
  IWLS’00

Page 1

An Experimental Evaluation of Conflict Diagnosis and 
Recursive Learning in Boolean Satisfiability

Fadi A. Aloul and Karem A. Sakallah
Department of Electrical Engineering and Computer Science

University of Michigan
AnnArbor, MI 48109-2122

{faloul, karem}@eecs.umich.edu

Abstract: Interest in propositional satisfiability (SAT) has been on the rise lately, spurred in part
by the recent availability of powerful solvers that are sufficiently efficient and robust to deal with
the large-scale SAT problems that typically arise in electronic design automation application. In
this paper we experimentally compare two recent search procedures: recursive learning and con-
flict diagnosis. Both techniques can be viewed as a form of dynamic identification of “ useful”
implicates of the function being tested. We also examine the performance of the basic Davis-Put-
nam search on variants of the input formula that are augmented statically, in a pre-processing
step, with additional clauses. The broad conclusions of the paper are that supplanting the input
formula with more clauses has the potential of significantly reducing the search effort. This gain,
however, must be weighed against the extra effort required to generate the additional clauses.
Dynamic clause identification, therefore, is generally more effective than a static pre-processing
scheme. Furthermore, clauses identified from conflicts seem generally to be more useful in
reducing overall search time than those found by RL.

1   Introduction
Interest in the direct application of Boolean satisfiability solvers to various EDA computational tasks

has been on the rise over the past few years, with applications as diverse as ATPG [9, 14], layout, timing
verification, combinational equivalence checking [12], and functional verification. Several modern SAT
solvers and algorithms are now available with competing claims to runtime efficiency and robustness [1, 7,
8, 10, 11, 12, 13, 16]. Unfortunately, the “cultural diversity”  of the authors of these tools makes it difficult
to perform meaningful comparisons among the various approaches and to draw conclusions about their
effectiveness in various application domains. In this paper we report some results of a comprehensive
experimental evaluation of the two demonstrably most effective of these techniques: recursive learning [7,
8] and conflict diagnosis [11]. We compare these approaches by placing them in a common framework that
contrasts their search strategies.

Different approaches can be used to check for the satisfiability of large propositional problems. A
straightforward, if impractical, method for determining the satisfiability of a function is to create a com-
plete representation for it, i.e. to “solve it” . For example, if the number of variables is sufficiently small,
the function truth table can be constructed and checked for 1-entries. This, of course, does not scale very
well and is not a useful approach in general. A better approach might be to create a symbolic representation
of the function such as a BDD [2] and to determine if the BDD has a 1-terminal. For large functions, how-
ever, the BDD sizes might be too large to fit into available computer memory. In any case, approaches that
attempt to construct a complete representation of the function before checking its satisfiability end up
doing more work than necessary. That’s why search-based approaches that intelligently sample the vari-
able space are often more effective in solving SAT problems.

The paper is organized as follows. In the next section, we introduce the mathematical framework that
will be used throughout the paper. Afterwards, in Section 3, we describe the SAT solvers used in this
paper. Furthermore, we list the major ideas that most search algorithms take into account. Section 4 pre-
sents an experimental evaluation of conflict diagnosis and recursive learning. Finally, Section 5 concludes
the paper and provides some perspective on future work.



  IWLS’00

Page 2

2   Preliminaries
A conjunctive normal form (CNF) formula  on n binary variables  is the conjunction

(AND) of m clauses  each of which is the disjunction (OR) of one or more literals, where a
literal is the occurrence of a variable or its complement. The size of a clause is the number of its literals. A
formula  denotes a unique n-variable Boolean function  and each of its clauses corre-
sponds to an implicate of f [6]. Clearly, a function f can be represented by many equivalent CNF formulas.
A variable x is monoform if it is possible to write a CNF formula for the function f in which all literals on x
are either exclusively x or . A clause  subsumes another clause  if ; a clause is a prime
implicate if it is not subsumed by another implicate. A formula is complete if it consists of the entire set of
prime implicates [6] for the corresponding function. In general, a complete formula will have an exponen-
tial number of clauses. We will refer to a CNF formula as a clause database (DB) and use “ formula,”  “CNF
formula,”  and “clause database”  interchangeably. The satisfiability problem (SAT) is concerned with find-
ing an assignment to the arguments of  that makes the function equal to 1 or proving that
the function is equal to the constant 0.

