
USING SAT-BASED TECHNIQUES IN

LOW POWER STATE ASSIGNMENT
¤

ASSIM SAGAHYROON† and FADI A. ALOUL‡

Department of Computer Science and Engineering,

American University of Sharjah,
PO Box 26666, Sharjah, UAE

†asagahyroon@aus.edu
‡faloul@aus.edu

ALEXANDER SUDNITSON

Department of Computer Engineering,

Tallinn University of Technology, Estonia
alsu@cc.ttu.ee

Received 15 February 2010

Accepted 27 June 2011

Power consumption of synchronous sequential circuits can be reduced by careful encoding of the

states of the circuit. The idea is to reduce the average number of bit changes per state transition

by ¯nding an optimal state assignment. This state assignment problem is NP-hard, and existing
techniques rely mainly on heuristic-based methods. The primary goal of this work is to assess the

suitability of using complete advanced Boolean Satis¯ability and Integer Linear Programming

(ILP) methods in ¯nding an optimized solution. We formulate the problem as a 0-1 ILP instance

with power minimization being the objective. Using generic and commercial solvers, the pro-
posed approach was tested on sample circuits from the MCNC benchmark suite. Furthermore,

in an e®ort to accelerate the search process, circuits were checked for symmetries and symmetry

breaking predicates were added whenever applicable. The experimental results provide a

pragmatic insight into the problem and basis for further exploration.

Keywords: State assignment; power; integer linear programming; Boolean Satis¯ability.

1. Introduction

With the ever increasing integration scale, power consumption has emerged as a

major design constraint for integrated circuits. During logic synthesis of sequential

circuits, i.e., ¯nite state machines (FSMs), assigning binary codes to each state in the

circuit is a critical step in the low power design of the circuit. The state encoding

problem for low power has been explored by a number of researchers. Recent work

*This paper was recommended by Regional Editor Krishna Shenai.

Journal of Circuits, Systems, and Computers
Vol. 20, No. 8 (2011) 1605�1618

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218126611007980

1605

http://dx.doi.org/10.1142/S0218126611007980

has attempted to address this issue using various techniques. In Ref. 1, using a

probabilistic description of the circuit, a state assignment algorithm that minimizes

the Boolean distance between the codes of the state with high transition probability

was proposed. The primary objective was to reduce the average switching activity of

the input and output state variables by minimizing the number of bit changes during

state transition. Symbolic methods for reencoding a circuit to reduce the dissipated

power are discussed in Ref. 2. The authors experimented with two encoding strat-

egies. One based on recursive weighted no-bipartite matching, and one on recursive

mincut bipartitioning. The authors conclude that even though the results are

promising, their synthesis procedure needs re¯nements in both circuit transformation

and the power estimation phases. Encoding of states for a given user-speci¯ed input

sequence was addressed in Ref. 3. Simulation was used to determine the relative

frequency for all state transitions. By de¯ning and using a register switching rate as a

cost, the authors then used simulated annealing to solve the state assignment pro-

blem. In Ref. 4, given an FSM description and the input probabilities, the total state

transition probabilities for each edge in a state transition graph of the circuit are

computed ¯rst. This is done by modeling the FSM as a Markov chain. A cost function

that is the summation of the products of distinct code words with the Hamming

distance between any two adjacent states is used to measure the e®ectiveness of the

assignments. Similar to Ref. 1, the goal is to assign codewords with minimum

Hamming distances to states with higher transition probabilities. A spanning tree-

based encoding approach was tested in Ref. 5. The assignment problem was for-

mulated as a hypercube embedding problem, where the embedding process is

directed by a maximum spanning tree of the attraction graph of the FSM. In Ref. 6,

heuristic techniques were used to visit the state transition graph of the circuit and

assign a priority to the symbolic states. Next, an encoding technique that follows the

priority established in the ¯rst part is used to assign binary codes to the states. As

assignment method that utilized dynamic loop information extracted from FSM

pro¯ling data was presented in Ref. 7. The authors then experimented with three

di®erent loop-based state assignment algorithms, depth-¯rst search, loop-based

depth ¯rst and per state encoding. An m-block partitioning technique for the state

assignment to reduce the number of feedback cycles and keep low switching activities

among state variables is discussed in Ref. 8. The objective was both, to improve

power consumption and testability of the circuit. Reengineering (targeting low

power) a FSM by constructing a functionally equivalent but topologically di®erent

design based on an optimization objective was presented in Ref. 9. The authors argue

that this will allow the exploration of a larger solution space making it possible to

obtain solutions better than the optimal ones for the original circuit. They used

genetic algorithms and heuristics to reengineer existing low power state encoding

procedures with favorable results.

