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A new technique for multipath detection in wideband mobile radio systems is presented. The proposed scheme is based on an
intelligent search algorithm using Boolean Satisfiability (SAT) techniques to search through the uncertainty region of the multipath
delays. The SAT-based scheme utilizes the known structure of the transmitted wideband signal, for example, pseudo-random
(PN) code, to effectively search through the entire space by eliminating subspaces that do not contain a possible solution. The
paper presents a framework for modeling the multipath detection problem as a SAT application. It also provides simulation results
that demonstrate the effectiveness of the proposed scheme in detecting the multipath components in frequency-selective Rayleigh
fading channels.

1. Introduction

There has been a growing interest in developing high
data rate mobile radio systems to support a wide range
of applications such as real-time multimedia services and
high-speed internet access. To achieve this goal, wide band
transmission schemes are being investigated including single
carrier and multicarrier spread spectrum techniques, Ultra-
wideband systems, and OFDM-based schemes. Multipath
propagation, caused by reflection, refraction, and scattering
of radio waves as they pass through the wireless channel,
is considered as one of the main challenges in wide band
mobile radio communication systems. Multipath propaga-
tion results in receiving multiple copies of the transmitted
signal. In narrow band transmission schemes, where the
multipath components are very close and unresolved by
the receiver, severe fading is observed in the received signal
strength leading to significant degradation in the bit error
rate (BER) performance of the system. On the other hand, in
wide band signal transmission, where multipath components
could be resolved by the receiver, multipath propagation
can be exploited using a RAKE receiver to improve the
system BER performance through the diversity gain from
the different copies of the received signal. However, for full
utilization of the multipath scenario, it is very important for

the receiver to first detect the presence of these multipath
components and identify their corresponding parameters
(time delay, amplitude, and phase).

In spread spectrum systems, a pseudo-random (PN) code
is used to spread the message spectrum over a wide band-
width. At the receiving end, a time-synchronized version of
the same PN code is used to despread the signal and recover
the original message [1]. Synchronization is very crucial for
the proper operation of the system. It can be accomplished by
searching a range of delays for the correct multipath delays.
The uncertainty range represents the possible delays that the
signal may have and is related to the channel memory. The
delay range is usually specified as cells that are one-chip or
one-half of a chip apart, where a chip is the shortest element
in the PN code. The search for the multipath components
through these cells, that is, finding the cells that have strong
energy and hence multipath components, can either be done
in a serial or parallel fashion [2–5].

In serial search, one cell at a time is tested by measuring
the signal energy at that cell using a single correlator circuit.
If the energy exceeds a preset threshold, then the cell is
declared as a multipath cell, either directly or after a ver-
ification stage, while if the energy is below the threshold, then
it is declared as a no multipath cell. The search advances to
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the next cell and the process is continued until all cells in the
uncertainty range are tested. The other search strategy uses
parallel search where the energies of all cells are calculated
simultaneously using a bank of parallel correlators and cells
with energy above the threshold are declared as multipath
cells. Apparently, serial search is slower compared to parallel
search as it takes longer time to search all the cells and find
the delays. On the other hand, serial search has a much lower
reduced complexity (both hardware and processing).

A common drawback of existing schemes is that in
searching for the correct cells they do not utilize the inherent
structure of the PN code. In the worst case or in a low SNR
environment, these schemes need to search all possible cells
in the search window, which could be as large as the length of
the PN code, in order to find the correct cells. For example,
for a PN code with a length of 2047 chips (generated by an
11-stage shift register) the serial and parallel search schemes
need to test 2047 cells if the search step is one chip or twice of
that if the search step is one-half of a chip. This testing may
need to be repeated many times if the multipath components
were not detected at the first trial due to noise and fading.
In this paper, we propose a PN code acquisition scheme that
exploits the structure of the PN code to reduce the number of
decisions needed to find correct cells. The proposed scheme
is based on using advanced Boolean Satisfiability (SAT) tech-
niques to perform intelligent search of the uncertainty region
and hence reduce the number of decisions needed to find the
correct cells significantly. This is done by searching only PN
code phases that result in minimum difference (minimum
distance) between the PN code in the received signal and a
locally generated PN code.

