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Abstract
Many popular algorithms that work with Boolean functions are

dramatically dependent on the order of variables in input represen-
tations of Boolean functions. Such algorithms include satisfiability
(SAT) solvers that are critical in formal verification and Binary
Decision Diagrams (BDDs) manipulation algorithms that are
increasingly popular in synthesis and verification. Finding better
variable-orderings is a well-recognized problem in each of those
contexts. Currently, all leading-edge variable-ordering algorithms
are dynamic in the sense that they are invoked many times in the
course of the “host” algorithm that solves SAT or manipulates
BDDs. Examples include the DLIS ordering for SAT solvers and
variable-sifting during BDD manipulations. In this work we pro-
pose a universal variable ordering MINCE (MIN Cut Etc.) that pre-
processes a given Boolean formula in CNF. MINCE is completely
independent from target algorithms and outperforms both DLIS for
SAT and variable sifting for BDDs. We argue that MINCE tends to
capture structural properties of Boolean functions arising from
real-world applications.

1 Introduction
Algorithms that efficiently manipulate Boolean functions aris-

ing in real-world applications are becoming increasingly popular in
several areas of computer-aided design and verification. In this work
we focus on two classes of these algorithms: complete Boolean sat-
isfiability (SAT) solvers [7, 15, 19, 24, 27, 31] and algorithms for
manipulating Binary Decision Diagrams (BDDs) [4, 8, 17]. A gener-
ic complete SAT solver must correctly determine whether a given
Boolean function represented in the conjunctive normal form (CNF)
evaluates to false for all input combinations. Aside from its pivotal
role in complexity theory [11], the SAT problem has been widely ap-
plied in electronic design automation. Such applications include
ATPG [16, 28], formal verification [2], timing verification [25],
routing of field-programmable gate arrays [20], among others.
While no exact polynomial time algorithms are known for the gen-
eral case, many exact algorithms [15, 19, 24, 27, 31] manage to com-
plete very quickly for problems of practical interest. Such
algorithms are available in the public domain and are typically based
on “elementary steps” that consider one variable at a time (e.g.,
branch-and-bound algorithms need to select the next variable for
branching.) Previously published results [19, 24, 27, 31], as well as
our empirical data, clearly imply that the order of these steps criti-
cally affects the runtime of leading edge SAT algorithms. This order
of steps depends on the order of variables used to represent the input
function, but can also be controlled dynamically based on the results
of previous steps.

BDDs [4, 8] are commonly used to implicitly represent large so-
lution spaces in combinatorial problems that arise in synthesis and
verification. A BDD is a directed acyclic graph constructed in such
a way that its directed paths represent combinatorial objects of inter-

est (such as subsets, clauses, minterms, etc.). An exponential com-
pression rate is achieved by BDDs whose number of paths is
exponential in the number of vertices and edges (graph size). BDDs
can be transformed by algorithms that visit all vertices and edges of
the directed graph in some order and therefore take linear time in the
“current” size of the graph. However, when new BDDs are created,
some of these algorithms tend to significantly increase the number
of vertices, potentially leading to exponential memory and runtime
requirements. Several BDD ordering techniques have been pro-
posed to overcome this problem. These techniques include static
[10, 18] and dynamic approaches [21, 23]. Just as for SAT solvers,
the order of “elementary steps” is critically important. This order
can either be chosen statically, i.e. by pre-processing the input for-
mula, or dynamically, based on the outcome of previous steps dur-
ing the search process.

A reliable and fast variable-ordering heuristic for a given appli-
cation can dramatically affect its competitiveness and is often con-
sidered an important part of implementation. For example, the
leading-edge SAT solver GRASP [24] is typically used with the dy-
namic variable-ordering heuristic DLCS (select the variable that
appears in the maximum number of unresolved clauses) or DLIS
(select the literal that appears in the maximum number of unre-
solved clauses), and the reknowned CUDD package [26] for BDD
manipulation incorporates the dynamic variable-sifting heuristic
which is applied many times in the course of BDD transformations.
Variable sifting is affected by the initial order, but can also be com-
pletely turned off.

