
Efficient Gate and Input Ordering for Circuit-to-Bdd Conversion
Fadi A. Aloul, Igor L. Markov, Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

{faloul, imarkov, karem}@eecs.umich.edu
Abstract
Boolean functions are fundamental to synthesis and veri-

fication of digital logic, and compact representations of
Boolean functions have great practical significance. Popu-
lar representations, such as CNF, DNF, circuits and ROB-
DDs [4], offer different advantages and are preferred for
different tasks. Conversion between those representations is
common, especially when one is used to represent the input
and another speeds up relevant algorithms.

Our work addresses the construction of ROBDDs that rep-
resent outputs of a given Boolean circuit. It is used in synthe-
sis and verification [8]. Earlier works [7, 10] proposed
ordering circuit inputs and gates by graph traversals. We
contribute orderings based on circuit partitioning and
placement, leveraging the progress in recursive bisection
and multi-level min-cut partitioning achieved in late 1990s.
Our empirical results show that the proposed orderings
based on circuit partitioning and placement are more suc-
cessful than straightforward DFS and BFS, as well as rela-
ted heuristics proposed in [7, 10, 12].

1 Introduction
Due to the sheer number of n-variable Boolean functions,

their explicit specification, e.g., by truth tables, is of limited
practical use. Compact representations tend to be implicit,
and their power is determined by the efficiency of operations
they enable. Important operations include basic logic con-
nectives and satisfiability checking. Subsets of astronomi-
cally-sized sets as well as large collections of such subsets
are often represented by related techniques via characteristic
functions.

In the last 15 years, a number of applications based on ef-
ficient manipulation of Boolean functions gained industrial
significance, notably in automated design and verification of
logic circuits [2, 8]. Today these applications encourage re-
search in efficient operations on Boolean functions, and pro-
vide a number of sizable benchmarks.

Asymptotic worst-case complexity analysis often leave no
hope as many important operations with Boolean functions
are NP-complete, NP-hard or tend to require unaffordable
amounts of memory [8]. However, actual performance on
typical inputs and asymptotic best-case performance are
equally important in applications. For example, if one ex-
plicitly stores all values of a Boolean function, the best-
case will be exponential, and such representation will never
scale, however good the input may be.

Minimal requirements for a compact representation of
Boolean functions include good best-case performance, rea-
sonable performance on instances arising in applications
and compatibility with efficient algorithms. Other intuitive
requirements, such as irredundancy, can be traded off. Given
an application, the choice of a compact representation can be
determined by the type of instances and relevant efficient al-
gorithms. Since the efficient evaluation of Boolean functions
is common to most applications, all popular representations
are built around evaluation algorithms and can be viewed as
“programs” to evaluate a given Boolean function.

Conjunctive Normal Form (CNF) [8] and Disjunctive
Normal Form (DNF) [8] are special types of Boolean formu-
lae whose variables represent inputs of a given single-output
Boolean function. The value of the formula on particular in-
put values represents the value of the function. Many -in-
put functions arising in applications can be represented with

-bit CNFs or DNFs, furthermore, such representations
naturally arise in many contexts. Boolean formulae can be
evaluated in linear time and allow several other fast opera-
tions, such as co-factoring. In many practical cases neither
CNF nor DNF allow both efficient union and intersection op-
erations. Determining whether two formulae denote the
same function is often very difficult.

 Another compact representation is based on Boolean cir-
cuits, where inputs of the function are represented by prima-
ry inputs and the value is represented by a unique primary
output. Circuit evaluation takes linear time and entails eval-
uating gates in topological order. Both intersection and
union can be performed in linear time or faster, as well as co-
factoring. However, the result of multiple unions and inter-
sections will grow with the number of operations, even if a
smaller representation is possible. Determining whether two
circuits denote the same function is often very difficult.
Boolean circuits are often sought as the final result in the
synthesis of digital logic and given as input in circuit verifi-
cation algorithms.

