ZBDD-Based Backtrack Search SAT Solver

Fadi A. Aloul, Maher N. Mneimneh, Karem A. Sakallah
Department of Electrical Engineering and Computer Science
University of Michigan
{faloul, maherm, karem} @eecs.umich.edu

Abstract

We introduce a new approach to Boolean satisfiability
that combines backtrack search techniques and zero-sup-
pressed binary decision diagrams (ZBDDs). This approach
implicitly represents satisfiability instances using ZBDDs,
and performs search using an efficient implementation of
unit propagation on the ZBDD structure. We describe how to
perform backtrack search using ZBDDs as the underlying
structure for clause representation. This methodology, which
adapts backtrack search algorithms to such implicit repre-
sentations, allows for a potential exponential increase in the
size of the problems that can be handled. Our experimental
results show consistent speedups over conventional
approaches.

1 Introduction

In the past few years, interest in the direct application of
Boolean Satisfiability (SAT) to various Electronic Design
Automation (EDA) computational tasks [9, 14, 15, 17] has
been on the rise. Several powerful SAT solvers [11, 13, 20]
have been proposed, many of which using one or another
variation of the Davis-Logemann-Loveland (DLL) [5] ap-
proach. Several of these variations employ some form of
learning new clauses that were not part of the original set
[11], optimize the performance of unit propagation [13, 19],
and propose intelligent decision heuristics to enhance the
search performance [11, 13, 20].

These improvements extended the application of SAT
solvers to large problem instances. Nevertheless, despite
these advances, the continuing growth in today’s designs is
outpacing the capabilities of existing SAT solvers as these
tend to explicitly represent the clause database. In general, ex-
plicit representation and manipulation of large problems typ-
ically leads to time and memory explosion.

Rather than explicitly representing the clause database us-
ing arrays or linked lists, an alternative is to implicitly repre-
sent the clause database. Zhang et al. [18] introduced an
efficient implementation of the DLL procedure using a trie to
represent the clauses. Tries allow sharing of nodes among
clauses beginning with identical sequences of literals.

Recently, Chatalic et al. [3] proposed a new implementa-
tion of the resolution-based Davis-Putnam (DP) [4] proce-
dure using zero-suppressed binary decision diagrams
(ZBDDs) [10, 12] as the underlying data structure for clause
encoding. This approach succeeded in solving several SAT
instances that defied search-based methods. Unlike tries, ZB-
DDs allow the sharing of nodes among clauses with common
literals regardless of the location of literals in the clauses. The

high compression power of this data structure resulted in ex-
ponential reductions in space and time complexity for certain
instance classes.

In this paper, we present a new search-based technique,
where the focus is on the data structure used for encoding sets
of clauses. ZBDDs are used to implicitly represent the clause
database, and unit propagation is implemented by an efficient
procedure that processes sets of, instead of single, clauses.
Our initial implementation does not include many of the re-
cent enhancements to backtrack search, such as conflict diag-
nosis and recursive learning; our objective was simply to
determine if ZBDDs, as data structures, outperform conven-
tional representations for backtrack search. Experimental re-
sults do indeed confirm the memory reduction advantages of
ZBDDs over lists and tries. Furthermore, reduced memory
consumption consistently translates into faster runtimes de-
spite the initial overhead of building the ZBDD structure. We
consider these results to be quite positive and conjecture that
incorporation of various forms of clause learning will further
accentuate the performance advantage of ZBDDs.

Aloul et al. [1] proposed an approach where search is per-
formed by explicitly manipulating the ZBDD data structure.
However, multiple ZBDDs must be constructed during the
search process, which incurs significant runtime overhead.
We propose a more efficient method where a single ZBDD is
constructed to represent the CNF problem and search is per-
formed by manipulating pointers to the ZBDD nodes.

The organization of the paper is as follows. In Section 2,
we present a variety of data structures used to represent clause
databases and describe recent efficient implementations of
unit propagation [13, 19]. We describe how to use ZBDDs as
an underlying data structure in Section 3. The proposed back-
track-based algorithm using ZBDDs is presented in Section
4. Finally, experimental results and conclusions are presented
in Section 5 and Section 6, respectively

2 Preliminaries

Most modern complete SAT algorithms can be classified
as enhancements to the basic DLL backtrack search approach
[5]. The DLL procedure performs a depth-first search in the
n-dimensional space of the problem variables and can be
viewed as consisting of three main engines:

* A decision engine that makes elective assignments to
the variables.