We noticed that, for some benchmark CNF formulae in Table II
and Table IV (such as hole-9 and par16-2-c), turning off sifting for
BDD manipulations and turning off DLIS in SAT resulted in signif-
icantly smaller runtimes. For BDDs, this also led to memory sav-
ings, especially for circuit benchmarks from the ISCAS89 set. In
other words, the order of variables produced when encoding prob-
lems into CNF formulae was superior to the best known dynamic
variable orderings. Note that such “static” variable orderings are
easier to work with because they do not require modifying the
source code of the host algorithm. In particular, the same variable
ordering implementation can be used for SAT solvers and BDD ma-
nipulations if it, indeed, improves both classes of algorithms. How-
ever, for any given application, even if superior “static” variable
orderings exist, they may be overlooked by specific encoding pro-
cedures. Therefore, we propose a domain-independent algorithm to
automatically find good “static” variable-ordering that capture glo-
bal properties of a given CNF formula.

The remainder of the paper is structured as follows. Section 2
motivates our reliance on hypergraph partitioning. In Section 2.1,
we describe how hypergraph partitioning is performed. Section 3
describes applications to SAT and BDDs and provides experimental
evidence of the effectiveness of partitioning-based variable order-
ing. The paper ends with conclusions and future work in Section 4.
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2 Problem Partitioning
We first observe that Boolean functions arising in many appli-

cations represent spacial, logical or causal dependencies/connec-
tions among variables. Therefore, processing “connected” variables
together seems intuitively justified. For example, if a large SAT in-
stance is not satisfiable because of a small group of inconsistent
variables, the variables in this group must be “connected” by some
clauses. If we can partition all variables into, say, two largely inde-
pendent groups, then such a function is likely to be represented by
a BDD with a small cut, i.e. there will be relatively few edges be-
tween these two groups. BDDs with many small cuts tend to have
fewer edges, and therefore fewer vertices (since every vertex is a
source of exactly two edges). This intuition suggests that we inter-
pret CNF formulae as hypergraphs by representing variables by ver-
tices and clauses by edges. Two vertices share an edge if the two
corresponding variables share a clause in the formula. Applying
balanced min-cut partitioning to such hypergraphs separates the
original CNF formula into relatively independent subformulae. Or-
dering the variables in each part together would be a step towards
ordering “connected” variables next to each other, as advocated ear-
lier. Once the first partitioning is performed, the parts can be parti-
tioned recursively. This process can provide a complete variable
ordering. We note that cuts of CNF formulae have been studied in
[22], and instances having small cuts were theoretically shown to be
“easy” for SAT. Our work seeks constructive and efficient ways to
amplify the “easiness” of CNF instances with small cuts by finding
good variable orderings. Additionally, Berman [1] related the size
of BDDs to circuit width.

2.1. Recursive Bisection and Hypergraph Placement

Recursive min-cut bisection of hypergraphs has been intensive-
ly studied in the context of VLSI placement for at least 30 years. In
particular, the recursive bisection procedure described earlier for
CNF formulae corresponds to the linear placement problem [13],
where hypergraph vertices are placed in one, rather than in two, di-
mensions. It is well-known that placement by recursive bisection
leads to small “half-perimeter wire-length” that translates back to
small average clause span in CNF formulae. Here we define the
span of a clause with respect to a variable ordering as the difference

between the greatest and the smallest number of variables in this
clause (so that the span exactly correspond to the half-perimeter
wirelength of a hyperedge). We can also define the i-th cut with re-
spect to a given ordering as the number of clauses including vari-
ables with numbers both less than and greater than i+0.5.

Observation: Given a variable ordering, the total clause span
equals the sum of all cuts. Average clause span is proportional to the
average cut, and the coefficient is approximately equal the clause-
to-variable ratio of the CNF formula.