2n

N

O N()

Circuit

BDD

CNF

[1]
[17]

[7,10, ^]

[14]

Figure 1. Conversions between Compact Representations
of Boolean Functions. (^ stands for this work)

Binary Decision Diagrams (BDDs)1 [4, 8] are levelized di-
rected graphs, where nodes on every level represent one in-
put of a given Boolean function, plus one additional level
with two nodes: 0 and 1. Every node, except for 0 and 1 has
two outgoing edges connecting it to nodes on lower levels,
and potentially many incoming edges connecting to upper
levels. A set of input values corresponds to a path leading
from the single node at the top level down to 0 or 1. Thus,
every set of input values evaluates to 0 or 1 in linear number
of steps. The uniqueness of BDD representations is based on
fixing the ordering of variables and hashing that efficiently
prunes redundant nodes.

When used to represent Boolean functions, BDDs offer
best-case exponential compression, linear-time evaluation,
reasonably efficient unions and intersections, as well as
uniqueness. The latter implies that if the result of multiple
unions and intersections can be compactly represented, then
such a representation will be automatically found. The equa-
lity of two BDDs can be tested in linear time or less. In most
applications of BDDs, the main limiting factor is memory
and not the runtime.

While BDDs are the most flexible of popular representa-
tions, they often need to be constructed from other represen-
tations, such as CNFs, DNFs and circuits. Our work
addresses the construction of BDDs from circuits and draws
upon recent work [1] where the construction of BDDs from
CNFs was considered.

As a consequence, the size of BDDs dramatically depends
on the chosen order of variables. Finding a better variable or-
der is often worth spending considerable computational ef-
fort because this implies savings for further operations on the
constructed BDD. Another parameter critical during the con-
struction of BDDs is the maximal memory required, which
may be greater than the memory required by the final BDD.
We note that for a given variable order, a poorly implemen-
ted construction order may run into an intermediate BDD
that does not fit into memory. Therefore, our work addresses
both the variable ordering in the final BDD and the details of
the construction process. The remainder of this paper is or-
ganized as follows. In Section 2, we review existing work on
construction of BDD from circuits, describe our motivation
to use circuit partitioning and placement, and review recent
progress in that area. Section 3 presents our algorithms and
Section 4 shows empirical results. Conclusions and ongoing
work are given in Section 5.

2 Background
2.1 Construction of BDDs from Circuits

Algorithms that construct a BDD for a single-output func-
tion given by a Boolean circuit are typically recursive. They
start by constructing a BDD for each primary input (PI) and
finish by constructing a BDD for the primary output (PO).

The gates are traversed in a topological order, and at every
step a BDD is computed for a new gate using BDDs for its
fanin gates. As mentioned earlier, the size of the BDD and its
execution time is dependent on the ordering of its variables.
A good ordering can lead to a smaller BDD and faster run-
time, whereas a bad ordering can lead to an exponential
growth in the size of BDD and hence can exceed the avail-
able memory. Several heuristics have been proposed to order
the BDD variables based on the given circuit input informa-
tion. In the following, we describe some of the common vari-
able ordering techniques:

• Original: Each PI is appended to the BDD variable
ordering according to its original index in the circuit.

• DFS: A depth-first search (DFS) is performed starting
from the PO. A PI is appended to the ordering as soon
as its traversed.

• BFS: A breadth-first search (BFS) is performed
starting from the PO. A PI is appended to the ordering
as soon as its traversed.

• Fujita [7]: A DFS is performed starting from the PO.
PIs with multiple fanouts are appended first to the
ordering followed by PIs with single fanouts.

• Malik-level [10]: POs are assigned level 0. The level
for each node in the circuit is computed by

, where
corresponds to the fanouts of node . PIs with the
maximum levels are appended to the ordering first.

• Malik-fanin [10]: A DFS is performed starting from
the PO. However, unlike previous approaches, in
which ties are broken between gate fanins by selecting
the fanin with the smallest index, the transitive fanin
(TFI) depth size is used a tie-breaker. The TFI-depth of
a node is defined as the maximum level of any node
in the fanin cone of node . Fanins with larger TFI-
depths are visited first. A PI is appended to the
ordering list as soon as its traversed.

