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Abstract
We introduce a new approach to satisfiability that com-

bines backtrack search techniques and zero-suppressed
binary decision diagrams (ZBDDs). This approach implicitly
represents satisfiability problems using ZBDDs, and per-
forms search using operations on this representation. This
methodology which adapts backtrack search algorithms to
such implicit representations should allow for a potential
exponential increase in the size of problems that can be han-
dled. We describe how to perform backtrack search and con-
flict diagnosis with ZBDDs used as an underlying structure
for clause representation. We also report on our initial
experiments with this approach.

1 Introduction
Boolean Satisfiability (SAT) serves as an underlying

model for a wide range of applications in Computer Science,
Artificial Intelligence and Electrical Engineering, to name a
few. Over the years, this problem has been extensively inves-
tigated and efficient algorithmic solutions eagerly sought.
SAT research efforts culminated in an extensive collection of
proposed solutions. Of these, the most known complete algo-
rithms are based on the Davis-Putnam method [2], and varia-
tions of the Davis-Logemann-Loveland method [3]. Despite
literature confusion, the two approaches are different. The
former, based on resolution, performs existential elimination
on the propositional variables. The procedure is repeated until
the formula equals either (unsatisfiable problem instance)
or (satisfiable problem instance). Resolution tends to be
memory intensive as existential elimination often generates a
large number of clauses. The latter approach, based on back-
track search, implicitly enumerates the space of possible bi-
nary assignments looking for a satisfying one. A decision tree
keeps track of current assignments and prunes the search by
iteratively applying unit propagation, usually referred to as
Boolean Constraint Propagation [12]. If a conflict is reached,
the search backtracks to some previous assignment. Conflict
analysis [7], and recursive learning [5] comprise major en-
hancements to the basic backtrack search procedure. Conflict
analysis comes into play when a conflict arises, and adds ad-
equate information, a conflict clause, that anticipates the pos-
sible reoccurrence of this conflict. Furthermore, conflict
analysis allows the search process to backtrack non-chrono-
logically to earlier levels in the search tree, considerably
pruning the search space. On the other hand, recursive learn-
ing, when extended to conjunctive normal form (CNF) claus-
es, identifies necessary assignments by examining the

different possible ways of satisfying a given clause from the
set of unassigned literals.

These improvements allowed solving large problem in-
stances in various domains [7]. However, search-based ap-
proaches are still incapable of handling very large problems
arising from various EDA applications [10] as they tend to
explicitly represent the clause database. This explicit repre-
sentation and enumeration often results in time and memory
explosion.

Recently, this problem has been addressed by Chatalic et
al. [1] who proposed implementing resolution using zero-
suppressed binary decision diagrams (ZBDDs) [6, 9] as the
underlying data structure for clause encoding. Their approach
was capable of solving two hard problems that known SAT
solvers failed at. The high compression power of the underly-
ing data structure resulted in enormous reductions in algorith-
mic complexity.

In this paper, we push the above approach further. We ex-
plore using such an implicit clause database representation
with backtrack search techniques. This is motivated by the
desire to integrate the advantages of BDD-based and SAT-
based approaches in a hybrid scheme. In addition, we show
how to efficiently identify conflicts in such a data structure
and how to generate conflict clauses using resolution.

2 Preliminaries
ZBDDs [6, 9] were inspired by the need to efficiently rep-

resent and manipulate sets of combinations. It is a directed
acyclic graph (DAG) consisting of two terminal nodes, the 0-
terminal (the empty set) and the 1-terminal (the set of a single
empty combination), and non-terminal nodes each of which
has two children, the 1-successor and the 0-successor. In ad-
dition, each non-terminal node is labeled with a Boolean vari-
able. Given a universe of objects, a
combination of objects from can be
represented by an -bit binary vector
where if object is in , and otherwise, .
A set of combinations can be represented by a characteris-
tic function where if
and otherwise, . In what follows, we use a set

and its characteristic function interchangeably.
ZBDD node semantics are illustrated in Figure 1(a). If a

node with label represents a set , and ’s 0-successor
and 1-successor represent and respectively, then