Since recursive bisection appears to optimize both cuts and av-
erage clause spans, we will use the leading-edge hypergraph placer
Capo [5] based on recursive mincut bisection [6, 14]. The Capo
placer incorporates a number of improvements to classical recursive
bisection which reduce the total clause span (and thus the average
cut). Such techniques include bisection with high balance tolerance
and adaptive cut-line selection, which allows better freedom in par-
tition sizes in order to improve the cut. The underlying multi-level
hypergraph partitioner MLPart [6] outperforms the well-known
hMetis [14] and executes two independent starts for each partition-
ing, followed by one V-cycle of the better solution.

We propose the following heuristic that orders variables in CNF
formulae (see Figure 1). An initial CNF formulae (that may or may
originate from circuit or other applications) is converted into a hy-
pergraph. Min-cut linear placement is applied to the hypergraph us-
ing the Capo placer [5] to produce an ordering of hypergraph
vertices. This ordering is translated back into an ordering of vari-
ables in the original CNF instance. The original CNF formulae is
preprocessed by applying this new order. After that, the new CNF
formulae can be used as input to an arbitrary SAT solver or to con-
struct a BDD representation of the boolean function it represents.
The results produced by SAT solvers or BDD manipulations can be
translated back into the original variable at any time.

Note that this approach does not require modifications in SAT
solvers, BDD manipulation software or the Capo placer. We call
this heuristic MINCE (MIN-Cut, Etc.) and implemented it by chain-
ing publicly available software with PERL scripts.

To enable black-box usage of publicly available software (Ca-
po), we ignore polarities of literals in CNF formulae. We note that
the oriented version of min-cut bisection has been extensively stud-
ied in the context of timing-driven placement. In particular, finding
a good unoriented cut implies an oriented cut which is at least as
good. Vice versa, in most real-world examples, near-optimal orient-
ed cuts can be found by unoriented partitioning.

Wood and Rutenbar have already used linear hypergraph place-
ment as a variable ordering technique for BDD minimization in
1998 [29]. However, they relied on spectral methods which require
converting hyperedges to edges and then minimizing quadratic edge
length rather than the half-perimeter (linear) edge length. Spectral
placement methods used in [29] do not appear to have direct con-
nections to cut minimization. As of 2001, spectral methods for par-
titioning and placement are practically abandoned due to their
unacceptable runtime for large-scale instances and poor solution
quality as measured by half-perimeter edge length. This can be con-
trasted with min-cut placement that is among the fastest known ap-
proaches, provides good solutions and is obviously related to cut
minimization.

On the empirical side, our results with BDD minimization
presented below show that our static variable ordering heuristic
MINCE outperforms variable-sifting in both runtime and memory.
According to [12], variable sifting is the best known heuristic for
BDD minimization. From this, we conclude that our proposed tech-
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Figure 1: The MINCE heuristic based on Multi-Level Fiduccia-
Mattheyses (MLFM) partitioning [5, 6, 14]

Recursive MLFM Partitioning

MINCE
Flow



3

IWLS ’2001

niques outperform all other published approaches to BDD minimi-
zation. Furthermore, applications that require several BDD
transformations or solving similar SAT problems are expected to
run faster, since the ordering is generated once and used for all runs.

2.2. Illustration

Figure 2 illustrates the difference between good and a bad vari-
able ordering for a CNF formula. We use the Capo placer to find an
ordering of vertices, i.e. variables, that produces a small total
(equivalent average) clause span. Figure 2(b) shows a sample order-
ing returned by Capo for the example described. The total span of
all clauses in this CNF formula is reduced from 8 to 4 by this better
variable ordering. In addition, the number of edges crossing each
variable, which we will refer to as the variable cut, is reduced. In
the given example, the original problem had a maximum variable
cut, implied by variable , of 3 which was eventually reduced to 1
using the new Capo ordering.