The last three heuristics have been shown to provide the
best performance when applied to circuits. Fujita’s heuristic
aims to minimize the number of crosspoints of nets in the cir-
cuit diagram. On the other hand, Malik’s heuristics prioritize
PIs that are far away from the POs in the circuit, since these
PIs are expected to greatly influence the circuit behavior.
The order of BDD variables can be further improved during
the BDD construction by the dynamic sifting heuristic2 [13],
that is now considered an integral part of every BDD pack-
age [15] and entails pair-wise swaps of variables.

In addition to ordering the BDD variables (PIs in circuit),
the order in which gates are processed can also be varied. It
has been shown that different gate traversals orders can lead
to large intermediate BDD sizes [12]. In our approach, after
the BDD variables are ordered as explained above, we con-
sider three ways to order gates: (1) use the gate order from

1. Only Reduced Ordered Binary Decision Diagrams are consid-
ered in this work.

2. We use sifting from the latest 2.3.1 version of CUDD. We expect
CUDD to include the best stable configuration of sifting.

level g() max level go() 1+()= go
g

j
j

the DFS traversal from POs, (2) use the gate order from the
BFS traversal from POs, (3) perform a BFS from PIs. In case
of a tie, the gate with the smallest index is selected3. In ge-
neral, option 1 shows the best performance. The results for
options 2 and 3 are omitted due to limited space.

Recently, Murgai et al. [12], proposed various ways of or-
dering binary operations for multi-input gates. Specifically,
for gates with more than two inputs. Their best scheme, re-
ferred to as size_support, used an analysis of the size and
support sets of the intermediate BDDs to minimize their size.
We compare their scheme to our proposed techniques in Sec-
tion 4.

2.2 Motivating Examples
Figure 2(a,c) show two topological orderings of a small

circuit that lead to BDDs of different sizes. For a given or-
dering, we define the netlength of a given signal net as the
maximal difference in indices of gates on this net. We ob-
serve that smaller total netlengths tend to co-exist with
smaller BDDs. This connection can be explained as follows.
It is known from VLSI placement, that smaller netlengths
correlate with smaller cuts, which is used in min-cut place-
ment [5]. Smaller cut-width in circuits have been related to
smaller BDDs in [2]. Therefore, we will attempt to produce
topological orderings that minimize total netlength, by using
min-cut placement.

2.3 Circuit Partitioning and Placement
The expected size of BDDs for randomly chosen Boolean

function is exponential in the number of variables, however
in many applications BDDs have only polynomial size. This
is made possible by the automatic discovery and use of struc-
ture in Boolean functions during the construction of BDDs.
Continuing along those lines, it is natural to automatically
select a variable ordering and modify the process of con-
structing BDDs, based on detected structure. Earlier pro-
posed heuristics based on graph traversals (DFS and BFS)
[7, 10] attempt to do that, but one expects that additional
structure can be discovered by more sophisticated algo-
rithms.

Motivated by the example in Figure 2, we consider the
cut-structure of circuits. Intuitively, tightly connected clus-
ters of gates should be processed together, and this can be
achieved if gates are ordered by recursive min-cut bisection.
Recursive min-cut bisection was studied in (one- and two-di-
mensional) VLSI placement for at least 30 years and is
known to be very successful in minimizing “half-perimeter
wire-length” which translates back to smaller netlength [5].
For example, given a gate-ordering, the total netlength
equals the sum of all cuts (and denote the set of nets
and gates -including PIs- in the circuit, respectively):

3. Different tie-breaking strategies lead to different topological order-
ings. We experimented with Malik’s level and fanin options as gate
tie-breakers. The results were similar to the index tie-breaking
approach.

Figure 2. Example using (a) default variable ordering with Circuit hypergraph (b) Dual hypergraph
(c) min-cut variable ordering with Circuit hypergraph (d) Dual hypergraph

ca b d e f g h i

max-cut = 3
total netlength = 18
BDD size = 9 Nodes

(a)

fa d b e g h c i

max-cut = 2
total netlength = 10
BDD size = 5 nodes

c(3)

b(2)

a(1)
d(4)

e(5)

ca b d e f g h i

h

f

g

i

max-cut = 5
total netlength = 24
BDD size = 9 Nodes

(d)

PI(BDD Var)
ig

a(1)
d(2)

h

f c(5)
b(3)
e(4)

fa d b e g h c i

max-cut = 3
total netlength = 14
BDD size = 5 nodes

(b)

(c)

N G

TotalNetLength NetLength n()
n N∈
∑ cut i()

i 0=

G 1–

∑= =

AverageNetLength

NetLength n()
n N∈
∑

N
--=

Since the total number of nets and gates are fixed, the
average netlength is proportional to the average cut.