* A deduction engine that determines the consequences
of these assignments, typically yielding additional
forced assignments to, i.e. implications of, other
variables.

5=S5, U;Sl x{x,}) Y+ Y+

@
y

Figure 1: (a) ZBDD node semantics
(b) node merging rule and (c) node elimination rule

S=Tu(Tx{x}) S=PA(Qvx) S=PA(Q/Pvx)

Stogety

Figure 2: (a) clause subsumption rule and
(b) subsumption elimination rule

(@)

* A diagnosis engine that handles the occurrence of
conflicts (i.e., assignments that cause the formula to
become unsatisfiable) and backtracks appropriately.

The deduction engine in the DLL procedure is based on
the application of two rules: 1) the unit clause rule which
forces the assignment of the only unassigned variable in a
clause whose other literals are all 0; and 2) the pure literal
rule which forces the assignment of monoform variables to
the values that satisfy all the clauses containing them. Bool-
ean Constraint Propagation (BCP) is achieved by the repeat-
ed application of the unit clause rule over a given clause
database, and is known to identify all possible implications
of the decisions made thus far. Recent enhancements to the
DLL procedure have focused on improving the DLL engines
or the data structure used to represent the problem. In what
follows, we describe two effective enhancements. The first
uses a trie data structure to implicitly represent the clause da-
tabase. The second enhances the deduction engine by imple-
menting an optimized BCP procedure.

In general, most SAT solvers store the SAT problem, rep-
resented in conjunctive normal form (CNF), explicitly using
arrays or linked lists [11, 13]. Unfortunately, this method
does not scale well for large instances, especially when a
large number of “learned” clauses are added to the problem.
As described earlier, tries have been used successfully to im-
plicitly represent the CNF problem [18, 20]. The reason for
this success is their ability to share nodes among clauses be-
ginning with identical sequences of literals. Tries used for
encoding CNF problems are 3-ary trees whose nodes corre-
spond to literals in the CNF problems. Each path from a root
node to a leaf represents a clause in the problem. Each node
has a label (var) representing a problem variable and three
edges (pos, neg, other) each denoting a clause set in which
the variable appears positively, negatively, or not at all. Such
tries are built assuming a fixed variable order.

More recently, enhancements to the implementation of
BCP were shown to yield significant performance improve-
ments [13, 19]. Noting that a sizable fraction of a SAT solv-
er’s runtime is spent in the BCP procedure, these
enhancements can be viewed as a form of “lazy” evaluation
that avoids unnecessary traversals of the clause database. In
conventional BCP procedures, whenever a variable v is as-
signed, all clauses containing literals of this variable are tra-
versed to check whether they have become unit or are in

conflict. In other words, an implication step requires time
bounded by the number of existing literals of the assigned
variable. Zhang et al. [19] presented a very efficient imple-
mentation of an amortized linear time BCP algorithm. The
basic idea is to keep track of the first (head) and last (tail) un-
resolved literals in each clause using two pointers. A unit
clause can, then, be easily detected when the two pointers
concur. Furthermore, such an approach limits the search to
literals appearing in the clause between the first and last un-
resolved literals. This method, however, has the drawback
that the first/last pointers must be updated whenever a vari-
able is unassigned. A variation of this algorithm, proposed
recently by Moskewicz et al. [13], just keeps track of any two
unresolved literals in each clause. Unlike Zhang’s algorithm,
this variation incurs no penalty when a variable is unas-
signed, but is more likely to traverse more literals in each
clause when a variable is assigned.

Empirically, such BCP optimizations show great im-
provements over conventional BCP implementations, espe-
cially for problems containing large number of large clauses;
for example, a problem consisting of n k-literal clauses
needs 2n pointers instead of kn pointers.

