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Abstract: The purpose of this paper is to study the application of Boolean Satisfiability to the
verification of the PCI Local Bus. The novel feature of this approach is the generation of several
propositional formulas that describe the specification of the bus system. The formulas are tested
using a powerful SAT solver and the bus is verified for errors. The SAT-based approach has sev-
eral important advantages over conventional BDD-based approaches such as achieving high
speed testing. To demonstrate how our method works, we have modeled the PCI Local Bus and
verified several properties.

1    Introduction

Recent developments in semiconductor technology have made possible the integration of over 10 mil-
lion transistors on a single chip. A related practice which is evolving to avoid designing systems from
scratch is the use of predefined logic blocks referred to as Intellectual Property Components (IP cores)
which are usually integrated using standard buses. While most components are usually pre-validated, stan-
dard bus protocols still need to be tested and verified.

Testing bus protocols is a major challenge. Most bus interface specifications are complex and infor-
mally specified. Although a significant amount of work is devoted to the design and validation of bus inter-
faces, errors produced by bus protocols can be very difficult to debug especially when system designers
have restricted knowledge of the connected IP cores due to the protection of intellectual property.

This paper examines the behavior of the PCI Local Bus [12]. It was developed by Intel to accommo-
date the advance design of their pentium processors. The high performance bus is also used in DEC Alpha
processors. We will model the PCI bus and verify several of its properties using SAT techniques.

Several methods have been proposed to verify the PCI Local Bus [5, 6, 10, 11]. Formal verification
techniques, such as model checking [8], have been used by several researchers to verify the complex hard-
ware design. Chauhan et al. [6] specified the PCI bus using CTL [7] and model checked the state machine
mentioned in the PCI specification document [12]. On the other hand, Shimizu et al. [10] specified the PCI
bus with monitors and model checked various monitor properties. They present a simple specification style
using monitor circuits. The style encourages readability and discourages errors. The English description of
the PCI specification was translated into a collection of simple properties and a model checker was used to
debug the monitor specifications.

Recently, formal verification techniques, such as bounded model checking [1, 2], that uses satisfiabil-
ity solvers instead of BDDs have been proposed. SAT-based approaches have several advantages over
BDD-based approaches. BDDs [3] are based on canonical representations. A complete BDD has to be con-
structed for every problem before testing it for 1-terminals. For large functions, however, the BDD sizes
might be too large to fit into available computer memory. In any case, approaches that attempt to construct
a complete representation of the function before checking its satisfiability end up doing more work than
necessary. Therefore, SAT-based approaches that intelligently sample the variable space are often more
effective. They are based on a polynomial representation and follow a depth-first search algorithm, looking
for a satisfying assignment. They are less likely to fail due to exponential space blowup. Furthermore,



  IWLS’00

Page 2

BDD-based approaches require a good variable ordering to minimize the size of the BDD. However, these
orderings usually need long periods of time. In contrast, SAT-based approaches can use different decision
heuristics at different parts of the search tree to obtain an optimal solution in a short period of time.

In this paper, we use Boolean satisfiability to verify the PCI Local Bus. Simple rules from the PCI
specification document [12] are extracted and written into a set of logical expressions in conjunctive nor-
mal form (CNF). The set of simple properties are based on the monitors introduced by Shimizu et al. [10].
Several properties represented in CTL are converted into CNF and added into a CNF formula that contains
the PCI specification expressions. A counter example of length K that violates a property can exist based
on the solution of the CNF formula. Several formulas are created to verify each property. The formulas are
tested using a powerful SAT-solver. 

The remainder of this paper is organized as follows. Section 2 presents a brief description of the CNF
representation and the GRASP SAT solver. Section 3 discusses the modeling of the PCI Local Bus and
Section 4 shows how it can be verified using our techniques. We also show some of the bugs found in the
PCI protocol. Finally, Section 5 concludes the paper and provides some prospective on future work.