Each partitioning is performed subject to approximate
equality of partition sizes, which is critical to performing
placement in time, where is the size of
the input. This efficiency is due to a 1997 breakthrough in
min-cut partitioning that brought us multi-level Fiduccia-
Mattheyses methods [9]. The Fiduccia-Mattheyses heuristic
by itself is vastly inferior to multi-level methods by both
runtime and solution quality. Multi-level partitioning con-
sists of a clustering stage and refinement stage. During clus-
tering, randomly chosen pairs of gates connected by wires
are merged, creating several clustered circuits. During refi-
ning, the iteratively-improving pass-based Fiduccia-Mat-
theyses heuristic is applied to clustered circuits from the
most clustered to the original. At every refining step, the best
seen solution is propagated to the next circuit, and therefore
the cut cannot become worse.

The minimization of netlength in one dimension fits our
needs by providing a linear ordering heuristic with good as-
ymptotic performance. While in some of our experiments
such min-cut placement consumes more time than the BDD
construction, its runtime is limited by a near-linear function
and is very predictable in practice. Therefore, min-cut place-
ment is a reasonable insurance policy against bad variable
orderings that make the construction of BDD entirely impos-
sible.

Aloul et al. [1] have previously used linear hypergraph
placement as a static variable ordering technique, Mince, for
constructing BDDs from CNFs rather than arbitrary combi-
national circuits.

3 Proposed Techniques
We use the min-cut circuit placer CAPO [5], based on

multi-level Fiduccia-Mattheyses min-cut partitioner MLPart
[6]. Since circuit partitioning and placement are typically
performed on hypergraph representations of circuits, we dis-
tinguish two such hypergraph models: the circuit hypergraph
(Circuit HG) and the dual hypergraph (Dual HG).

A Circuit HG models circuits by representing each gate
with a hypergraph node and each signal net driven by a gate
with a hyperedge. PIs and signal nets driven by PIs are also
included as hypergraph nodes and hyperedges, respectively.
Each hyperedge connects the fanout of a gate to the fanins of
the gates that its connected to. An example is shown in Fig-

ure 2(a). After CAPO is applied to this hypergraph and re-
turns an ordering of gates, the ordering of PIs is derived from
the gate ordering.

A Dual HG can also be generated by replacing the above
hyperedges, with new hyperedges that connect the fanout of
each gate to its fanins. Figure 2(b) shows an example of a
Dual HG. Dual HGs are more likely to produce better PI or-
dering than the Circuit HG approach, since the inputs of each
gate are ordered closely to the output of the gate. Figure 2(c-
d), show an example of the hypergraph generated by CAPO
for the given circuit using the Circuit HG and the Dual HG
models. Clearly, the total netlength and the max-cut were re-
duced for both cases. The original ordering of the Dual HG
model implied a total netlength, max-cut, and BDD size of 5,
24, and 9 nodes, respectively. In comparison, the new PI-or-
dering for the Dual HG model reflected a total netlength,
max-cut, and BDD size of 3, 14, and 5 nodes, respectively.
We conjecture that such PI ordering should yield better BDD
runtime and memory results.

4 Empirical Results
In this section, we present experimental evidence of the

improvements obtained by using min-cut hypergraph parti-
tioning to represent Boolean functions in BDDs. Empirical
results are given for the ISCAS85 circuit benchmarks [3].
All algorithms are implemented in C++ and use the CUDD
[15] package to build the BDDs. We used CAPO [5] as our
min-cut circuit placer. The experiments were conducted on a
Pentium-II 333 MHz, running Linux and equipped with 512
MB of RAM. The runtime and memory limit were set to
1,000 seconds and 500MB, respectively.