In general, structured problems such as the hole-n benchmark
can be easily divided by Capo into several partitions. Figure 2(c)
shows an example of the hypergraph generated by Capo for the
hole-7 instance. Clearly, the problem’s structure consists of several
partitions. The initial variable ordering implied an average clause
span and variable cut equal to 74 and 20, respectively. In compari-
son, the new variable-ordering, reflected an average clause span
and variable cut equal to 17 and 4.7, respectively. We conjecture
that such variable ordering, which groups each partition, should
yield better SAT or BDD runtime and memory results.

Similar techniques and intuitions apply in related contexts. For
example, one can apply MINCE to DNF formulae rather than CNF
formulae. In this and related cases, one starts with a description of
a Boolean function that is sparse, i.e., the description "connects"
very few groups of variables (by clauses, minterms, in terms of cir-
cuit connectivity, etc). Recursive partitioning results in a variable
ordering where "connected" variables are close to each other. Since
"connections" between variables often imply logical dependencies,
min-cut orderings allow SAT solvers and BDD engines to track
fewer variables beyond their neighborhoods.

3 Application of MinCut to SAT & BDDs
In the following section, we present experimental evidence for

the improvements obtained by the new static variable ordering. We
decided to use GRASP as our SAT solver [24] and CUDD as our

BDD solver [26]. All experiments were conducted on a Pentium-II
333 MHz, running Linux with 512 Mb. of physical memory. In
terms of CNF problems, we used the DIMACS benchmarks [9] in
addition to the n-queens problem. We also used a flat version of the
ISCAS89 circuit benchmarks [3] expressed in CNF. For all experi-
ments, the CPU time and memory limits were set to 10,000 seconds
and 500 Mb, respectively.

SAT Experiment: Table I and Table II summarize the runtime
results of running the MINCE variable ordering versus using the dy-
namic MSTS, MSOS, DLCS, DLIS, or the static fixed variable order-
ing [24]. Also, the tables list the time needed to order the problem
using Capo. All runtimes are presented in units of seconds. “#I” de-
notes the number of instances solved by each decision heuristic and
“S/U” describes the type of the problem (S for satisfiable and U for
unsatisfiable). The average variable cut is also included using the
original and the new MINCE variable orderings.

As the data clearly illustrate, deciding on closely-connected
variables leads to a reduction in search time. Specifically, since
“connected” variables are ordered next to each other, this approach
allows the solver to quickly identify and avoid unpromising partial
solutions. In other words, instead of deciding on variables from sep-
arate partitions, we can focus on a single partition. The chances of
identifying a solution is more likely since the variables are strongly
connected. This approach appears to be effective on structured
problems, such as the hole-n or the n-queens problem. These prob-
lems typically consist of multiple closely connected partitions, in
which deciding on variables in each partition can improve the
search performance. In some sense, such partitioning establishes a
natural ordering of the instance’s decision variables. As an exam-
ple, a speedup of 14, 14, 14, 12, and 8, was obtained for the hole-10
benchmark over the MSTS, MSOS, DLCS, DLIS, and fixed deci-
sion heuristics, respectively. Some large instances from the n-
queens set also achieved significant speedups over other decision
heuristics. For example, none of the dynamic or fixed decision heu-
ristic were able to solve the nqueens-35 instance in 10,000 seconds.
On the other hand, Capo’s variable ordering solved the instance in
less than 320 seconds. In general, GRASP run time is almost always
reduced when the recursive bisection ordering is used. However, for
particularly easy SAT instances recursive bisection itself required
more time than GRASP with either fixed, MSTS, MSOS, DLCS, or
DLIS ordering. Clearly, more research is needed to study the effects
of partitioning and reordering on SAT instances and formulate prac-
tical recommendations that guarantee improvement, e.g., in the
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Figure 2: (a) Example of default vertex-ordering (b) Example of improved vertex-ordering
(c) Sample hypergraph representing the structure of the Hole-7 instance
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worst-case or average sense. Capo was also able to effectively re-
duce the average variable cut for all benchmarks. For some instanc-
es, such as the bf* which represent bridging fault problems, the new
average variable cut was reduced by an order of 6.5.