3 Zero-Suppressed Binary Decision Diagrams

ZBDDs [10, 12] were inspired by the need to efficiently
represent and manipulate sets of combinations. A ZBDD is a
directed acyclic graph (DAG) consisting of two terminal
nodes, the 0-terminal (the empty set) and the 1-terminal (the
set of a single empty combination), and non-terminal nodes
each of which has two children, the 1-successor and the 0-
successor. In addition, each non-terminal node is labeled

with a Boolean wvariable. Given a universe
U= {cl,cz, ...,cn} of n objects, a combination
C = {c|, ¢y ...,c, } of m objects from U can be repre-

sented by an n-bit binary vector X = (x[,x,,...,x,)
where x; = 1 if object ¢; is in C, and 0 otherwise,
1<i<n.AsetS of comblnatlons can be represented by a
characteristic ~ function s 10, 1} - {0,1} where
xg(X) =1 if XeS and 0 otherw1se X e {0, 1}
what follows, we use a set S and its characteristic functlon
Xg interchangeably.

ZBDD node semantics are illustrated in Figure 1(a). If a
node v with label x; represents aset S, and v ’s 0-successor
and 1-successor represent S, and S; respectively, then

(b) (©)

v
pos neg other

o«
oD

Figure 3: (a) ZBDD representing set S in Eq. (2), (b) ZBDD representing clause set ¢ in Eq. (3),
(c) ZBDD representing clause set ¢ in Eq. (3) after applying reduction rules, and (d) Trie representing clause set ¢ in Eq. (3)

§ =85Sy x{c;}), where:

AxB = U
acA,beB

(aub). (1)

For example, given the combination sets

A= {{g h}, {hf}} and B = {{g,r}, {e}}, their prod-
uct is

AxB = {{ghr}, {hf,g i (g h e} {hfef}. (2)

ZBDD construction is based on two reduction rules illus-
trated in Figure 1(b) and (c). The node merging rule merges
two nodes if they have the same label and identical 0- and 1-
successors, whereas the node elimination rule eliminates a
node if its 1-successor is the 0-terminal. Each path from the
root node to the 1-terminal corresponds to one combination
C of § where x; = 0 if no node labeled x; exists along the
path, or the successor leaving the x; node on the path is the
0-successor. It is this property that renders ZBDDs a com-
pact representation for sparse combinations. As an example
consider the universe U = {a, b, c,d, e, f, g} and the set:

Ha d.f}, ta, d, g}, {a, e, f}, {a, e, g}
S = {b.d.f},{b.d.g}, {b,e.f},{b e g} 3
le.d f}, (e, d, g}, (e, e.f}, (e, e, 8})

S can be represented by the ZBDD shown in Figure 3(a).
Minato [12] presented efficient algorithms that implement
set theoretic operations on ZBDDs. These operations
include union, intersection, difference, and product, among
others.

It was demonstrated in [3, 12] that the above approach
can be extended to efficiently encode sets of clauses. In this
case, each variable and its complement are objects of U, and
each path from the root to the 1-terminal corresponds to a
single clause. The number of paths to the 1-terminal equals
the number of clauses in the clause database. As an example,
the clause database:

1. Note that AXxB#A\WUB. For this example,
AUB = {{gh},{hf},{gr} {e}}.

(avdve)an(avdv)in(av—dve)n
_ (av—=dvfyn(bvdve)n(bvdvf)na
(bv—-dve)an(bv—dVv)r(—cvdve)n

(mevdVvHA(=cv—dve)n(—cv—-dvy)

“4)

corresponds to a set of combinations from
U = {a, —a, b, —\b, ¢, —C, d, —|d, e, —|e,f, —|f} and can be
represented by the ZBDD shown in Figure 3(b). Using this
approach, the semantics of Boolean Algebra, such as sub-
sumption, can be superimposed on ZBDD reduction rules to
achieve further compression. As an example consider the
ZBDD illustrated in Figure 2(a) where the 1-successor and
the 0-successor of the root are identical. Using ZBDD node
semantics, S = T A (T v x) and by the subsumption rule of
Boolean Algebra, S = T. Another CNF-specific reduction
rule is the subsumed difference [3]: given two sets S and 7,
the subsumed difference of S by T, denoted as S/ T, is the
set of clauses of S that are not subsumed by any clause of
T. The clause set S represented by a ZBDD node, whose 0-
and 1-successors represent sets P and Q respectively, can
be expressed as S = P A (Q vx). Since P is independent
of x, clauses in P can subsume clauses in Q v x, while
clauses in O vx can’t subsume any clause in P. Conse-
quently, S =PA[(Qvx)/P] =PA(Q/Pvx). This
reduction rule is illustrated in Figure 2(b). It was shown that
recursive application of this rule results in a ZBDD that is
free of subsumed clauses. In addition, the subsumed differ-
ence can be used as the building block for subsumption-free
union and subsumption-free product operations [3].