Tables 1 and 2 summarize the runtime and memory results
for constructing single output BDDs for the PO functions of
the ISCAS85 circuits in terms of their PIs. In both tables, the
columns represent the original, BFS, DFS, Fujita [7], Malik-
level [10], Malik-fanin [10], and Mince orderings using the
Circuit HG and the Dual HG, respectively. In each circuit,
the same variable ordering was chosen for all its outputs. The

AverageCut

cut i()
i 0=

G 1–

∑

G 1–
----------------------------=

AverageCut N
G 1–

NetLength n()
n N∈
∑

N
--⋅=

AverageCut N
G 1–
---------------- AverageNetLength⋅=

N G

Θ M Mlog()2() M
Figure 3. Proposed Ordering Flow

Circuit

Linear Min-cut Placement by

 Preprocess circuit

BDD Construction

Hypergraph

Recursive MLFM Partitioning

Ordering
Flow CAPO

Gates and Pimary Input ordering

ordering was identified using the output with the largest TFI-
depth. The tables also include the runtime needed by CAPO
to generate the gate orderings. The runtimes are reported in
units of seconds, Node represent the maximum number of
nodes seen during the construction of the final BDD from the
circuits, and Total represents the sum for successfully built
circuits only. The BDDs were constructed by repeatedly call-
ing the apply procedure and traversing the circuit using a
DFS approach from the POs. A BDD is constructed for a
gate as soon as all the BDDs of its fanins are constructed.

As the data illustrate, FUJ and MAL-fan successfully con-
struct the greatest number of circuits compared to the previ-
ous 6 PI ordering heuristics. However, when sifting is
disabled, circuit HG and Dual HG orderings are yet able to
construct more BDDs than all other approaches. Out of 11
ISCAS85 benchmarks, circuit HG and Dual HG constructed
9 and 10 BDDs, respectively, as opposed to 8 BDDs by FUJ
and MAL-fan. Furthermore, the Dual HG model was suc-
cessful in solving more instances, using smaller runtimes
and BDD nodes, than the Circuit HG model. This can be at-
tributed to fact that constructing the BDD for a gate’s output
is heavily dependent on the gate’s inputs which are ordered
more closely using the Dual HG model. When comparing
the results with sifting, the Dual HG model does not perform
as fast as the MAL-fan, but it does utilize fewer BDD nodes.
As discussed earlier, building BDDs with sifting generally

uses fewer BDD nodes but requires an extra runtime over-
head. This is especially noticeable for the Dual HG model,
which solves all 10 instances in 30 seconds without sifting as
opposed to 143 seconds with sifting. On the other hand, the
total BDD size is only 32K nodes with sifting, whereas 210K
nodes are needed without sifting. The proposed static order-
ing is very effective in applications that do not allow dynam-
ic sifting.

Tables 3 and 4 show the final BDD sizes (the size of the
largest BDD among all BDDs representing the POs) using all
8 variable ordering heuristics with and without sifting, re-
spectively. The Dual HG model outperforms all other heuris-
tics. We also tested Murgai’s algorithm [12] (described in
Section 2.1) with the Dual HG model to minimize the size of
the intermediate BDD nodes, overall, the approach is slower
due to the overhead in analyzing the size and support sets of
the intermediate BDDs and the memory improvements are
minimal.

If minimizing the final size is the goal, multiple indepen-
dent random starts of Mince can be used, and the best result
is selected from among all starts.

To summarize, the main advantage of our approach is the
use of circuit structure detected by global min-cut partition-
ing and placement algorithms with near-linear worst-case
runtime.

Table 1. Statistics for constructing the BDDs of the ISCAS85 Circuits without Sifting
(Node = Maximum number of BDD nodes seen during the construction of the BDD)