Recently, Boolean Satisfiability (SAT) has been shown to
be very successful in solving complex problems in various
Engineering and Computer Science applications. Such appli-
cations include Formal Verification [6], FPGA routing [7],
Power Optimization [8, 9], Fault Tolerance [10], and Micro-
processor Verification [11]. SAT has also been extended to
a variety of applications in Artificial Intelligence including
other well-known NP-complete problems such as graph
colorability, vertex cover, hamiltonian path, and independent
sets [12]. Despite SAT being an NP-Complete problem [13],
many researchers have developed powerful SAT solvers that
are able of handling problems consisting of thousands of
variables and millions of constraints [14–22]. Briefly defined,
the SAT problem involves a set of Boolean variables and a set
of constraints expressed in product-of-sum form. The goal is
to identify an assignment to the variables that would satisfy
all constraints or prove that no such assignment exists.

Even though in recent years we have seen a surge in
the application of SAT techniques to assist in finding solu-
tions to various Engineering problems, very few researchers
reported on the use of SAT-based techniques in mobile com-
munication-related research. In this paper, we propose the
formulation of the PN acquisition problem as a SAT instance
and use intelligent SAT search engines for multipath detec-
tion.

The reminder of this paper is organized as follows.
Sections 2 and 3 present the signal model and an overview
of SAT, respectively. Section 4 describes the proposed scheme

and shows how to formulate the PN code acquisition prob-
lem as a SAT instance. Simulation results are presented and
discussed in Section 5. Finally, the paper is concluded in
Section 6.

2. Signal Model

A direct-sequence spread spectrum system is investigated in
this paper. The signal model assumes that a separate pilot
signal is transmitted along with the data channel to allow
for PN code acquisition and tracking as well as channel es-
timation. The transmitted signal is given by

s(t) = √P
M−1∑

i=0

(
diW +

√
GpV

)N−1∑

k=0

ckg(t − iTb − kTc), (1)

where P is the transmitted power, di is a random sequence of
information data with di ∈ ±1, W and V are orthogonal
codes with length N (i.e., Walsh codes) used to separate
the pilot channel from the data channel, Gp is the pilot
channel power gain relative to the data channel, ck ∈ ±1 is
the spreading pseudo-random (PN) code, N is the PN code
length which is the same as the number of chips per bit, that
is, N = Tb/Tc, Tb is the bit duration, Tc is the chip duration,
and g(t) is the chip pulse shape. M is the number of data bits.

The radio channel is modeled as a frequency-selective
Rayleigh fading channel, which is a common model for
mobile radio systems, using narrow-band transmission. The
received signal is given by

u(t) =
L∑

l=1

βls(t − τl) + n(t), (2)

where L is the number of paths, βl is the lth path complex
coefficient with Rayleigh amplitude and uniform phase
distribution over [0, 2π), τl is the lth path delay that we
would like to estimate, and n(t) is an additive white Gaussian
noise (AWGN) with zero mean and two-sided power spectral
density N0/2 that models the effect of the receiver noise.

To maximize the signal-to-noise ratio, the received base-
band signal is first applied to a chip-matched filter to produce
the following signal samples at the chip rate:

z[k] =
∫ kTc

(k−1)Tc

u(t)g(t)dt. (3)

In conventional PN code acquisition schemes, the output of
the chip-matched filter is correlated with a locally generated
PN code with different offsets that cover the delay uncer-
tainty region (possibly the whole PN code period) as follows:

y[i] =
N−1∑

k=0

z[k − i]ck; i = 0, 1, . . . ,N − 1, (4)

where the index i indicates the delay offset under test. The
correlation results in (4) are used to estimate the energy at
different delay offsets and a decision is made on the existence
of the multipath delays based on the highest energy values. It
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is also common to use a preset threshold where only energy
values that exceed the threshold are declared as potentially
correct multipath components while others are ignored.
Note that in some cases, especially for very long PN codes,
it is possible to perform the correlation over a fraction of the
code length and the upper limit in (4) will be less than N −1.