The small example in Figure 3, illustrates the compres-
sion power of ZBDDs: clause set ¢ requires 36 nodes in an
explicit list representation, 18 nodes using a trie, and just 7
nodes using a ZBDD. Further reduction techniques, pro-
posed in [1], that perform a combination of Boolean algebra-
ic manipulations (i.e. absorption, subsumption, and
resolution) can be locally applied to further reduce the for-
mula as well as the ZBDD size. Figure 3(c) shows the result
of such reductions on clause set ¢: whereas the original
problem had 12 clauses, 36 literals, and required 7 ZBDD
nodes, the reduced formula consist of 6 clauses, 12 literals,

and requires only 5 ZBDD nodes.

4 Implementing Backtrack Search Using
ZBDDs

In the following we describe an efficient DLL implemen-
tation using ZBDDs as the underlying data structure. The ap-
proach we present borrows from the previous work described
in Section 2. Specifically, we describe how to incorporate the
efficient BCP algorithms described in [13, 19] with ZBDDs.

Our algorithm involves manipulating pointers to ZBDD
nodes representing literals that are adjacent in the clause da-
tabase. For each node p representing the literal /, we define
PrevLit(p) and NextLit(p) as the set of nodes corresponding
to /’s previous and next adjacent literals, respectively. For
example, the ZBDD in Figure 4(a) encodes the clause set:

(atbtd+te)a(a+—-b+e)n(at+tc+—f) &)

Thus, NextLit(a) = {b, —b, c} denoting that b, —b, and
¢ follow a in these three clauses, and PrevLit(c) = {a}
indicating that a precedes c in the last clause. Computing
the sets PrevLit(n) and NextLit(n) for all nodes n can be
done by a single traversal of the ZBDD.

The ZBDD-based DLL algorithm makes use of node
pointers that serve the same function as the literal pointers
used in [13]. Each variable v has a value field in addition to
two lists, PosNode and NegNode, pointing to nodes labeled
with literals v and —v, respectively. Initially, the value field
is set to unassigned and the PosNode and NegNode lists are
empty for all variables. Two nodes, representing literals,
from every clause are then inserted into their corresponding
PosNode or NegNode lists. We will refer to nodes in the Neg-
Node or PosNode list as marked nodes.

In order to assign a variable v to true, the value field in
the variable list is updated to 1. In the process of updating the
marked nodes, we ignore the PosNode list and traverse the
nodes in the NegNode list of variable v. For each node p in
the NegNode list, we search NextLit(p) for an unassigned lit-
eral. The state of each node z in NextLit(p) can be classified
into one of four cases:

a) Unmarked, representing a true or unassigned

literal: The algorithm marks z and continues traversing

the next node in NextLit(p).

b) Marked, representing a true literal: The algorithm

continues traversing the next node in NextLit(p).

¢) Marked, representing an unassigned literal: z could

possibly represent a wunit literal. The algorithm

recursively traverses the nodes in NextLit(z) looking for
an unassigned literal. If at least a single node from

NextLit(z) identifies a path with only false literals, z is

added to a PossibleUnitVar list. It is later implied if at

least one node from PrevLit(p) identifies a path with no
unassigned or satisfied literals.

d) Representing a false literal: The algorithm

recursively traverses the nodes in NextLit(z) looking for

an unassigned literal. If a path is detected, in which all

Previit©) faly.
NextLit(a) LN Var
Oy ek
dk
e lf
R

Figure 4: (a) Example showing NextLit(a) and PrevLit(c)
(b) Example showing pointer updates

nodes represent false literals, the procedure immediately

returns without traversing the rest of the nodes in

NextLit(p). Since the given path could lead to a conflict,

the nodes in PrevLit(p) are traversed. A conflict is

detected, if a single node from PrevLit(p) identifies a

path with only false literals. On the other hand, an

implication is detected if a node from PrevLit(p)
identifies a path with a single unassigned literal.