Inst-
ance

Original BFS DFS FUJ MAL-Lev MAL-Fan Mince
CAPO Circuit HG Dual HG

Time Node Time Node Time Node Time Node Time Node Time Node Time Time Node Time Node
c17 0.57 7 0.56 7 0.56 7 0.57 7 0.56 7 0.06 5 0.21 0.06 6 0.06 6
c432 0.59 523 2.84 9199 1.74 6625 1.78 6625 1.76 6625 1.06 6880 0.66 0.11 822 0.11 777
c499 1.04 4945 1.31 7203 1.03 6100 1.02 6092 1.01 6100 0.49 5804 1.72 0.64 3405 0.52 4317
c880 6.93 111K 11.9 368K 9.68 245K 9.69 245K 9.05 213K 11.4 220K 1.48 3.41 83K 0.28 5696
c1355 1.72 4945 3.05 6255 1.71 6100 1.71 6092 1.71 6100 1.41 5804 1.89 2.26 4581 1.62 3390
c1908 2.48 8519 1.36 2437 1.64 4808 1.61 4808 1.43 4790 0.74 4837 3 0.98 3459 1.25 7905
c2670 out-of-mem 46.3 5.1M 43.9 4.9M 39.1 4.4M 32.9 3.7M 30.6 3M 4.99 3.47 101K 1.33 24K
c3540 26 329K out-of-mem 256 2M 253 2M 231 1.8M 212 1.6M 7.72 out-of-mem 20.3 118K
c5315 out-of-mem out-of-mem time-out time-out time-out time-out 11.3 2.54 15K 2.77 40K
c6288 out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem 9.53 out-of-mem out-of-mem
c7552 out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem 16.3 5.76 39K 2.22 6682

Total 39 459K 67 5.5M 316 7.1M 308 6.7M 280 5.7M 258 4.8M 58.8 19 250K 30 210K
#Built 7 7 8 8 8 8 9 10

Table 2. Statistics for constructing the BDDs of the ISCAS85 Circuits with Sifting
(Node = Maximum number of BDD nodes seen during the construction of the BDD)

Inst-
ance

Original BFS DFS FUJ MAL-Lev MAL-Fan Mince
CAPO Circuit HG Dual HG

Time Node Time Node Time Node Time Node Time Node Time Node Time Time Node Time Node
c17 0.07 7 0.06 7 0.06 7 0.07 7 0.06 7 0.06 5 0.21 0.07 6 0.06 6
c432 0.32 386 1.06 1715 0.8 1770 0.81 1770 0.8 1770 1.11 2025 0.66 0.31 444 0.3 541
c499 11.6 3957 11.6 5030 11.9 4483 12.8 4131 11.9 4483 11.6 4836 1.72 19.3 3661 9.77 2609
c880 4.11 8176 11.1 10K 3.77 3213 3.76 3397 2.22 3433 3.48 2852 1.48 15.6 23K 1.86 2411
c1355 44 4649 107 6862 61.9 4098 41 4019 62.1 4098 33 4451 1.89 44.8 3477 56 2397
c1908 5.06 1835 6.41 1721 7.17 2327 7.22 2327 8.55 3147 5.19 1645 3 6.1 1741 8.68 2444
c2670 22.3 21489 7.26 9782 10.1 9670 15.3 11K 11.1 13K 8.95 8694 4.99 5 3036 5.98 2589
c3540 53.7 14904 24.1 14K 24.2 14K 24.3 14K 24.5 14K 25 11K 7.72 47.8 16K 41 12K
c5315 3.13 2297 3.26 2518 3.84 1821 3.56 2077 3.29 2077 3.77 677 11.3 2.29 865 3.22 3073
c6288 time-out time-out time-out time-out time-out time-out 9.53 time-out time-out
c7552 22.1 3450 20 6178 20.7 6267 21 6267 23.5 5890 27.3 4133 16.3 12.9 3099 16.1 3918

Total 166 61K 192 58K 144 48K 129 49K 148 51K 120 40K 58.8 154 55K 143 32K
#Built 10 10 10 10 10 10 10 10

5 Conclusions
We propose a new approach for constructing BDDs from

Boolean circuits, based on min-cut circuit partitioning and
placement, applied to the orderings of the BDD variables and
the circuit gates. We empirically validate our heuristics on
ISCAS circuit benchmarks and achieve competitive results.
In particular, our best results (for heuristics Circuit HG and
the Dual HG) are typically better than those published in [7,
10]. Related work by Wang et al. [16], uses the hMetis min-
cut partitioner [9] instead of MLPart [6], and does not expli-
citly use a circuit placer. While we compare the efficiency of
different circuit models in terms of undirected hypergraphs,
Wang et al. [16] considers directed hypergraph models and
post-processes the results of classical min-cut partitioning to
improve oriented cuts. Although our approach does not pur-
sue oriented cuts, our empirical results are very competitive.