2    Basic Definitions & Notations

A conjunctive normal form (CNF) formula  on n binary variables  is the conjunction
(AND) of m clauses  each of which is the disjunction (OR) of one or more literals, where a
literal is the occurrence of a variable or its complement. The size of a clause is the number of its literals. A
formula  denotes a unique n-variable Boolean function  and each of its clauses corre-
sponds to an implicate (clause) of f. Clearly, a function f can be represented by many equivalent CNF for-
mulas. We will refer to a CNF formula as a clause database and use “ formula,”  “CNF formula,”  and “clause
database”  interchangeably. The satisfiability problem (SAT) is concerned with finding an assignment to
the arguments of that makes the function equal to 1 or proving that the function is equal to
the constant 0.

In our experiment, we used the GRASP SAT solver [13] which can be classified as an enhancment to
the basic Davis-Putnam backtrack search procedure [9]. The solver performs a depth-first search and can
be viewed as consisting of 3 main engines: decision, deduction, and diagnosis. GRASP’s diagnosis engine
analyzes the causes of conflicts and generates adequate information to prevent the conflicts from occurring
at different parts of the search space. Furthermore, it enhances the diagnosis engine with a non-chronolog-
ical backtracking scheme. A detailed description of the solver can be found in [13].

3    PCI Description

This section examines the PCI Local Bus, a high performance synchronous bus standard developed by
Intel [12]. The bus has a data width of 32 or 64 bits. It is mainly used to connect processors, SCSI control-
lers, LAN networks, motion video cards, and ISA bridge controllers. 

The bus supports two main phases: Arbitration and Address/Data. Both phases are fully synchronous.
The arbitration phase involves a centralized algorithm. Each device on the bus has a unique pair of request
(REQ) and grant (GNT) lines hardwired to a central arbiter. If a device desires the use of the bus it asserts
the REQ line. The arbiter views the incoming requests and makes a decision on the next clock cycle. The
decision is based on a Fixed-Priority or Round-Robin policy. The central arbiter is totally fair and serves
every master. If the device is granted the bus, the arbiter will assert the device’s GNT line. The new bus
master can’ t control the bus until the old bus master has transferred all its data. The new master will have
access to the bus as soon as the bus becomes idle. The bus is idle whenever the signals (FRAME) and initi-
ator ready (IRDY) are deasserted.

A device can start transmitting data as soon as its granted the bus and the bus is idle. This is referred to
as the Address/Data phase. The transaction begins by asserting the FRAME signal. The address and the
transaction type are then placed on the address/data multiplexed lines and the command line respectively.
All target devices listen to the address and assert their device select (DEVSEL) line if it maps to their
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address space. This indicates to the master that the target is present on the bus. The master then asserts the
signal IRDY, declaring to the target that it is ready to transfer data. Data transfer starts when both IRDY
and TRDY are asserted. Wait signals can be inserted between the data transfer phases by deasserting the
IRDY or TRDY signals. The FRAME signal is deasserted one clock cycle before the end of the data phase.
On the next clock cycle, both TRDY and IRDY signals are deasserted indicating the end of the Address/
Data phase and making the bus return to the idle state. Furthermore, transactions can be terminated by the
master or target in various situations. These are discussed in more detail in the next section.

4    PCI Verification

The key issues in verifying the PCI Local Bus are the modeling and debugging of the PCI specifica-
tion. The PCI specification document is written in English and contains an informal overview of how the
protocol works. We start by modeling the PCI protocol in CNF. For example, the PCI specification docu-
ment lists a set of rules describing the target termination procedures. A simple rule such as: 

“Once a target asserts STOP#, it must keep STOP# asserted until FRAME# is deasserted, where-
upon it must deassert STOP#.”  P.42 Sec 3.3.3.2.1 

can be easily translated into a set of logical expressions:

Stop(tn)  (Stop(tn+1) + Frame(tn))

(Frame(tn) & Frame(tn+1))  Stop(tn+2)

The above logical expressions can be represented in CNF as follows:

( Stop(tn) + Stop(tn+1) + Frame(tn) )

( Frame(tn) + Frame(tn+1) + Stop(tn+2) )

The PCI specification document is completely translated to CNF. Note that variables declared in CNF cor-
respond to signals at specific time instances. Therefore, testing up to K time stages requires defining K
unique variables for each signal. This is very useful in obtaining an accurate value for each signal at any
time instance. The PCI specification is modeled in CNF for a single time unit t0 using the signal variables
for t0. The single model is then replicated up to K levels by replacing every variable by the variable corre-
sponding to the given time unit. An example of that is shown in Fig. 1(b). Finally, in order to avoid invalid
states, signal values are initialized at time unit t0 to the idle state.