Inorder to preserve the two pointer invariant, p is un-
marked only if the algorithm marks a node (using case-a) in
each path traversed by the nodes in PrevLit(p) or NextLit(p).

Figure 4(b) shows an example of a problem consisting of
3 clauses. Initially, the first and last literal are marked in each
clause. When decision b = 0 is made, its value field is up-
dated but no further pointer maintenance is necessary as this
assignment involves unmarked variables only. Assuming
that the second decisionis a = 0, on the other hand, triggers
traversals to update the node pointers. We start by traversing
the nodes in NextLit(a). The first node b in NextLit(a) is
identified as a false literal. The algorithm recursively
traverses the nodes in NextLit(b) to check if a conflict exists.
Node d, which represents an unmarked, unassigned literal is
detected. The algorithm marks node d and returns. The algo-
rithm continues to check —b , the second node in NextLit(a).
Node —b represents an unmarked, true literal which implies
a satisfiable clause. Node —b is marked and the algorithm
returns and checks the final node in NextLit(a), node c.
Again, ¢ represents an unmarked, unassigned literal. The al-
gorithm marks node ¢ and returns. Since no possible unit lit-
erals or conflicts were detected, nodes in Prevlit(a) are not
traversed. In addition, a is unmarked, since a node was
marked in each path identified by its NextLit(a) nodes.

As shown in the above example, the variable decision or-
der is independent of the ZBDD variable order. Furthermore,
unassigning a variable is simply done by unassigning its cor-
responding value field and does not require any pointer up-
dates. We should note that unassigning variables should be
analogous to the order in which they were assigned.

S5 Experimental Results

In this section, we present experimental evidence of the
improvements obtained using ZBDDs, instead of explicit
lists or tries, as the underlying data structure for the DLL pro-

TABLE I: Experimental Results for classic lists, lists, tries, and ZBDDs using

VSIDS Decision Heuristic

Instance S/U ZBDD Comp. Classic List List Trie ZBDD ZBDD Speedup

List Trie Solve Solve | Build Solve Total | Build Solve Total | C-List List Trie
3blocks SAT 3.07 1.69 429 191 0.28 101.8 102] 0.28 934 937 458 2.04 1.09
4blocks SAT 2.64 1.41 8319 2873 1.7 1239 1240 1.55 1186 1188 7.00 242 1.04
4blocksb SAT 3.29 1.74 5258 1690 0.8 769.7 7701 0.81 709.1 709 741 238 1.09
par16-2 SAT 1.37 1.32 16.72] 12.51 0.39 1043 10.8] 041 6.45 6.86 244 1.82 1.58
pret60_25 UNS 1.22 1.14 49.521 49.66/ 0.03 46.01 46| 0.03 45 45 1.10 1.10 1.02
hole8 UNS 2.48 2.66 7.88] 791 0.04 749 753 0.04 642 6.46 1.22 122 1.17
hole9 UNS 2.73 2.87 111.2| 111.2] 0.04 106.2 106/ 0.04 89 89 1.25 1.25 1.19
holel0 UNS 3.08 3.19 1758 1763 0.04 1664 1664| 0.04 1385 1385 1.27 127 1.20
NQueens15 SAT 1.52 1.35 168.7] 151.4] 0.27 1082 1085 0.29 103 103 1.63 1.46 1.05
barrel5 UNS 1.60 1.47 27.34] 24.57] 0.52 18.11 18.63 0.56 157 16.2 1.68 1531 1.14
barrel6 UNS 1.62 1.48 197.1| 180.6 1.17 1264 127 1.21 98.4 99.6 1.98 1.81 1.28
barrel7 UNS 1.63 1.49 885 718 222 592.8 595 222 485 487 1.81 147 1.22
barrel8 UNS 1.58 1.45 2508 2177 4.15 1935 1939 4.29 1600 1604 1.56 136 1.21
longmult8§ UNS 1.26 1.30 104| 95.46| 227 82.38 84.6| 2.44 76 78 1.33 1.21 1.08
longmult9 UNS 1.34 1.38 2259| 203.7| 2.63 181.8 184.4| 2.66 162 164 1.37 1.24 1.12
longmult10 UNS 1.33 1.38 402 348.6] 3.01 3044 307 3.09 274 277 145 126 1.11
queueinvarl2 UNS 1.52 1.32 30.66| 25.99 1.67 2394 25.61 1.78 212 23 1.33 1.13 1.11
queueinvarl4 UNS 1.53 1.33 1547\ 1242 261 1169 119.5 2.65 104 107 145 1.16 1.12
queueinvarl6 UNS 1.51 1.36 622| 539.9 1.71 493.7 495 1.83 428 430 144 125 1.15
queueinvarl8 UNS 1.61 1.34 4535] 3548 8.13 3291 3299 8.5 2755 2763 1.64 128 1.19
Average 1.90 1.63 1290 742 1.68 561 563 1.74 482 484 225 148 1.16