The main objective of the acquisition system is to max-
imize the probability of detection while minimizing the
probability of false alarm. Based on the outcome of the
decision process, we can have one of the following events.

(i) Detection. This event occurs when the energy value
exceeds the threshold and the estimated delay matches one
of the actual delays of the multipath components in the re-
ceived signal. We would like to maximize the detection prob-
ability to improve the performance of the RAKE receiver in
detecting the transmitted data.

(ii) False Alarm. This event occurs when the energy value
exceeds the threshold but the estimated delay did not match
any of the actual delays of the multipath components. We
would like to minimize the false alarm probability since the
RAKE receiver would be using a signal that has no useful
energy to detect the data.

(iii) Miss. This event occurs when the energy value is below
the threshold but the delay offset has a correct multipath
component. We would like to minimize such event since the
RAKE receiver will not get all useful energy in detecting the
data.

It is also noted that there are other performance criteria
for evaluating code acquisition schemes, such as the mean ac-
quisition time and the probability of achieving correct ac-
quisition within a specified period of time [23].

3. Boolean Satisfiability

The last few years have seen significant advances in Boolean
satisfiability (SAT) solving. These advances have lead to a
successful deployment of SAT solvers in a wide range of
problems in Engineering and Computer Science. Given a
set of Boolean variables and a set of constraints expressed
in product-of-sum form, the goal of SAT solver is to find
a variable assignment that satisfies all constraints or prove
that no such assignment exists. The term “Satisfiability”
emerges from that fact that we are asked to find a satisfying
assignment, while the term “Boolean” comes from the fact
that such assignment consists of only true or false variable
states.

The SAT problem is usually expressed in conjunctive
normal form (CNF). A CNF formula ϕ on n binary variables
x1, . . . , xn is the conjunction (AND) of m clauses ω1, . . . ,ωm

each of which is a disjunction (OR) of one or more
literals, where a literal is the occurrence of a variable or
its complement. A formula ϕ maps to a unique n-variable
Boolean function f (xn, . . . , xn) [24]. Clearly, a function f can
be represented by many equivalent CNF formulas. We will

refer to a CNF formula as a clause database and use “formula”
and “CNF formula” interchangeably.

A variable x is said to be assigned when its logical value
is set to 0 or 1 and unassigned otherwise. A literal l is a
true (false) literal if it evaluates to 1 (0) under the current
assignment to its associated variable, and a free literal if
its associated variable is unassigned. A clause is said to be
satisfied if at least one of its literals is true, unsatisfied if all of
its literals are false, unit if all but a single literal are set to false,
and unresolved in the remaining cases. A formula is said to be
satisfied if all its clauses are satisfied, and unsatisfied if at least
one of its clauses is unsatisfied. In summary, the SAT problem
is defined as follows. Given a Boolean formula in CNF, find
an assignment of variables that satisfies the formula or prove
that no such assignment exists.

In the following example, the CNF formula

ϕ = (a∨ b) ·
(
b∨ c

)
· (a∨ c) (5)

consists of 3 variables, 3 clauses, and 6 literals. The assign-
ment {a = 1, b = 0, c = 0} violates the third clause and
unsatisfies ϕ, whereas the assignment {a = 1, b = 0, c = 1}
satisfies ϕ. Note that a problem with n variables will have 2N

possible assignments for the variables. The above example
with 3 variables has 8 possible assignments.

Despite the SAT problem being NP-Complete [13], there
have been dramatic improvements in SAT solver technology
over the past decade. This has lead to the development of
several powerful SAT algorithms that are capable of solving
problems consisting of thousands of variables and millions
of constraints. Such solvers include GRASP [18], zChaff [17],
Berkmin [20], MiniSAT [16], and RSat [21]. In the next three
subsections, we describe the basic SAT search algorithm,
recent extensions to the SAT solver input, and the use of
hardware with SAT.