Although not presented in the tables of results, we tested the
given benchmarks using the SATO [31] SAT solver. SATO imple-
ments an intelligent dynamic decision heuristics. SATO was able to
solve the given DIMACS benchmarks in approximately 45,000 sec-
onds (4 instances timed-out after 10,000 seconds) as opposed to
16,700 seconds using GRASP with recursive bisection ordering.
However, for some instances, SATO was faster. Capo failed to gen-

erate effective variable ordering for these instances, since most of
them were not structured.

BDD Experiment: Table III and Table IV show the runtimes
needed to construct the BDDs of selected Boolean functions from
the ISCAS89 circuit benchmarks and the DIMACS set. In both ta-
bles, the columns represent the fixed, random, fixed with sifting,
random with sifting, and Capo orderings, respectively. The tables
include benchmarks that were successfully built using any of the
given orderings. n.c. indicates that the problem did not complete
within the given resources. Clearly, not only was Capo’s ordering
faster in building the BDDs, but in most cases it required a smaller

Bench-
mark

#I
MSTS MSOS DLCS DLIS Fixed CAPO Avg Var Cut

#I Time #I Time #I Time #I Time #I Time #I Order Time Fix New

aim 72 72 2.61 72 3.16 72 3.81 72 6.71 72 2.72 72 174.1 4.73 11676 6542

bf 4 4 2.63 4 4.97 4 2.56 4 2.3 3 10019 4 68.72 2.08 2853 440

dub 13 13 29.06 13 18.12 13 2.15 13 2.73 13 0.71 13 7.84 0.66 1717 106

hanoi 2 1 10005 1 12267 0 20000 0 20000 2 83.13 2 60.03 89.64 408 321

hole 5 3 26956 2 30193 4 11705 5 9466 5 6287 5 3.55 776.5 581 108

ii16 10 10 5407 10 6189 8 20259 9 10321 10 17685 10 726.8 84.22 76466 7935

ii32 17 16 11063 16 11187 17 9492.6 17 4.94 15 20598 16 488 10047 49616 11531

ii8 14 14 2.98 14 2.75 14 8.79 14 7.99 14 1.04 14 260.75 0.71 25396 2749

jnh 50 50 5.08 20 6.58 50 6.48 50 8.51 50 27.62 50 422.74 30.1 25952 22701

par16 10 10 21652 10 20470 8 27708 9 21855 10 2536 10 91.78 2713.8 4789 879

par8 10 10 0.19 10 0.21 10 0.22 10 0.22 10 0.21 10 16.63 0.16 1613 436

pret 8 8 0.72 8 0.68 8 0.7 8 0.66 8 0.59 8 4.75 0.64 865 138

ssa 8 8 97.33 8 12.63 8 3.73 8 2.44 6 20001 8 239.99 359.16 6104 768

Total 223 219 75224 218 80355 216 89193 219 61679 218 77242 222 2566 14109 208036 54654