3   SAT Solvers Description
Most modern SAT algorithms can be classified as enhancements to the basic Davis-Putnam backtrack

search approach [3]. The DP procedure performs a depth-first search in the n-dimensional space of the
problem variables and can be viewed as consisting of three main engines: 1) a decision engine that makes
elective assignments to the variables; 2) a deduction engine that determines the consequences of these
assignments, typically yielding additional forced assignments to, i.e. implications of, other variables; and 3)
a diagnosis engine that handles the occurrence of conflicts (i.e. assignments that cause the formula to
become unsatisfiable) and backtracks appropriately. The deduction engine in the DP procedure is based on
the application of two rules: 1) the unit clause rule which forces the assignment of the only unassigned vari-
able in a clause whose other literals are all 0; and 2) the pure literal rule which forces the assignment of
monoform variables to the values that satisfy all the clauses containing them. Repeated application of the
unit clause rule over a given clause DB is referred to as Boolean Constraint Propagation (BCP) [15].

Conflict Diagnosis (CD) can be viewed as adding “why”  analysis to the diagnosis engine. The proce-
dure is called after each conflict to analyze the causes of the conflict and generate adequate information to
prevent the conflict from occurring in other parts of the search space. The generated information is repre-
sented by conflict-induced clauses which are added to the clause database. Another enhancment to CD
involves non-chronological backtracking. By tracing the causes of a conflict, the search process can back-
track directly to the decision assignments that led to the conflict.

On the other hand, Recursive Learning (RL) can be viewed as adding “what-if”  analysis to the deduc-
tion engine. The procedure was initially introduced in the context of solving structural SAT problems aris-
ing in test pattern generation. In our experimental evaluation, we adapt the structural RL procedure to solve
CNF satisfiability problems. It dynamically identifies necessary assignments after each decision by exam-
ining the justification options for each unresolved clause containing the most-recently decided variable.
Variables that are implied to the same value under all possible justifications correspond to necessary assign-
ments that are recorded and that can potentially yield further implications. Note that these assignments
cannot be identified by BCP. A simple example of RL is shown in Fig. 1. Assuming the assignment

ϕ x1 … xn, ,
ω1 … ωm, ,

ϕ f x1 … xn, ,( )

x′ ωi ωj ωi ωj→

f x1 … xn, ,( )

Figure 1: Recursive Learning Example

ca

b

d
e=1 e=1

level 0 level 1

a=1

b=1
d=1

OR AND

c=1

a=1

b=1



  IWLS’00

Page 3

, BCP would be unable to derive further assignments. However, by exploring the two choices for
justifying this assignment, namely  and  we conclude that the assignment

 is necessary because it is the same for all justifications. This “what-if”  analysis can be per-
formed recursively for each level in the problem up to a user-specified upper bound.

An important distinction that will be critical in explaining performance differences between various
SAT algorithms is whether they are formula or function satisfiers. A formula satisfier performs the search for
a satisfying assignment assuming a fixed set of input clauses; it attempts to satisfy a function f based on a
specific formula . The DP algorithm is an example of a formula satisfier. A function satisfier, on the
other hand, may modify the formula  representing the function being satisfied to improve search effi-
ciency. One way to classify function satisfiers is based on when and how they modify their input formula.
Static function satisfiers “pre-process”  the input formula, augmenting it with extra prime implicates and
removing from it any subsumed clauses. In contrast, dynamic function satisfiers identify “useful”  clauses
adaptively “during”  the search, either by the deduction or the diagnosis engines. These clauses help gener-
ate further implications and may optionally be stored in the clause database for possible future use. CD and
RL are examples of dynamic function satisfiers. 

In the context of the DP deduction rules, different formulas representing the same function may pos-
sess different “ reasoning powers”  and may yield vastly different implications. Indeed, it is easy to show
that a “complete”  formula contains all possible implications to any set of decisions and will not lead to
conflicts and backtracking. Unfortunately, a complete formula will generally have an exponential number
of clauses, and will likely yield no run time savings. Identifying the “ right”  formula for a given function,
i.e. the formula that consists of just the right number and type clauses to minimize search time, is a clearly
desirable but unfortunately unattainable goal.