The second key issue has to do with debugging the protocol. Properties have to be added to check that
no device ever observes an illegal combination of bus signals or an unexpected transaction. CTL formulas
[7] can be used for dead state (existing reachable states with no transitions to other states) and property
checking (incorrect behavior). CTL formulas are built from three components: atomic propositions, Bool-
ean connectives, and temporal operators. Atomic propositions represent values of individual state vari-

Figure 1: (a) PCI Transaction Example (b) Example of the PCI specification mode
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ables. Boolean connectives include the basic AND ( ), OR ( ), and NOT ( ) operations. Finally,
temporal operators include path quantifiers (A:all, E:some) and temporal modality (F:eventually, G:glo-
bally, X:next, and U:until). Path quantifiers indicate whether a property has to hold for “all”  execution
paths or for “some”  paths. Properties expressed in CTL can be easily converted to CNF according to Fig.
2. For example, to check whether two signals are never valid together for all paths, we use the following:

AG (signalA & signalB)

Since SAT solvers return after identifying a single valid path, it would be impossible to test if a prop-
erty holds for all paths. Therefore, the inverse of the property is tested. An unsatisfiable solution indicates
that the inverse of the property doesn’ t appear in any path, hence the original property is valid for all paths.
On the other hand, a satisfiable solution indicates a correct path with a false property. Converting the CTL
formula to CNF yields the following boolean function:

Proving the function unsatisfiable indicates that the CTL property holds. Note that a separate CNF formula
is tested for each time unit. The function is unsatisfiable if all K formulas are proven unsatisfiable.

The PCI specification was modeled in CNF up to 10 levels. The CNF model consisted of 1500 vari-
ables and 11,000 clauses. The model included a single target with two masters but can be expanded to sev-
eral devices. In order to make the verification simple, we didn’ t include bus bridges, 64-bit extensions,
locks, or interrupts. Several properties were verified including bus arbitration, read/write transactions,
back-to-back transactions, and master/target terminations. The CNF formulas were tested using GRASP.
The experiments were conducted on a 333 MHz Pentium Pro running Linux and equipped with 512 MByte
of RAM. In order to measure the performance difference between SAT-based and BDD-based approaches,
we modeled the PCI specification in SMV [4] and tested the same properties using CTL model checking.
We used Carnegie Mellon's SMV [4] as the model checker. The SAT-based approach was able to verify
the protocol within 2 minutes using up to 3.5 MByte of memory. The BDD-based approach required 112
minutes of CPU and up to 27MByte of RAM.

The above experiment uncovered several errors in the PCI specification that were previously identified
by Chauhan et al. [6] and Shimizu et al. [10]. Some of these errors were based on a misinterpretation of the
English description in the PCI specification document. Others were actual errors in the PCI protocol. One
of the main errors detected deal with target-initiated terminations. Three types of target-initiated termina-
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Figure 2: Converting CTL formulas to CNF
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tions are defined: Retry, Disconnect, and Target-Abort. Masters must be capable of uniquely identifying
each termination type in order to respond to the target. Hence, termination types have to be unique for each
transaction. GRASP was able to detect a scenario where both retry and target-abort were valid at the same
time. An example of the transaction is shown in Fig. 3.

5    Conclusions & Future Work

This paper provides a new method of verifying busses based on Boolean satisfiability. The idea is
motivated by studies that show SAT-based approaches to be more efficient than BDD-based approaches. A
BDD-based approach used in verifying large hardware systems is likely to run out of memory and as a
result it is usually very difficult to test such systems. However, by using SAT-based approaches such sys-
tems can often be easily solved using less memory and time requirements. We have attempted to model the
PCI Local Bus specification as a set of logical statements which are converted to conjunctive normal form.
We verified several properties and confirmed the detection of several errors reported by other researchers.
We also model checked the PCI using SMV and compared the experimental results obtained by both tech-
niques. The experimental results validate the effectiveness of our approach. A natural progression of this
work is to apply the technique to other types of busses and hardware systems. 
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Figure 3: Error detected in the PCI specification
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