, where:
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ZBDD construction is based on two reduction rules illus-
trated in Figure 1(b) and (c). The node merging rule merges
two nodes if they have the same label and identical 0- and 1-
successors, whereas the node elimination rule eliminates a
node if its 1-successor is the 0-terminal. Each path from the
root node to the 1-terminal corresponds to one combination

of where if no node labeled exists along that
path. It is this property that renders ZBDDs a compact rep-
resentation for sparse combinations. As an example con-
sider the universe and the set:

(2)

can be represented by the ZBDD shown in Figure 3(a).
(Note that we label the ZBDD nodes with the objects names
instead of their encodings for ease of presentation). Minato
[9] presented efficient algorithms that implement set theo-
retic operations on ZBDDs. These operations include union,
intersection, difference, and product, among others. With
efficient caching techniques, these algorithms can execute
in time proportional to the ZBDD size rather than the cardi-
nality of the combination sets.

It was demonstrated in [1] that the above approach can be
extended to efficiently encode sets of clauses. In this case,
each variable and its complement are objects of , and each
path from the root to the 1-terminal corresponds to a single
clause. The number of paths to the 1-terminal equals the
number of clauses in the clause database. As an example, the
set of clauses:

(3)

corresponds to a set of combinations from
and can be represented by

the ZBDD shown in Figure 3(b). Using this approach, the
semantics of Boolean Algebra, such as subsumption, can be
superimposed on ZBDD reduction rules to achieve further
compression. As an example consider the ZBDD illustrated
in Figure 2(a) where the 1-successor and the 0-successor of
the root are identical. Using ZBDD node semantics,

and by the subsumption rule of Boolean
Algebra, . Another CNF-specific reduction rule is
subsumed difference [1]: given two sets and , the sub-
sumed difference of by , denoted as , is the set of

clauses of that are not subsumed by any clause from . In
a ZBDD, whose root node represents the set and its 0 and
1-successors represent and respectively,

. Since is independent of , clauses in
can subsume clauses in , while clauses in can’t
subsume any clause in . Consequently,

. This reduction rule
is illustrated in Figure 2(b). It was shown that the recursive
application of this rule results in a ZBDD that is free of sub-
sumed clauses. In addition, subsumed difference can be
used as the building block for subsumption-free union and
subsumption-free product operations [1]. These operations
were incorporated in a multi-resolution version of the DP
procedure for satisfiability. Given a clause database and
the characteristic function encoding the clauses of ,
after a variable is selected for existential elimination,
multi-resolution uses standard ZBDD operations to partition
the clause set into three sets: , and . denotes the
set of clauses having the literal , the set of clauses hav-
ing the literal , and the set of clauses having neither
nor . Existential elimination is performed as follows:

where donates the cofactor
of with respect to . The union between and
translates into subsumption-free product on the ZBDDs rep-
resenting their characteristic functions and the intersection
of the result with corresponds to subsumption-free union
on the corresponding ZBDDs. The advantage of multi-reso-
lution is the reduction in algorithmic complexity of the oper-
ations. Each of the above operations depend on the sizes of
the corresponding ZBDDs, measured in number of nodes,
and not the size of the clause set (i.e literals) they encode.

3 ZBDDs As a Structure for Backtrack
Search

Despite various algorithmic solutions, backtrack search
remains the most prevalent technique for attacking the satis-
fiability problem. Backtrack search implicitly enumerates
the space of truth assignments using a decision tree to main-
tain current assignments to Boolean variables. Although
many effective improvements were incorporated in the algo-
rithm, it is still incompetent for large-scale clause databases
because of its explicit representation of clauses. To conquer
this, we propose an implicit backtrack search algorithm that
uses ZBDDs as the underlying data structure for clause rep-
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Figure. 1 (a) ZBDD node semantics
(b) node merging rule and (c) node elimination rule
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resentation.
A generic backtrack search algorithm is comprised of

three main engines [8]: Decide(), Deduce(), and Diagnose().
In what follows, we briefly describe each engine and illus-
trate how to achieve its function when ZBDDs are the under-
lying data structure.