4   Performance Evaluation
We present results for the DIMACS challenge benchmarks [4]. The benchmarks represent a variety of

non-EDA SAT instances and SAT formulations for single stuck-at and bridging faults. All experiments
were conducted on a 333 MHz Pentium Pro running Linux and equipped with 512 MByte of RAM. All
procedures were implemented in C++. The CPU time limit and conflict limit were set to 1000 seconds and
50M respectively, unless stated otherwise.

4.1   Formula Satisfiers vs. Static Function Satisfiers
To establish a baseline for our experimental study, we examined the behavior of the DP procedure on

different formulas representing the same function. For each benchmark formula, we created up to four
variants by adding consensus clauses using a truncated iterative consensus procedure [5]: noting that the
unrestricted application of iterative consensus may lead to the creation of an exponential number of
clauses, the truncated version of the procedure discards generated consensus clauses whose size exceeds a

e 1=
c 1= d 1=

a b 1= =

ϕ
ϕ

Figure 2: Generation and Search times v.s. Formula Composition

�

� �

� � �

� � � �

� � � � �

� � � � � � � � � � � 	

aim200 Benchmark

T
im

e 
(s

ec
)

Generation Time Solve Time



  IWLS’00

Page 4

given limit L unless they subsume an existing clause. The iterative consensus procedure time limit was
10,000 seconds.

Fig. 2 shows the result on the aim-200 benchmark (other benchmarks show similar results and are
omitted for lack of space). As this diagram clearly illustrates, the addition of consensus clauses to a for-
mula leads to a reduction in the number of decisions and conflicts. On the other hand, the total run time
tends to initially decrease then dramatically increase as more clauses are added. In addition, the proportion
of the run time due to clause generation becomes dominant as L increases. We should note that the consen-
sus procedure did not generate additional clauses for some benchmarks because they already consisted of
all the prime implicates.

4.2   Formula Satisfiers vs. Dynamic Function Satisfiers
As mentioned earlier, rather than pre-processing an input formula to identify extra clauses, dynamic

satisfiers generate clauses during the search process. We compare here two such dynamic satisfiability
schemes: Conflict Diagnosis and Recursive Learning.

We decided to use GRASP [11] as our conflict analysis tool. RL was implemented as a new software
layer on top of DP. We enhanced RL with clause recording. The maximum recursive learning limit was set
to 1 level. The experimental results of running DP, RL, and CD are shown in Table1. #I, #S, ST represent
the total number of instances, number of solved instances, and total solve time respectively. As can be
seen, both CD and RL outperform the DP procedure. Yet, CD was faster than RL in all cases. This is justi-
fied by the fact that RL was too time consuming during the search process because it was executed after
each decision. In contrast, CD was executed only after each conflict. 

As a measure of the effectiveness of the recorded clauses, we combined both RL and CD and applied it
with clause recording to the DIMACS benchmarks. The obtained experimental results are shown in
Table 1. Our results indicate that the combined version was slower than running CD alone. This may be
explained by the fact that calling RL after each decision incurs an overhead in detecting necessary assign-
ments. We should note that J. Silva et. al [12] shows that a combined version of RL & CD with clause
recording performs better than CD with clause recording. However, in his experiments, RL was applied
only once as a preprocessing step before applying CD during the search process. 

Benchmark #I
Davis-Putnam

Recursive 
Learning

Conflict 
Diagnosis

Conflict 
Diagnosis & 

Recursive Learning
#S ST #S ST #S ST #S ST

aim 72 40 34679 72 189 72 5 72 4

bf 4 0 4000 1 3001 2 2001 3 1035

dub 13 2 11751 13 0 13 1 13 0

f 3 0 3000 0 3000 0 3000 0 3000

g 4 0 4000 0 4000 0 4000 0 4000

hanoi 2 1 1529 1 1044 2 201 1 1022

hole 5 5 427 4 1731 5 905 4 1678

ii 41 21 20129 30 15864 34 9127 34 11761

jnh 50 50 285 50 30 50 35 50 24

par 30 20 12223 10 20004 18 13375 13 19600

pret 8 4 4621 4 4009 8 3 8 3

ssa 8 4 4030 6 2002 6 2002 7 1520

TOTAL 240 147 100675 191 54874 210 34655 205 43647

 Table 1: Davis-Putnam vs. Recursive Learning vs. Conflict Diagnosis



  IWLS’00

Page 5

5   Conclusions & Future Work
Our experimental results indicate that techniques of improving the deduction and diagnosis engine nar-

row down to augmenting the formula with additional clauses. Additional clauses or implications can be
added in a pre-processing step (statically) using the consensus procedure or during the search process
(dynamically) using conflict diagnosis or recursive learning. Pre-processing necessarily has no knowledge
of how the search process will evolve and may create more “useless”  clauses than necessary. On the other
hand, dynamic search can augment the clause database with more “useful”  clauses than blind pre-process-
ing. 