The last decade have seen a remarkable growth in the use of Boolean Satis¯ability

(SAT) models and algorithms for solving various problems in Electronic Design

1606 A. Sagahyroon, F. A. Aloul & A. Sudnitson

Automation (EDA). This is mainly due to the fact that SAT algorithms have seen

tremendous improvements in the last few years, allowing larger problem instances to

be solved in di®erent applications domains.10�13 Such applications include formal

veri¯cation,14 FPGA routing,15 global routing,16 logic synthesis,17 and power

optimization.18

SAT solvers have traditionally been used to solve decision problems. Given a set

of Boolean variables and constraints expressed in products-of-sum form (also known

as conjunctive normal form (CNF)), the goal is to identify a variable assignment that

will satisfy all constraints in the problem or prove that no such assignment exists.

Recently, SAT solvers have been extended to handle Pseudo-Boolean (PB) con-

straints.16,19�22 PB constraints are more expressive and can replace an exponential

number of CNF constraints. Another key advantage of PB constraints is the ability

to express optimization problems which are traditionally handled as integer linear

programming (ILP) problems. Hence, SAT solvers can now handle both decision and

optimization problems and compete with the best available generic ILP solvers such

as IBM-ILOG CPLEX.23

In this paper, we propose using SAT-based and generic ILP solvers to handle the

state assignment problem. We formulate the problem as an optimization instance

and use SAT-based ILP solvers to ¯nd a solution. The problem is also solved using

generic ILP solvers, e.g., CPLEX,23 for performance comparison. Interestingly,

presented empirical results show that SAT-based ILP solvers outperform generic

commercial ILP solvers when solving such instances.

Previous work has shown that breaking symmetries in SAT 0-1 ILP formulas

e®ectively prunes the search space and can lead to signi¯cant runtime speedups.1

The idea is that breaking symmetries prevent symmetric images of search paths from

being searched, thus pruning the search tree.24,25 Since industrial instances, in gen-

eral, have some structure, they are likely to have symmetries.

In this paper, we statically detect and break the symmetries in the generated SAT

0-1 ILP instances and evaluate the advantage of that on SAT-based and generic ILP

solvers. Our results indicate the presence of symmetries in the tested instances. Fur-

thermore, as suggested by previous work,26 SAT-based ILP solvers perform better on

instances with broken symmetries while generic ILP solvers show mixed performance.

The rest of the paper is organized as follows: Sec. 2 provides background infor-

mation on the state assignment problem and Boolean SAT; Sec. 3 explains how to

formulate the state assignment problem as a SAT 0-1 ILP problem. Section 4 gives a

summary of the experimental results and the paper is concluded in Sec. 5.

2. Background

In this section, we review the state assignment problem and we introduce some key

concepts related to Boolean SAT and symmetry breaking. This will serve in clar-

ifying our proposed approach to solve the state assignment problem.

Using SAT-Based Techniques in Low Power State Assignment 1607

2.1. The state transition graph

The state assignment problem entails the codi¯cation of states in a FSM, and is a

known NP-complete problem.27 In Ref. 1, a brief attempt was made to formulate the

state encoding as an ILP problem. However, at the time there were no commercial or

state-of-the-art solvers available and the authors only brie°y discussed a framework

to formulate the problem.

In this work, prior to formulating the problem as an ILP instance, the state

transition graph (STG) for each benchmark circuit is developed. That is, given the

FSM description and the input probabilities; we compute the transition probabilities

for each edge in the STG, by modeling the FSM as a Markov chain. Thereafter, all

unreachable states and self-loops are eliminated from the graph. The STG is then

transformed into an undirected graph converting all multiple edges into a single

undirected edge with weights that equals to the sum of the directed edge prob-

abilities.1,6 Thus, the weights on the edges are proportional to the total probability of

transition between every two connected states.