Decide() uses heuristic knowledge to make elective as-
signments to variables. When using ZBDDs, we assign a
variable by adding a one-literal clause, representing this as-
signment to the clause set. This is achieved by unioning, us-
ing subsumption-free union, the characteristic function of the
clause to be added with the characteristic function of the
clause database. As an example, consider again. To as-
sign to , we add the clause to to get:

(4)

the three clauses , , and

are subsumed by .

Deduce() determines the consequences of the assign-
ments elected by Decide(), typically yielding additional
forced assignments to, i.e. implications of, other variables.
This is achieved by repeatedly applying the unit clause rule
until no unit clauses exist. To implement this approach using
ZBDDs, we need to identify unit clauses and absorb on them.
Single-literal clauses are identified by recursively traversing
“zero-successors” of the ZBDD encoding the clause set start-
ing at the root; any node whose 1-successor is the 1-terminal
denotes a unit clause. Absorption is then carried on the iden-
tified set of unit clauses by recursively applying the absorp-
tion reduction rule illustrated in Figure 4. The recursive
application of this procedure automatically handles unit
propagation, eliminating the need to track implications ex-
plicitly. An empty clause, i.e. 1-terminal, designates a con-
flict, indicating the existence of an unsatisfied clause, while
a set consisting of only unit clauses represents a satisfying
assignment. Applying absorption to , we get:

(5)

Diagnose() handles the occurrence of conflicts and back-
tracks appropriately to a previous decision. Besides, it ana-
lyzes the causes of the conflict and generates adequate
information to prevent its re-occurrence. While our Deduce()
engine eliminates the need for an implication graph that
keeps track of assignments, it lacks the ability to identify
variable assignments causing conflicts. To surmount this, we
keep a copy of the clause database before each iteration of
the unit propagation rule. On a conflict, we use this copy to
identify conflicting variables. This is achieved by checking
for a pattern of the following structure

. The existence of
such a pattern indicates that each of to is a conflicting
variable and can now be used to generate the learned clauses,
that can effectively prune the search space. We use a novel
conflict diagnosis approach that implicitly generates learned
clauses by applying resolution on identified conflicting vari-
ables. As an example, consider again. Assume that the cur-
rent assignments are , and the Decide() engine
selects . This results in indicating
that is a conflict variable. Applying resolution on results
in two clauses: and . These clauses are
added to to get:

(6)
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whose ZBDD is shown in Figure 3(c). The algorithm
continues by unioning previous decision i.e, with

.
Since “knowing more is good”, augmenting the formula

with additional clauses can produce an avalanche of implica-
tions during search, consequently leading to a dramatic re-
duction in search time. However, “knowing too much is bad”
since applying “blind” resolution can generate an exponen-
tial number of clauses tremendously slowing down the
search performance. Therefore, we impose a limit on the size
(number of literals) of the generated clauses as a heuristic for
limiting the number of generated clauses. Also, we selective-
ly perform resolution on subsets of the clause database that
only consists of previously assigned variables. The set of
generated clauses are added to the initial clause database us-
ing subsumption-free union.

Further reduction techniques, illustrated in Figure 5, that
perform a combination of Boolean algebraic manipulations
(i.e. absorption, subsumption, and resolution) can be locally
applied to the ZBDD in order to reduce its size and eventual-
ly the number of literals in the problem. Figure 3(d) shows
the result of such relations on clause set : whereas the
original problem had 8 clauses, 24 literals, and required 13
ZBDD nodes, the reduced formula consisted of 5 clauses, 11
literals, and required only 9 ZBDD nodes.

The time complexity of the described algorithms is a
function of the number of nodes in the ZBDD rather than the
size of the clause database. With the strong compression
power of ZBDDs, this approach promises better results than
explicit techniques when dealing with large scale problems.