TABLE I: Summary of GRASP runt imes for the DIMACS set

Selected
Instances

S/U
MSTS
Time

MSOS
Time

DLCS
Time

DLIS
Time

Fixed
Time

Capo Capo Speedup

Order Time Total MSTS MSOS DLCS DLIS Fixed

aim100-20no2 U 0.04 0.02 0.01 0.01 0.01 0.96 0.01 0.97 0.04 0.02 0.01 0.01 0.01

bf0432-007 U 1.72 3.85 1.74 1.48 10000 10.12 1.59 11.71 0.15 0.33 0.15 0.13 854

hanoi4 S 4.54 2267 10000 10000 1.75 14.82 1.64 16.46 0.28 138 608 608 0.11

hole8 U 6879 10000 140 70.31 61 0.44 9.01 9.45 728 1058 14.81 7.44 6.46

hole9 U 10000 10000 1556 752 623.1 0.62 60.08 60.7 165 165 25.63 12.39 10.27

hole10 U 10000 10000 10000 8637 5597 1.46 706 708 14.13 14.13 14.13 12.20 7.91

ii16b1 S 174 217 10000 10000 4840 119 1.49 120 1.44 1.80 83.09 83.09 40.22

ii16b2 S 133 153 71.26 238 5507 60.68 0.8 61.48 2.17 2.50 1.16 3.87 89.57

ii32c4 S 650 696 24.85 1.24 10000 102 0.9 102.9 6.32 6.77 0.24 0.01 97.18

par16-2-c S 1321 1325 2469 3570 184 3.86 74.4 78.26 16.88 16.93 31.55 45.62 2.35

par16-5 S 7329 7348 315 10000 111 14.53 40.33 54.86 134 134 5.73 182 2.03

pret150_25 U 0.15 0.13 0.14 0.12 0.12 0.7 0.12 0.82 0.18 0.16 0.17 0.15 0.15

ssa0432-003 U 0.04 0.04 0.06 0.05 0.06 2.83 0.03 2.86 0.01 0.01 0.02 0.02 0.02

ssa2670-130 U 1.12 1.87 0.61 0.39 10000 10.86 357 368 0.00 0.01 0.00 0.00 27.18

Nqueens-20 S 482 1485 23 24.87 3160 40 0.31 40.31 11.96 36.84 0.57 0.62 78.39

Nqueens-25 S 10000 10000 178 183 94.89 92.64 0.79 93.43 107 107 1.90 1.96 1.02

Nqueens-30 S 10000 10000 5233 5402 10000 217 2.27 219 45.61 45.61 23.87 24.64 45.61

Nqueens-35 S 10000 10000 10000 10000 10000 317 1.06 318 31.42 31.42 31.42 31.42 31.42

TABLE II: GRASP runt imes for selected benchmarks from the DIMACS set and the n-queens problem
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number of nodes than other used orderings, including sifting. In
terms of circuits, Capo performs an indirect ordering of the gates
such that the length of wires in the circuit is minimized. This has a
great impact on the runtime and BDD sizes. For the ISCAS89 cir-
cuits, Capo was able to construct the BDDs for all 16 circuits as op-
posed to 10 circuits with sifting and 1 circuit with a fixed variable-
ordering. On average the new ordering has been able to obtain sig-
nificant performance improvement in comparison with BDD vari-
able sifting. Capo’s ordering time is also minimal for most cases.
The average variable cut for the ISCAS89 circuits was reduced
from 200 to 26 using the new variable ordering. Accordingly, the
average variable cut for the selected DIMACS benchmarks was
also reduced from 178 to 34.

This approach has several advantages. The technique is simple
and easy to use. Its “static” style allows for a variety of applications
that dynamic approaches fail at. Furthermore, despite the small

overhead required to pre-process the problem using Capo, the total
runtimes are in general faster than other state-of-the-art available
approaches such as dynamic sifting for BDDs or dynamic DLCS
and DLIS orderings for SAT. The approach also minimizes the
memory needed in most cases.

4 Conclusions & Future Work
Our work proposes a static variable-ordering heuristic MINCE

for CNF formulae with applications to SAT and BDDs. The main
advantage of this heuristic is its very good performance on standard
benchmarks in terms of implied runtime of SAT solvers as well as
memory/runtime of BDD primitives. We believe that this is due to
the fact that the proposed variable-ordering is global and relies on
high-performance hypergraph partitioning and placement (CAPO).
Unlike problem-specific dynamic variable-ordering heuristics, such
as MSTS, MSOS, DLCS, DLIS, and variable-sifting, MINCE can