3.1. Backtrack Search. Most modern complete SAT algo-
rithms can be classified as enhancements to the basic Davis-
Logemann-Loveland (DLL) backtrack search approach [25].
The DLL procedure performs a search process that traverses
the space of 2N variable assignments until a satisfying
assignment is found (the formula is satisfiable), or all combi-
nations have been exhausted (the formula is unsatisfiable). It
maintains a decision tree to keep track of variable assignments
and can be viewed as consisting of three main engines: (1)
Decision engine that makes elective assignments to the vari-
ables, (2) Deduction engine that determines the consequences
of these assignments, typically yielding additional forced
assignments to, that is, implications of, other variables, and
(3) Diagnosis engine that handles the occurrence of conflicts,
that is, assignments that cause the formula to become
unsatisfiable, and backtracks appropriately. An example of a
decision tree is shown in Figure 1.

Recent studies have proposed the use of the conflict
analysis procedure in the diagnosis engine [18]. The idea
is whenever a conflict is detected, the procedure analyzes
the variable assignments that cause one or more clauses to
become unsatisfied. Such analysis can identify a small subset
of variables whose current assignments can be blamed for
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Figure 1: An example of a satisfiable SAT instance showing its
corresponding decision tree.

the conflict. These assignments are turned into a conflict-
induced clause and augmented with the clause database to
avoid regenerating the same conflict in future parts of the
search process. In essence, the procedure performs a form
of learning from the encountered conflicts. Today, conflict
analysis is implemented in almost all SAT solvers [16–18, 20,
21].

3.2. More Expressive Input. Restricting the input of SAT
solvers to CNF formulas can restrict their usage in various
domains. Therefore, researchers have focused on extending
SAT solvers to handle stronger input representations. Specifi-
cally, SAT solvers [14–16, 19, 22] have recently been extended
to handle pseudo-Boolean (PB) constraints which are linear
inequalities with integer coefficients that can be expressed in
the normalized form [14] of

a1x1 + a2x2 + · · · + anxn ≥ b, (6)

where ai, b ∈ Z+ and xi are literals of Boolean variables. Note
that any CNF clause can be viewed as a PB constraint; for
example, clause (a∨ b ∨ c) is equivalent to (a + b + c ≥ 1).

PB constraints can, in some cases, replace an exponential
number of CNF constraints. They have been found to be
very efficient in expressing “counting constraints” [14].
Furthermore, PB extends SAT solvers to handle optimization
problems as opposed to only decision problems. Subject to
a given set of CNF and PB constraints, one can request the
minimization (or maximization) of an objective function
which consists of a linear combination of the problem’s
variables:

n∑

i=1

aixi. (7)

This feature has introduced many new applications to the
SAT domain. Recent studies have also shown that SAT-
based optimization solvers can in fact compete with the best
generic integer linear programming (ILP) solvers [14, 15].

3.3. Hardware-Based SAT Solvers. Note that SAT solvers can
be implemented in hardware. Several studies proposed the
use of FPGA reconfigurable systems to solve SAT problems
[26–29]. Hardware solvers could be a standalone or as an
accelerator where the problem is partitioned between the
hardware solver and the attached computer using software.
Many different architectures were proposed to solve SAT
problems in hardware. Linearly connected set of finite state
machines, control unit, and deduction logic was proposed in
[29]. The authors in [29] implemented their algorithm on
Xilinx XC4028 FPGA. While in [26], the authors proposed
a technique for modeling any Boolean expression. Their
objective is to set the function output to 1. A backtrack
algorithm is used to propagate the output back to the input
and finding an assignment of the inputs to satisfy a logical 1
at the output.

The authors in [27] proposed an architecture for eval-
uating clauses in parallel. In their architecture, the clauses
are separated into a number of groups and the deduction is
performed in parallel. Then the results are merged together
to allow the assignment to the variables.

A software/hardware solver for SAT was introduced in
[28]. In their approach, they minimized the hardware com-
pilation time which greatly reduced the total time to solve the
problem. They also implemented their solver on an FPGA.