2.2. Boolean SAT

Boolean SAT is often used as the underlying model in the ¯eld of computer aided

designs of integrated circuits. A number of SAT solvers have been proposed and

implemented.10�13 These solvers employ powerful algorithms that are su±ciently

e±cient to deal with large-scale SAT problems that typically arise in the design

automation domain. Most of these algorithms claim competitive results in runtime

e±ciency and robustness.

In SAT, given a formula f, the objective is to identify an assignment to a set of

Boolean variables that will satisfy a set of constraints. If an assignment is found, it is

known as a satisfying assignment, and the formula is called satis¯able. Otherwise if

an assignment does not exist, the formula is called unsatis¯able. The constraints are

typically expressed in CNF. In CNF, the formula consists of the conjunction (AND)

of m clauses !1; . . . ; !m each of which consists of the disjunction (OR) of k literals.

A literal l is an occurrence of a Boolean variable or its complement. Hence, in order

to satisfy a formula, each of its clauses must have at least one literal evaluated to

true.

As an example, a CNF instance fða; b; cÞ ¼ ðaþ �bÞ � ðaþ bþ cÞ consists of three
variables, two clauses, and ¯ve literals. The assignment fa ¼ 0; b ¼ 1; c ¼ 0g leads to
a con°ict, whereas the assignment fa ¼ 0; b ¼ 0; c ¼ 1g satis¯es f.

Despite the problem being NP-complete, there have been dramatic improvements

in SAT solver technology over the past decade. This has led to the development of

several powerful SAT solvers that are capable of handling problems consisting of

thousands of variables and millions of constraints.10�13

Recently, SAT solvers16,19�22 have been extended to handle PB constraints

which are linear inequalities with integer coe±cients that can be expressed in the

1608 A. Sagahyroon, F. A. Aloul & A. Sudnitson

normalized form16 of

a1x1 þ a2x2 þ � � � þ anxn � b ; ð1Þ
where aib 2 Z and xi are Boolean variables. PB constraints can, in some cases,

replace an exponential number of CNF constraints. They have been found to be very

e±cient in expressing \counting constraints".16 Furthermore, PB extends SAT sol-

vers to handle optimization problems as opposed to only decision problems. Subject

to a given set of CNF and PB constraints, one can request the minimization

(or maximization) of an objective function which consists of a linear combination

of the problem's variables. Note that each CNF constraint can be viewed

as a PB constraint. For example the CNF constraint ð�a þ bÞ can be viewed as the

PB constraint �a þ b � 1. PB constraints represent 0-1 ILP inequalities.

2.3. Symmetry detection and breaking for Boolean SAT

Detecting and breaking symmetries in SAT instances have been shown to help prune

the search space explored by a SAT solver. The basic framework for utilizing sym-

metries was proposed in Ref. 25, and later extended by Refs. 24 and 28 to account for

phase-shift symmetries and consider only generators of the group of symmetries. In

Ref. 1, the authors extended previous work to detect and break symmetries in SAT

PB, i.e., 0-1 ILP, instances.

Symmetries in a SAT 0-1 ILP instance are ¯rst detected by reduction to graph

automorphism and then broken by adding symmetry breaking predicates (SBPs) to

the formulation. In the graph automorphism step, the instance is represented by a

graph and the automorphism problem for that graph is solved using graph auto-

morphism software packages, such as saucy.29 SBPs, representing the generators of

group of symmetries, are then added to the SAT instances in CNF clause format.

3. Problem Formulation and Implementation

In this section, we show how to formulate the state assignment problem as a 0-1 ILP

instance. We used an approach similar to the one discussed in Ref. 1. The goal is to

¯nd the state assignment that leads to the minimum number of weighted transitions.

To illustrate the approach, assume an FSM with x states and a de¯ned weight

between every two connected states. The number of bits, referred to as B, needed to

encode each state is dlog2xe. The objective is to ¯nd a unique state assignment to

each state while minimizing the weighted hamming distance between the adjacent

states.

Two sets of variables are de¯ned for the problem:

. A Boolean variable b li that represents bit l of state Si. A total of x log2x variables

are de¯ned. A value of 1 (0) for each variable indicates that the corresponding bit

is a 1 (0) in the original problem.

Using SAT-Based Techniques in Low Power State Assignment 1609

. A Boolean variable e li;j that represents the XOR operation between the l bits of

states Si and Sj. A total of ð x
2
Þlog2x variables are de¯ned. A value of 1 (0) for each

variable indicates that the corresponding bit assignments are di®erent (similar) in

the original problem.