Currently, we are working on an open source release of our
implementations.

Acknowledgments
This work is funded by the DARPA/MARCO Gigascale

Silicon Research Center and an Agere Systems/SRC Re-
search fellowship.

References
[1] F. Aloul, I Markov, and K. Sakallah, “Faster SAT and Smaller

BDDs via Common Function Structure,” in Proc. of the Inter-
national Conference on Computer Aided Design, pp. 443-
489, 2001.

[2] C. Berman, “Circuit Width, Register Allocation, and Ordered
Binary Decision Diagrams,” in IEEE Transactions on Com-
puter Aided Design, 10(8), pp. 1059-1066, 1991.

[3] F. Brglez, and H. Fujiwara, “A neutral netlist of 10 combina-
tional benchmark circuits and a target translator in FOR-
TRAN,” in Proc. of the International Symposium on Circuits
and Systems, pp. 677-692, 1985.

[4] R. Bryant, “Graph-based algorithms for Boolean function
manipulation,” in IEEE Transactions on Computers, 35(8),
pp. 677-691, 1986.

[5] A. Caldwell, A. Kahng, and I. Markov, “Can Recursive
Bisection Produce Routable Placements?” in Proc. of the
Design Automation Conference, pp. 477-482, 2000.

[6] A. Caldwell, A. Kahng, and I. Markov, “Improved Algo-
rithms for Hypergraph Bipartitioning,” in Proc. of the IEEE
ACM Asia and South Pacific Design Automation Conference,
pp. 661-666, 2000.

[7] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and
Improvements of Boolean Comparison Method Based on
Binary Decision Diagrams,” in Proc. of the International
Conference on Computer Aided Design, pp. 2-5, 1988.

[8] G. Hachtel and F. Somenzi, “Logic Synthesis and Verification
Algorithms,” Kluwer Academic Publishers, 3rd ed., 2000.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-
level Hypergraph Partitioning: Applications in VLSI Design,”
in Proc. of the Design Automation Conference, pp. 526-529,
1997.

[10] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincen-
telli, “Logic Verification using Binary Decision Diagrams in a
Logic Synthesis Environment,” in Proc. of the International
Conference on Computer Aided Design, pp. 6-9, 1988.

[11] S. Minato, N. Ishiura, and S.Yajima, “Shared binary decision
diagrams with attributed edges for efficient Boolean function
manipulation,” in Proc. of the Design Automation Confer-
ence, pp. 52-57, 1990.

[12] R. Murgai, J. Jain, M. Fujita, “Efficient Scheduling Tech-
niques for ROBDD Construction,” in Proc. of the Interna-
tional Conference on VLSI Design, pp. 394-401, 1999.

[13] R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams,” in Proc. of the International Conference
on Computer Aided Design, pp. 42-47, 1993.

[14] J. Marques-Silva and K. Sakallah, “Robust Search Algo-
rithms for Test Pattern Generation,” in Proc. of the IEEE
Fault-Tolerant Computing Symposium, 1997.

[15] F. Somenzi, “Colorado University Decision Diagram Pack-
age,” http://vlsi.colorado.edu/~fabio/CUDD, 1997.

[16] D. Wang, E. Clarke, Y. Zhu, and J. Kukula, “Using Cutwidth
to Improve Symbolic Simulation and Boolean Satisfiability,”
in the International High Level Design Validation and Test
Workshop, 2001.

[17] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Opti-
mization System,” in Proc. of the Design Automation Confer-
ence, pp. 92-97, 2000.

Table 3. Final number of nodes for constructing the BDDs
of the ISCAS85 Circuits without Sifting

Inst-
ance

Origi
nal BFS DFS FUJ MAL-

Lev
MAL-

Fan
Mince

Circuit
HG

Dual
HG

c17 7 7 7 7 7 5 6 6
c432 523 9199 6625 6625 6625 6880 733 777
c499 4773 5507 3395 3387 3395 3131 3390 4023
c880 111K 368K 245K 245K 212K 220K 83K 5696
c1355 4773 5584 3395 3387 3395 3131 4430 3326
c1908 8519 2437 4591 4591 4359 3386 2832 3573
c2670 n/a 5.1M 5M 4.4M 3.7M 3M 101K 24K
c3540 305K n/a 1.7M 1.7M 1.6M 1.4M n/a 79K
c5315 n/a n/a n/a n/a n/a n/a 15K 20K
c6288 n/a n/a n/a n/a n/a n/a n/a n/a
c7552 n/a n/a n/a n/a n/a n/a 18K 6682