4. SAT Model for PN Code Acquisition

This section describes how to formulate the PN Code ac-
quisition problem as a SAT instance to be able to process
the received signal and find the delays of the L multipath
components. As explained earlier, the received baseband
signal is passed through a chip-matched filter to obtain the
signal in (4). This signal contains delayed versions of the PN
code (multipath components) plus a data part and noise.
Since we are dealing with Boolean satisfiability (SAT), the
first step is to convert the matched filter output to a binary
sequence zb = {zb[0], zb[1], . . . , zb[n− 1]} as follows:

zb[i] =
⎧
⎨
⎩

1,

0,

z[i] ≥ 0,

z[i] < 0.
(8)

Although hard decisions are in general not sufficient statistics
for estimating the delay, but in the context of the developed
SAT model for PN acquisition it would be enough to provide
an estimate of the received PN code and hence allows for the
SAT search to be implemented as will be discussed later.

The basic idea of the proposed algorithm is to locally
generate a block of size n of the PN code using the known
shift register (SR) structure with different initial states. A
state is basically the content of the shift register at any instant
of time. The SAT solver is used to find the initial state that
would result in a PN sequence that is very close (ideally the
same) to the received sequence zb. Since an m-stage SR is
used, then we will have 2m − 1 possible initial states to be
tested. However, the SAT solver uses intelligent algorithms
to efficiently traverse the decision tree and quickly find a
valid solution as described in Section 3. Once a solution is
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found, that is, finding an initial state of the SR that will result
in the smallest difference (we also call it distance) between
the locally generated PN code and the received sequence, the
delay of the first multipath component is obtained from this
initial state. The SAT solver then searches for the next initial
state that would result in the next smallest distance to find
the delay of the second multipath component. This process
is repeated until all L multipath components are detected.

In order to illustrate how the state of the SR can be used
to find the delay of a multipath component and without
loss of generality, we assume a 2-stage SR used to generate
a PN code of length 22 − 1 = 3 chips as shown in Figure 2.
Both stages are used to generate the feedback input to the SR
through the XOR gate. Since we have two stages in the SR,
there are 3 possible initial states, and once the SR is clocked
at the chip rate, then the following states would be generated:
{01, 10, 11}, {10, 11, 01}, or {11, 01, 10} depending on which
initial state was used. Suppose that the transmitter uses a PN
code with initial state of 01 and the channel causes a delay
of one chip, then the initial state of the PN code to be used
by the receiver to match the received signal would be 10. On
the other hand, if the channel causes a two-chip delay, then
the solution for the initial state would be 11. Hence, we can
estimate the channel delay based on the initial state of the SR
that would result in best match with the received signal.

In order to use the advanced SAT solvers to find the L
multipath delays in the received signal, the problem must be
first expressed in the SAT solver input format as described in
Section 3. To illustrate our approach, let us assume a system
consisting of n received chips, and a Shift Register (SR) with
m stages. The code length N is equal to (2m − 1) levels as
shown in Figure 3.

Three sets of variables are defined for the problem as
follow.

(i) A Boolean variable Ci is defined for each chip at the
matched filter output at sample time i, that is, a total
of n variables. A value of 1 or 0 for each variable
indicates that the corresponding chip is a 1 or 0,
respectively. Note that this variable is the same as the
sequence zb that was introduced in (8).

(ii) A Boolean variable Qi is defined for each matched
filter output as the difference between the Ci and the
PN code chip, that is, a total of n variables.

(iii) A Boolean variable Si j is defined for each SR stage i at
each level j, that is, a total of m× (2m − 1) variables.

Thus, the total number of needed Boolean variables is
equal to 2n + m× (2m − 1).

The following set of CNF and PB constraints are gen-
erated.