cedure. All experiments were conducted on a Pentium-II
333Mhz workstation, running Linux and equipped with 512
Mbytes of memory. Our algorithm is implemented in C++
and uses the CUDD package [16] to build the ZBDDs. The
runtime limit was set to 10,000 seconds for all experiments.

We used a basic DLL implementation with the Dynamic
VSIDS! (as used in Chaff [13]) variable decision (i.e. split-
ting) heuristic?. We present four sets of results correspond-
ing to ZBDDs, tries, lists, and classic lists. The first three
approaches initially use two literal pointers per clause; the
tries and lists implementations replicate SATO [20] and
Chaff[13], respectively. It should be noted, however, that the
number of pointers per clause could increase beyond two
during the search process for ZBDDs and tries. The last ap-
proach replicates the method implemented in GRASP [11] in
which a pointer exists for every literal in the instance; un-
marking nodes is disabled in this approach. In order to make
the experiments fair, the initial two pointers were set to the
first and last literals of each clause for the first three methods.
In terms of ZBDDs, pointing to the first and last literal in ev-
ery clause ensures that each clause has only two pointers.
Specifically, the pointers are placed at the nodes identified
by recursively traversing 0-successors starting at the root.
Furthermore, we point to nodes whose 1-successor is the 1-
terminal.

The search space size was identical for all four approach-
es. Specifically, the number of decisions, implications, and

1. The order of the decision variables was set initially based on the
frequency of occurrence of variables in the problem. Since con-
flict clauses are not generated, the order of decision variables
didn’t change during the search process.

2. Experiments with fixed decision heuristic yield similar speedups.

conflicts were equivalent for each instance among classic
lists, lists, tries, and ZBDDs experiments.

We used a fixed ZBDD and trie variable order
(1,2, ..., k). It is instructive to point out that different
ZBDD or trie variable orderings can lead to further compres-
sion. In terms of benchmark suites, we focused on the bound-
ed model checking (BMC) [3] benchmarks, in addition to
various benchmarks from the DIMACs [6], Bejing [7], and
NQueens [20] set.

Table I shows the compression capability obtained when
using ZBDDs as opposed to explicit lists or tries. The first
two columns list the compression power measured as the ra-
tio of the actual memory used by the nodes in lists and ZB-
DDs and tries and ZBDDs, respectively. This implicit
representation provides additional memory reduction. On
average, ZBDDs were able to reduce the representation size
by a factor of 1.9 over lists and 1.6 over tries. The holel0,
representing a pigeon hole problem, is a structured instance;
it achieves significant compression on the order of 3 over
tries and lists. In general, structured problems are expected to
exhibit higher compression ratios.

Table I also summarizes the search results using classic
lists, lists, tries, and ZBDDs. The use of ZBDDs provides a
reduction in search time for all problems, despite their con-
struction time overhead. ZBDDs achieved an average speed-
up of 2.25, 1.5, and 1.16 over classic lists, lists, and tries,
respectively, with a maximum speedup of 2.4 over lists in
some cases. Our results show some correlation between com-
pression rates and search runtimes. Specifically, ZBDDs are
expected to provide higher speedups when the problem is
highly compressed, since fewer number of nodes are tra-
versed during the search process. For example, a speedup of

7.4 over classic lists for the 4blocksb instance whose com-
pression ratio is 3.3.