Instance

Fixed Random Fixed-Sift Random-Sift Capo
Avg Cut

Build Max Build Max Build Max Build Max Order Build Total Max

Time Node Time Node Time Node Time Node Time Time Time Node Fix New

s208.1 n.c. n.c. 14.8 6420 21.57 13593 0.88 0.66 1.54 3384 104 16

s27 0.06 181 0.07 204 0.08 181 0.08 204 0.18 0.07 0.25 73 11 5

s298 n.c. n.c. 47.83 28005 56.55 26832 0.97 3.03 4 14495 157 28

s344 n.c. n.c. 525.1 130538 703.45 192172 1.28 7.48 8.76 14214 137 17

s349 n.c. n.c. 267.78 83319 707.24 248381 1.36 10.77 12.13 19290 149 18

s382 n.c. n.c. 159.08 88182 113.25 32583 1.23 5.48 6.71 13597 176 26

s386 n.c. n.c. 258.12 96688 168.84 48016 1.8 91.74 93.54 310441 172 55

s400 n.c. n.c. 564.91 193893 292.7 114904 1.12 5.8 6.92 20060 182 26

s420 n.c. n.c. 361.84 93977 590.79 122458 1.47 4.69 6.16 17673 183 19

s444 n.c. n.c. 252.83 85039 605.12 241874 1.71 5.02 6.73 7731 192 25

s526 n.c. n.c. n.c. n.c. 2.92 17.74 20.66 37656 271 42

s526n n.c. n.c. n.c. n.c. 1.99 10.35 12.34 18385 262 40

s641 n.c. n.c. n.c. n.c. 2.35 42.12 44.47 158960 190 23

s713 n.c. n.c. n.c. n.c. 2.86 62.86 65.72 174356 216 25

s838.1 n.c. n.c. n.c. n.c. 3.74 105.46 109.2 147753 419 29

s838 n.c. n.c. n.c. n.c. 3.82 322.13 325.95 885548 366 29

TABLE III : Stat i st ics for construct ing the BDDs of the ISCAS89 Benchmarks

Instance

Fixed Random Fixed-Sift Random-Sift Capo
Avg Cut

Build Max Build Max Build Max Build Max Order Build Total Max

Time Node Time Node Time Node Time Node Time Time Time Node Fix New

aim-100-1_6-no-1 0.55 33065 0.45 18918 0.33 3113 0.45 3465 0.72 0.08 0.8 222 84 32

dubois50 n.c. n.c. 12.36 3215 14.66 4276 0.69 0.25 0.94 432 201 11

hole10 26 131071 116.43 3390725 12.75 19004 12.37 18985 1.46 0.38 1.84 19517 201 30

hole8 2.08 20223 4.43 145393 3.01 5095 3.03 4058 0.44 0.14 0.58 3767 108 21

hole9 7.74 52223 23.3 810524 5.37 8472 5.5 10216 0.62 0.2 0.82 8748 149 25

ii8a1 25.71 372073 n.c. 4.43 7220 7.22 6846 0.89 1.18 2.07 17558 75 20

par16-1-c 535.65 893751 n.c. 1826 500497 2140 434239 3.84 115.71 119.55 171529 271 101

par8-1 133.14 90742 113.37 160072 88.38 34503 97.35 28624 2.43 32.07 34.5 36260 253 39

pret150_25 n.c. n.c. 649 271636 302.82 156136 0.7 1.01 1.71 3393 152 18

ssa0432-003 n.c. n.c. n.c. n.c. 2.83 29.87 32.7 168678 287 46

TABLE IV: Stat ist ics for construct ing the BDDs for Selected DIMACS Benchmarks
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be implemented once and used for different applications without
modifying the application code. Given that MINCE shows strong
improvements for both SAT and BDDs on a wide variety of stan-
dard benchmarks, we believe that it is able to capture some structur-
al properties of CNF instances. For example, when a CNF/BDD is
created from a circuit, it is not difficult to see that MINCE essential-
ly performs recursive partitioning and linear placement of this cir-
cuit, and then orders variables in CNF/BDD so that respective
circuit elements are located near each other on average.

Our on-going work addresses additional types of benchmarks,
better justifications of the MINCE heuristic and also analyses of the
rare cases when it fails to produce near-best variable-ordering. An
important direction for future research is to account for polarities of
literals. It is, in fact, surprising that MINCE is so successful without
even using polarities of literals. We are also preparing a public-do-
main implementation of MINCE.
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