(i) Received Chips Constraints. This constraint is used to set
the input sequence utilized by the SAT solver to be compared
with the locally generated PN code. The input sequence is
obtained from (8). For each received chip i, its corresponding

Constraints:

+

+

min (Q1 + Q2 + · · · + Q8)S11 + S21 > 0

zb : 0, 1, 0, 0, 1, 0, 0, 0

C1 = 0

C2 = 1

C3 = 0

C4 = 0

C5 = 1

C6 = 0

C7 = 0

C8 = 0

S22 = S11

S23 = S12

S12 = S11 + S21

S13 = S12 + S22

Q1 = S21 + C1

Q2 = S22 + C2

Q3 = S23 + C3

Q4 = S21 + C4

Q5 = S22 + C5

Q6 = S23 + C6

Q7 = S21 + C7

Q8 = S22 + C8

S11

S12

S13

S21

S22

S23

Figure 2: An example of a network with 8 data bits and 2 SR bits.
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Figure 3: Sample layout of Shift Register bits.

Ci bit is set to 0 or 1 depending on the feed data. This can be
expressed using a single PB constraint per chip as follows:

Ci = zb[i]; i = 0, 1, . . . ,n− 1, (9)

that is, a total of n PB constraints.

(ii) Initial State Constraints . This constraint is used to en-
sure that the initial SR state should have at least one bit
assigned to 1 to avoid having an all-zero state for the SR. This
can be expressed using a single PB constraint as follows:

⎛
⎝

m∑

i=1

Ski1

⎞
⎠ > 0; k = 1, 2, . . . , 2m − 1. (10)

(iii) Shifting Constraints. This constraint implements the
shifting operation as the shift register is clocked; for example,
S22 = S11, S32 = S21, . . ., is expressed using the following
equality constraint per SR stage:

(
Sil = S(i−1)(l−1)

)
; l = 2, . . . ,N ; i = 2, . . . ,m. (11)

This results in a total of (m−1) (2m−2) equality constraints.
Each equality constraint of format (x = y) can be expressed
using two CNF constraints as shown in Table 1.
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Table 1: Expressing logical constraints using CNF constraints.

Logical Constraint CNF Constraint

(x = y) (x ∨ y) · (x ∨ y)

(x = y
⊕

z) (x∨y∨z)·(x∨y∨z)·(x∨y∨z)·(x∨y∨z)

(iv) Feedback Constraints. This constraint ensures that the
correct SR stages as used in the feedback part of the PN code
generator. The PN code feedback relation is expressed using
the following XOR constraint per initial SR content:

[
S1l = Sp(l−1)

⊕
. . .
⊕

Sq(l−1)

]
; l = 2, . . . ,N , (12)

where p, q ∈ {1, . . . ,n} is selected according to the feedback
connection of the PN code generator. This results in a total
of (2m − 2) XOR constraints. Each XOR constraint of format
(x = y

⊕
z) is expressed using four CNF constraints as

shown in Table 1.

(v) Difference Constraints. The mismatch between the re-
ceived chip sequence and locally generated PN code, taken
from the mth stage of the SR and for a given initial state k, is
calculated as follows:
[
Qk

i = Skmi

⊕
Ci

]
; i = 1, . . . ,n; k = 1, 2, . . . , 2m − 1.

(13)

This results in n XOR constraints. As mentioned earlier each
XOR constraint can be expressed using four CNF constraints.

(vi) Optimization Function. The objective of the SAT algo-
rithm is to search through the possible initial SR states
that results in minimizing the error (distance) between the
received sequence and locally generated code. This is ex-
pressed using the following PB optimization objective:

Dk = min

⎛
⎝

n∑

i=1

Qi

⎞
⎠; k = 1, 2, . . . , 2m − 1. (14)

The algorithm finds the smallest L values of the distance and
the corresponding SR initial states. Then, the L multipath
delays are estimated from the states as was explained earlier.

To further illustrate the formulation in SAT input, con-
sider the example in Figure 2. The system consists of 8 data
bits and 2 SR bits. Hence, the code length N is 3. The SAT
problem generates a total of 2 × 8 + 2(22 − 1) = 22 Boolean
variables. The figure displays the needed constraints.