Total 435K 5.5M 6.8M 6.3M 5.5M 4.5M 228K 147K
#Built 7 7 8 8 8 8 9 10

Table 4. Final number of nodes for constructing the BDDs
of the ISCAS85 Circuits with Sifting

Inst-
ance

Origi
nal BFS DFS FUJ MAL-

Lev
MAL-
Fan

Mince
Circuit

HG
Dual
HG

c17 7 7 7 7 7 5 6 6
c432 386 385 450 450 450 384 411 541
c499 2139 2610 2387 3187 2387 2755 2478 1979
c880 5209 4060 2820 2957 3433 1886 15080 2050
c1355 2163 3410 2672 3226 2672 2667 2430 1998
c1908 1793 1721 2327 2327 1803 1800 1113 1987
c2670 21K 9782 9670 9126 13K 8694 1671 2589
c3540 6741 8633 8661 8661 8633 7377 7127 6732
c5315 645 625 777 802 804 677 653 734
c6288 n/a n/a n/a n/a n/a n/a n/a n/a
c7552 2002 5079 5395 5395 4902 3367 2031 1004

Total 43K 36K 35K 36K 38K 30K 33K 19K
#Built 10 10 10 10 10 10 10 10

	Efficient Gate and Input Ordering for Circuit-to-Bdd Conversion
	Abstract
	1 Introduction
	Figure 1. Conversions between Compact Representations of Boolean Functions. (^ stands for this work)

	2 Background
	2.1 Construction of BDDs from Circuits
	2.2 Motivating Examples
	2.3 Circuit Partitioning and Placement
	Figure 2. Example using (a) default variable ordering with Circuit hypergraph (b) Dual hypergraph...

	3 Proposed Techniques
	4 Empirical Results
	Figure 3. Proposed Ordering Flow
	Table�1.� Statistics for constructing the BDDs of the ISCAS85 Circuits without Sifting (Node = Ma...
	Table�2.� Statistics for constructing the BDDs of the ISCAS85 Circuits with Sifting (Node = Maxim...
	Table�3.� Final number of nodes for constructing the BDDs of the ISCAS85 Circuits without Sifting
	Table�4.� Final number of nodes for constructing the BDDs of the ISCAS85 Circuits with Sifting

	5 Conclusions
	Acknowledgments
	References
	[1] F. Aloul, I Markov, and K. Sakallah, “Faster SAT and Smaller BDDs via Common Function Structu...
	[2] C. Berman, “Circuit Width, Register Allocation, and Ordered Binary Decision Diagrams,” in IEE...
	[3] F. Brglez, and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits and a t...
	[4] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” in IEEE Transactions o...
	[5] A. Caldwell, A. Kahng, and I. Markov, “Can Recursive Bisection Produce Routable Placements?” ...
	[6] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for Hypergraph Bipartitioning,” in...
	[7] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Improvements of Boolean Comparison Met...
	[8] G. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms,” Kluwer Academic Pub...
	[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph Partitioning: Appli...
	[10] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic Verification using Bin...
	[11] S. Minato, N. Ishiura, and S.Yajima, “Shared binary decision diagrams with attributed edges ...
	[12] R. Murgai, J. Jain, M. Fujita, “Efficient Scheduling Techniques for ROBDD Construction,” in ...
	[13] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,” in Proc. of the...
	[14] J. Marques-Silva and K. Sakallah, “Robust Search Algorithms for Test Pattern Generation,” in...
	[15] F. Somenzi, “Colorado University Decision Diagram Package,” http://vlsi.colorado.edu/~fabio/...
	[16] D. Wang, E. Clarke, Y. Zhu, and J. Kukula, “Using Cutwidth to Improve Symbolic Simulation an...
	[17] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization System,” in Proc. of the Des...