The table also shows the runtimes using the optimized
BCP approach, expressed under /lists, and the normal BCP
approach, expressed under classic lists. Interestingly, the op-
timized BCP approach in lists leads to a reduction in search
time when compared to classic lists in most cases but not all.
This is justified by the fact that the “Watched Literal” meth-
od [13] used in the optimized BCP approach is more efficient
with problems consisting of large clauses. These clauses are
usually added by the conflict diagnosis process and tend to
consist of many literals.

We believe that ZBDDs will be able to further compress
clauses generated from conflict diagnosis, since these are
typically subsumed by clauses learned later in the search pro-
cess. The reuse of nodes in ZBDDs is also more likely for
larger clauses which tend to appear among conflict-induced
clauses. We also conjecture that reordering the ZBDD vari-
ables either by using sifting [8] or preprocessing the problem
by analyzing its structure can lead to even higher compres-
sion ratios, and hence, faster runtimes.

6 Conclusions

We described a new implementation of the classic DLL
search procedure that uses ZBDDs as the underlying data
structure. Compared to explicit lists and tries, ZBDDs have
the potential of significantly compressing a clause database
leading to faster search times and the possibility of tackling
much larger instances. This potential is indeed borne out by
the preliminary experimental data presented in this paper.
We believe that the incorporation of clause recording,
through conflict analysis and recursive learning, will in-
crease the performance edge of ZBDDs over conventional
data structures. We are currently exploring appropriate ways
of augmenting a ZBDD clause database with conflict-in-
duced clauses during the search. Issues that must be ad-
dressed include weighing the tradeoff between adding
clauses individually or in sets, or building separate ZBDDs
for the conflict-induced clauses. We also propose further im-
proving the unit propagation algorithm by caching ZBDD
nodes during search.

7 Acknowledgments
This work is funded by the DARPA/MARCO Gigascale

Silicon Research Center and an Agere Systems/SRC Re-
search fellowship.

8 References

[11 F. Aloul, M. Mneimneh, K. Sakallah, “Backtrack
Search Using ZBDDs,” in International Workshop on
Logic Synthesis, pp. 293-297, 2001.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y.
Zhu, “Symbolic Model Checking using SAT procedures
instead of BDDs,” in Proc. of the Design Automation
Conference, pp. 317-320, 1999.

[3] P. Chatalic and L. Simon, “Multi-Resolution on Com-

pressed Sets of Clauses,” in International Conference
on Tools with Artificial Intelligence, pp. 2-10, 2000.

[4] M. Davis and H. Putnam, “A Computing Procedure For
Quantification Theory,” in Journal of the ACM, 7(3),
pp. 201-215, 1960.

[5] M. Davis, G. Logemann, and D. Loveland, “A Machine
Program for Theorem Proving,” in Communications of
the ACM, 5(7), pp. 394-397, 1962.

[6] DIMACS Challenge benchmarks in fip://Dimacs.rut-
gers. EDU/pub/challenge/sat/benchmarks/cnf.

[7] H. Hoos and T. Stiitzle, http.//www.satlib.org.

[8] G. Hachtel and F. Somenzi, “Logic Synthesis and Veri-
fication Algorithms,” Kluwer Academic Publishers,
1996.

[9] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” in IEEE Transactions on Computer-
Aided Design, 11(1), pp. 4-15, 1992.

[10]M. Lobbing, O. Schroer, and 1. Wegner, “The Theory of
Zero-Suppressed BDDs and the Number of Knight's
Tours,” Workshop on Apps. of the RM Expansion in
Circuit Design, 1995.

[11]J. P. Marques-Silva and K. Sakallah, “GRASP: A
Search Algorithm for Propositional Satisfiability,” in
IEEE Transactions on Computers, 48(5), pp. 506-521,
1999.

[12]S. Minato, “Zero-Suppressed BDDs for Set Manipula-
tion in Combinatorial Problems,” in Proc. of the Design
Automation Conference, pp. 272-277, 1993.

[13]M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,”
in Proc. of the Design Automation Conference, pp. 530-
535, 2001.

[14]G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A
Comparative Study of Two Boolean Formulations of
FPGA Detailed Routing Constraints,” in the Proc. of

the International Symposium on Physical Design, pp.
222-227,2001.

