist alarms on ports 80 and 1000 (last 2 rows of

1118

Table IV). These alarms are false alarms and should not
have been classified as attacks. This might be due to the
connections established by mClients[30]. Hence, this
shows the inability of MalwareAnalysis (which uses
Snort) to correctly and accurately classify port scanning
attacks. It also shows the usefulness of our generated
traffic in analyzing port scanning detection systems. The
code and port scanning benchmarks are made public on
the following link: http://staff.aub.edu.lb/~we07/Tools/

Table IV. Detected attacks using MalwareAnalysis

Destination : Port Source Description

Server 1 : 80 Multiple Maimon:63% Connect: 37%

Server 1 : 1000 Multiple Maimon:9% Connect:2%
Other:89%

Server 1 : 300 Multiple Connect: 100%

Server 1 : 200 Multiple Maimon: 100%

Server 1 : 2000 Multiple Maimon: 100%

Server 2 : 80 Multiple Connect: 40% Other: 60%

Server 2 : 1000 Multiple Other: 100%

V. Conclusion & Future Work
In this paper, we presented a simulation framework

that we used to create realistic traffic logs with entries
annotated as malicious or not. Our major aim was to
create network logs that resemble real-life traffic. To do
that, we created realistic modules for the network
topology, background traffic, and bad traffic. Two types
of port scans were implemented and injected within the
normal traffic. OMNeT++ was used for simulations.
Future work involves enhancing the prototype to include
various topologies and a wide range of port scans.

ACKNOWLEDGMENT
This work was partially funded by the American
University of Beirut Research Board (AUB-URB) and an
American University of Sharjah Research Grant.

References
[1] T. Gamer and C. P. Mayer, "Large-scale evaluation of distributed

attack detection," in Proc. of the 2nd Int'l Workshop on OMNeT

(Hosted by SIMUTools 2009), 2009.
[2] B. I. A. Barry, "Intrusion detection with OMNeT," in Proc. of the

2nd International Conference on Simulation Tools and Techniques,

2009.
[3] Hacker Watch, Anti-Hacker Community.

http://www.hackerwatch.org/ last visited: 12 December 2012.

[4] Bhuyan, Monowar H., D. K. Bhattacharyya, and J. K. Kalita.
"Surveying port scans and their detection methodologies." The

Computer Journal, 54(10), 1565-1581, 2011.

[5] http://www.snort.org.
[6] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava and P.

Tan, “Data mining for network intrusion detection”, In Proc. 2002

[7] B. Soniya and M. Wiscy, "Detection of TCP SYN Scanning Using
Packet Counts and Neural Network," Signal Image Technology

and Internet Based Systems, 2008. SITIS '08. IEEE International

Conference, pp.646-649, Nov. 30 2008-Dec. 3 2008 doi:
10.1109/SITIS.2008.33

[8] Verwoerd, TH. and Hunt, R. Intrusion Detection Techniques and

Approaches. The Computer Communications, 25, 1356-1365,
2001.

[9] T. Gamer, "Collaborative anomaly-based detection of large-scale

internet attacks," Computer Networks, vol. 56, pp. 169, 2012.
[10] Wan, T. and Yang, X. 2001 IntruDetector: A Software Platform for

Testing Network Intrusion Detection Systems. In Proceedings of

the 17th Annual Computer Security Applications Conference
(ACSAC 2001) (New Orleans, Louisiana, December 2001).

[11] The NSS Group 2003. Intrusion Detection System Group Test

(Edition 4). Available: http://www.nss.co.uk.
[12] National Laboratory for Applied Network Research 2003.NLAR

Network Traffic Packet Header Traces. Available:

http://pma.nlanr.net.
[13] B. Roemer. BonnTraffic: A modular framework for generating

synthetic traffic for network simulations, Nov. 2005.

http://web.informatik.uni-bonn.de/IV/bomonet/BonnTraffic.htm.
[14] Pang, R.,Allman, M., Bennett, M., Lee, J., Paxson,V. andTierney,

B. (2005)A First Look at Modern Enterprise Traffic. Proc. ACM

IMC’05, Berkeley, CA, USA, October, 19–21, pp. 2–2. USENIX
Association

[15] S. K. Kim, S. H. Lee and S. W. Seo, "An Automatic Portscan

Detection System with Adaptive Threshold Setting," JOURNAL
OF COMMUNICATIONS AND NETWORKS, vol. 12, 2010.

[16] C. Gates, "Coordinated scan detection," in Proceedings of the 16th

Annual Network and Distributed System Security Symposium
(NDSS 09), 2009, .

[17] N. Alon, D. Moshkovitz and S. Safra, "Algorithmic construction of

sets for k-restrictions," ACM Transactions on Algorithms (TALG),
vol. 2, 153-177, 2006.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar. "An integrated

experimental environment for distributed systems and networks."

In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, 255 – 270, Boston, MA, USA,

December 2002. USENIX Association.

[19] D. R. (Anthraxx) and B. P. (Kolrabi). DScan Software.
http://www.u-n-f.com/dscan.html, 2002. Last visited: 12 June

2008.

[20] Mixter. Network security analysis tools.

http://nsat.sourceforge.net/.

[21] T. Gamer and M. Scharf, "Realistic simulation environments for

IP-based networks," in Proc. of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks

and Systems & Workshops, 2008.

[22] C. P. Mayer and T. Gamer, "Integrating real world applications
into OMNeT," Institute of Telematics, University of Karlsruhe,

Karlsruhe, Germany, Tech.Rep.TM-2008-2, 2008.

[23] http://www.ietf.org/rfc.html
[24] University of Oregon. Route Views Project.

http://www.routeviews.org.

[25] B. Quoitin, V. Van den Schrieck, P. François and O. Bonaventure,
"IGen: Generation of router-level internet topologies through

network design heuristics," in Teletraffic Congress, 2009. ITC 21

2009. 21st International, 2009, pp. 1-8.
[26] http://www.cs.bu.edu/brite

[27] S. Zhoua, G. Zhang, G. Zhang, and Z. Zhuge. Towards a Precise

and Complete Internet Topology Generator. In Proc. of ICCCAS,

volume 3, pages 1830{1834, June 2006.

[28] I. Dietrich. OMNeT++ Traffic Generator, Sept. 2006.

http://www7.informatik.uni-
erlangen.de/~isabel/omnet/modules/TrafGen/.

[29] S. Avallone, D. Emma, A. Pescap, and G. Ventre. A Practical

Demonstration of Network Traffic Generation. In Proc. of the 8th
IMSA, pages 138-143, Aug. 2004.

[30] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-

similarity through high-variability: statistical analysis of ethernet
LAN traffic at the source level. In Proc. of ACM SIGCOMM,

pages 100-113, Sept. 1995.

[31] M. Dabbagh, A. Ghandour, K. Fawaz, W. El Hajj, and H. Hajj

"Slow port scanning detection." in Proc. of the 7th IEEE Intl

Conference on Information Assurance and Security. 2011.

1119