5. Simulation Results

In this paper, we simulated a direct-sequence spread spec-
trum system with a PN code of length 2047 (11-stage shift
register) operating over a frequency-selective Rayleigh fading
channel with uniform power delay profile and a normalized
Doppler of 10−3. The Doppler frequency is normalized by
the PN code length. Every simulation was repeated for 2000
independent trials. Although a square pulse shape was used
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Figure 4: Probability of detection with 128 chips correlation.

for each chip, other pulse shaping methods may be used
with no impact on the use of the proposed scheme. The
number of paths is assumed to be three. The performance
is measured by the probability of detecting at least one, two,
or three multipath components as a function of the signal-
to-noise ratio per chip (SNRc). This was done by finding
the three minimum distances according to (14) and then
checking if the initial shift register state corresponds to the
correct delay or not. If the state matches the delay, then
detection is declared; otherwise a miss is declared; Note
that this is possible because we are performing simulation
analysis, but in practice we expect to use a threshold to
decide if a path exists or not. The effect of the duration
of the correlation period used in calculating the difference
between the locally generated PN code and the received
data on the detection probability is also investigated. The
performance is compared to that of a conventional energy-
detector algorithm that measures the correlation at every
possible offset and selects the energy of the three strongest
paths. In these simulations, the Boolean Satisfiability (SAT)
algorithm finds the delays of the three initial states of the
SR that results in minimum error. All experiments were
performed on an Intel Xeon 3.2 GHz workstation with 4 GB
of RAM. We used the PBS 0-1 SAT-based ILP solver [14] for
all experiments. Note that the above parameters were chosen
for illustration purposes and are not expected to cause any
restriction in the application of the proposed algorithm.

Figure 4 shows the detection probabilities for a relatively
short correlation period of 128 chips. It is clear that the
multipath detection performance is relatively poor for both
the SAT-based and conventional algorithms, although the
latter shows better performance.

The multipath detection performance is shown in Fig-
ures 5, 6, and 7 for a correlation period of 256, 512, and 1024
chips, respectively. The results show that the performance
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Figure 5: Probability of detection with 256 chips correlation.
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Figure 6: Probability of detection with 512 chips correlation.

improved significantly to about 80% for detecting the three
paths at an SNRc of zero dB. The detection of at least one
or two paths is quite high indicating that the algorithm is
successful in finding these delays. We also remark that as
the correlation period increases, the SAT-based algorithm
performance becomes closer to the conventional algorithm.
Note that the SAT algorithm finds the correct delays by
searching through the decision tree in an intelligent way and
hence results in a reduced number of decisions compared to
a brute force search strategy.

The SAT-based algorithm searched for the possible states
that match the received signal with the PN code and the states
that result in minimum difference, that is, the minimum
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Figure 7: Probability of detection with 1024 chips correlation.
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Figure 8: Minimum distance versus SNRc.

distance between the received signal and locally generated
sequence, is used to find the delay estimate. Figure 8 shows
the minimum distance found at different values of the
correlation period over an AWGN channel. It is observed that
the difference tends to decrease as the SNRc increases because
the SAT algorithm is supplied with more reliable data for the
search.

Finally, we notice that it is difficult to make a direct
comparison of the computational cost between the proposed
SAT-based algorithm and the conventional correlation based
since the metrics used by the algorithms are different.
In particular, the conventional scheme uses the number
of multiplications and additions needed to search for the
multipath components and this is typically quantified as N2

multiply-and-add operations where N is the PN code length
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and assumed to be the search window. For the proposed
SAT scheme, the complexity is measured by the number of
decisions made while traversing the decision tree to look for
a valid solution to the instance. The SAT solver uses advanced
algorithms to intelligently traverse the decision tree and
eliminate unsatisfiable paths. Depending on the instance’s
constraints, the SAT solver might be able to find a solution
faster for some instances than others. In our simulations,
most instances were solved after N decisions.

6. Conclusions

A new multipath detection algorithm using Boolean sat-
isfiability (SAT) techniques has been presented. The SAT-
based algorithm uses the deterministic structure of the PN
spreading code to perform an intelligent search for the pos-
sible propagation delays. Simulation results showed that the
proposed scheme was successful in providing correct delay
estimates with high reliability over a multipath frequency-
selective Rayleigh channel.
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