4 Experimental Results
To check the efficiency of resolution using ZBDDs, we

implemented a version of ZRES [1]. Our algorithm is imple-
mented in C++ and uses the CUDD package [11] to build the

ZBDDs. Table 1 shows the results for selected problems
from the DIMACS set [4]. All experiments were conducted
on a Pentium-II 333 MHz machine running Linux and
equipped with 512 MB of RAM. The time-out limit was set
to 1000 seconds. In general, the resolution approach was in-
efficient in solving the majority of small benchmarks and un-
able to solve any of the large benchmarks. With additional
reduction techniques, we were able to improve the runtimes
but many problems remained unsolved. Table 1 also shows
the compression capability, shown in the last column, ob-
tained when using ZBDDs as opposed to explicit lists of
clauses. The compression power is measured as the ratio of
the number of literal in the problem and the number of nodes
in the ZBDD. Clearly, this implicit representation provides
great memory reduction, especially on structured problems.
It is instructive to point out that the hole-n results reported in
Chatalic et al. [1], shown at the end of Table 1, has a partic-
ular structure that can be represented very efficiently using
specific ZBDD variable order. In contrast, the results shown
in Table 1 were generated using a fixed ZBDD variable order

. In general, structured problems suggests a natu-
ral efficient variable ordering for ZBDD construction as well
as resolution variable elimination.

Figure 6 shows the search runtimes for various size limits
of the clauses generated during conflict analysis for four
benchmarks. The graphs also show the runtimes for the reg-
ular and selective approach (discussed in Section 3) which
applies resolution on the complete problem and on a selected
subset of the problem, respectively. The selective/reduced
curve represents a combination of the selective approach
with the reduction techniques shown in Figure 5. The data
clearly shows the advantage of limiting the number of the
generated clauses and their sizes on the performance of the
search process. An optimal limit exists for each of the pre-
sented benchmarks, which would yield minimal search time.
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Figure. 5 Boolean algebraic manipulation techniques
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Regular Reduced

Time
Max-
CL

Time
Max-
CL

Comp
ression

aim-50-3_4-yes1-2 >1000 59492 116.57 9440 5.93

aim-50-1_6-no-1 0.13 84 0.09 69 1.32

aim-200-1_6-yes1-1 >1000 621153 11.08 2520 5.35

jnh2 >1000 123174 >1000 50319 3.60

pret60_25 0.16 600 0.11 164 1.86

dubois22 0.23 6144 0.23 6144 814.55

hole7 22.23 43220 25.09 43220 190.27

ii8a1 0.63 750 0.6 662 7.68

par8-1 17.53 11877 12.38 3967 26.36

pret60_75 0.16 600 0.13 164 1.86

ssa7552-160 117.34 5553 112.98 3094 1.60

hole7 0.3 823697 0.32 823697 2.76E8

hole10 2.07 1E10 2.05 1E10 3.39E4

Table 1: Resolution Results
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However, unrestricted clause size limits can lead to an expo-
nential number of clauses, hence severely slowing the search
performance. Although the shown benchmarks were easily
solved by other SAT solvers, we conjecture that further re-
finements of the search algorithm, especially conflict diag-
nosis, should be able to handle very large problems that are
out of the scope of current solvers. Such refinements include,
efficiently ordering ZBDD variables and dynamically limit-
ing clause size.

5 Conclusion
We have proposed a new approach to satisfiability that

combines backtrack search and resolution using ZBDDs.
The advantage of such an approach is twofold. Firstly, it
promises to be able to deal with large scale clause databases
through its implicit representation. Secondly, it serves as a
means to study the time-space tradeoff between backtrack
search and resolution. Our preliminary results show the ef-
fective memory compression achieved with this approach.
Further work involves enhancing this technique to handle
large problems in feasible time.
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Figure. 6 Backtrack search runtimes using ZBDDs
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