We presented a fair comparison between recursive learning and conflict diagnosis to measure the
effect of identified necessary assignments in each. The assignments were converted to clauses and added to
the clause database. RL implements a form of forward reasoning as a result of decision assignments, on the
other hand, CD implements a form of backward reasoning as a result of conflicts. Furthermore, we tested
the effect of combining RL and CD. The set of experiments suggest that assignments and clauses identified
by conflict diagnosis appear more effective in reducing the search time than those identified by recursive
learning. 

Despite the improvements of engines employed by SAT search techniques, further study of the engines
is needed. Improvements to the deduction and diagnose engines consist of identifying essential prime
implicates and probing the CNF formula for necessary assignments. Another area of improving search
techniques is controlling the growth of the clause database. A smart evaluation method should be devised
to delete unused recorded clauses (clauses generated by consensus or conflict analysis) during the search
process. Finally, correlating the behavior of these search techniques to the structure of the formulas may
provide some useful insights.

6   References
[1] R. Bayardo Jr. and R. Schrag, “Using CSP Look-Back techniques to Solve Real-World SAT Instances,”  in Proc. of the

National Conference on Artificial Intelligence, pp. 203-208, July 1997.

[2] R. Bryant, “Graph-based algorithms for boolean function manipulation,”  in Proc. of IEEE Transactions on Computers 35(8),
pp. 677-691, 1986.

[3] M. Davis and H. Putnam, “A Computing Procedure for Quantification Theory,”  Journal of the Association for Computing
Machinery, vol. 7, pp. 201-215, July 1960.

[4] DIMACS Challenge benchmarks in ftp://Dimacs.rutgers.EDU/pub/challenge/sat/benchmarks/cnf. 
[5] G. Hachtel and F. Somenzi, “Logic Synthesis And Verification Algorithms,”  Kluwer Academic Publishers, 1996.

[6] J. Hayes, “ Introduction to Digital Logic Design,”  Addison-Wesley, 1993.

[7] W. Kunz, D. Pradhan, “Recursive Learning: A new Implication Technique for Efficient Solutions to CAD-problems: Test,
Verification and Optimization,”  IEEE Transaction on Computer-Aided Design, 13(9), pp. 1143-1158, September 1994.

[8] W. Kunz and D. Stoffel, “Reasoning in Boolean Networks,”  Kluwer Academic Publishers, Boston, MA, 1997.

[9] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,”  IEEE Transactions on Computer-Aided Design, 11(1),
pp. 4-15, January 1992.

[10] B. Selman and H. Kautz, “Domain-Independent Extensions to GSAT: Solving Large Structured Satisfiability Problems,”  in
Proc. of the International Joint Conference on Artificial Intelligence, 1993.

[11] J. Silva and K. Sakallah, “GRASP-A New Search Algorithm for Satisfiability,”  in Proc. of the International Conference on
Computer Aided Design, November 1996.

[12] J. Silva and T. Glass, “Combinational Equivalence Checking Using Satisfiability and Recursive Learning,”  in Proceedings of
the Design and Test in Europe Conference, March 1999.

[13] G. Stalmarck, “System for Determining Propositional Logic Theorems by Applying Values and Rules to Triplets that are Gen-
erated from Boolean Formula,”  United States Patent no. 5,276,897, 1994.

[14] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Combinational Test Generation Using Satisfiability,”  IEEE
Transactions on Computer-Aided Design, 15(9), pp. 1167-1176, September 1996.

[15] R. Zabih and D. A. McAllester, “A Rearrangement Search Strategy for Determining Propositional Satisfiability,”  in Proc. of
the National Conference on Artificial Intelligence, pp. 155-160, 1998.

[16] H. Zhang, “SATO: An Efficient Propositional Prover,”  in Proc. of International Conference on Automated Deduction, pp.
272-275, July 1997.