[15]L. Silva, J. Silva, L. Silveira and K. Sakallah, “Timing
Analysis Using Propositional Satisfiability,” in IEEE
International Conference on Electronics, Circuits and
Systems, 1998.

[16]F. Somenzi, CUDD: CU Decision Diagram Package,
University of Colorado at Boulder, fip.//visi.colo-
rado.edu/pub/.

[17]P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-
Vincentelli, “Combinational Test Generation Using Sat-
isfiability,” in IEEE Transactions on Computer-Aided
Design, 1996.

[18]H. Zhang, and M. Stickel, “Implementing the Davis-
Putnam Algorithm by Tries,” Technical Report, Univ. of
Towa, 1994,

[19]H. Zhang, and M. Stickel, “An efficient algorithm for
unit-propagation,” in International Symposium on Arti-
ficial Intelligence and Mathematics, pp. 166-169, 1996.

[20]H. Zhang, “SATO: An Efficient Propositional Prover,”
in International Conference on Automated Deduction,
pp. 272-275, 1997.

	1 Introduction
	2 Preliminaries
	Figure 1: (a) ZBDD node semantics (b) node merging rule and (c) node elimination rule
	Figure 2: (a) clause subsumption rule and (b) subsumption elimination rule

	3 Zero-Suppressed Binary Decision Diagrams
	. (1)
	. (2)
	(3)
	Figure 3: (a) ZBDD representing set in Eq. (2), (b) ZBDD representing clause set in Eq. (3), (c) ...
	(4)

	4 Implementing Backtrack Search Using ZBDDs
	(5)
	a) Unmarked, representing a true or unassigned literal: The algorithm marks and continues travers...
	b) Marked, representing a true literal: The algorithm continues traversing the next node in NextL...
	c) Marked, representing an unassigned literal: could possibly represent a unit literal. The algor...
	d) Representing a false literal: The algorithm recursively traverses the nodes in NextLit(z) look...

	Figure 4: (a) Example showing NextLit(a) and PrevLit(c) (b) Example showing pointer updates

	5 Experimental Results
	TABLE�I:� Experimental Results for classic lists, lists, tries, and ZBDDs using VSIDS Decision He...

	6 Conclusions
	7 Acknowledgments
	8 References
	[1] F. Aloul, M. Mneimneh, K. Sakallah, “Backtrack Search Using ZBDDs,” in International Workshop...
	[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model Checking using SAT...
	[3] P. Chatalic and L. Simon, “Multi-Resolution on Compressed Sets of Clauses,” in International ...
	[4] M. Davis and H. Putnam, “A Computing Procedure For Quantification Theory,” in Journal of the ...
	[5] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving,” in Communica...
	[6] DIMACS Challenge benchmarks in ftp://Dimacs.rutgers.EDU/pub/challenge/sat/benchmarks/cnf.
	[7] H. Hoos and T. Stützle, http://www.satlib.org.
	[8] G. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms,” Kluwer Academic Pub...
	[9] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” in IEEE Transactions on ...
	[10] M. Lobbing, O. Schroer, and I. Wegner, “The Theory of Zero-Suppressed BDDs and the Number of...
	[11] J. P. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfiabi...
	[12] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in Proc. o...
	[13] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient ...
	[14] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of Two Boolean Formulat...
	[15] L. Silva, J. Silva, L. Silveira and K. Sakallah, “Timing Analysis Using Propositional Satisf...
	[16] F. Somenzi, CUDD: CU Decision Diagram Package, University of Colorado at Boulder, ftp://vlsi...
	[17] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni- Vincentelli, “Combinational Test Generat...
	[18] H. Zhang, and M. Stickel, “Implementing the Davis- Putnam Algorithm by Tries,” Technical Rep...
	[19] H. Zhang, and M. Stickel, “An efficient algorithm for unit-propagation,” in International Sy...
	[20] H. Zhang, “SATO: An Efficient Propositional Prover,” in International Conference on Automate...

	ZBDD-Based Backtrack Search SAT Solver
	Fadi A. Aloul, Maher N. Mneimneh, Karem A. Sakallah
	Department of Electrical Engineering and Computer Science
	University of Michigan
	{faloul, maherm, karem}@eecs.umich.edu