The following set of constraints is generated:

. The XOR relation between the e and b variables for all state bits must be de¯ned

using the following constraint:

XB
l¼1

ðe li;j ¼ b li � b ljÞ 8 i; j i 6¼ j : ð2Þ

Each XOR relation of the form ðr ¼ s� tÞ is expressed using four CNF constraints as

follows:

ð�r _ s _ tÞ ^ ðr _ �s _ tÞ ^ ðr _ s _�tÞ ^ ð�r _ �s _ �tÞ : ð3Þ
This relation yields a total of 4Bð x

2
Þ three-CNF constraints (i.e., each clause consists

of the disjunction of three literals).

. Each state must have a unique state assignment. This is represented using the

following PB constraint:

XB
l¼1

e l
i;j � 1 8 i; j; i 6¼ j : ð4Þ

This relation yields a total of Bðx2 Þ PB constraints.

The optimization goal is to minimize the weighted hamming distance between the

states. This is expressed using the following:

Min
Xn
k¼1

!k
i;j

XB
l¼1

e li;j

 !
8 i; j; i 6¼ j : ð5Þ

where n is the number of edges in the FSM and wk
i;j is the weight of the edge between

states Si and Sj.

3.1. An illustrative example

In this subsection, we use the FSM as shown in Fig. 1 to provide the reader with an

example that clearly illustrates the various steps of the formulation. The shown FSM

has a total of four states. Therefore, two bits are needed to represent each state. A

maximum of ð 4
2
Þ, i.e., six state combinations can exist. A total of 8b and 12e variables

are declared. The XOR relation constraints are:

e 1
A;B ¼ b1A � b1B ; e2A;B ¼ b2A � b2B ; e 1

B;C ¼ b1B � b1C ; e2B;C ¼ b2B � b2C ;

e1C;D ¼ b1C � b1D ; e2C;D ¼ b2C � b2D ; e1B;D ¼ b1B � b1D ; e2B;D ¼ b2B � b2D :
ð6Þ

1610 A. Sagahyroon, F. A. Aloul & A. Sudnitson

Since only four edges exist, 8e variables were only used. The XOR relations generate

a total of 32 three-CNF constraints.

The unique state assignment condition is expressed using the following four PB

constraints:

e1A;B þ e2A;B � 1 ; e1C;D þ e2C;D � 1 ; e1B;C þ e2B;C � 1 ; e1B;D þ e2B;D � 1 : ð7Þ
Finally, the optimization goal is expressed using:

Minð3e1A;B þ 3e 2
A;B þ 6e 1

B;C þ 6e2B;C þ 12e1C;D þ 12e2C;D þ 9e 1
B;D þ 9e2B;DÞ : ð8Þ

The optimization instance is passed to the ILP solver which returns the assignment:

ððb1A; b2AÞ; ðb1B; b2BÞ; ðb1C ; b2CÞ; ðb1D; b2DÞÞ ¼ ðð0; 0Þð0; 1Þð1; 0Þð1; 1ÞÞ. The assignment

yields the minimum possible optimization cost of 36 that the given FSM can ex-

perience. The cost is achieved as follows: 1 bit change between states A and

Bðcost ¼ 3Þ þ 2 bit changes between states B and Cðcost ¼ 2� 6 ¼ 12Þ þ 1 bit

change between states C andDðcost ¼ 12Þ;þ and 1 bit change between states B and

Dðcost ¼ 9Þ.

4. Experimental Results

In this section, we report and discuss the experimental results obtained for the state

assignment technique. The results for the MCNC benchmark circuits30 are presented

in Table 1. We used the SAT-based 0-1 ILP solver MiniSATþ,21 in addition to the

generic commercial ILP solver, IBM-ILOG CPLEX 10.0.23 All experiments were

conducted on an Intel Xeon 3GHz workstation running Linux and equipped with 4

GB of RAM. We used the default settings for MiniSATþ and CPLEX. A time-out

limit of 10,000 s was set for all experiments. Since some SAT solvers do not accept

fractions for edge weights and to improve the results accuracy, weights were mul-

tiplied by 1M.

Table 1 lists the experimental results for MiniSATþ and CPLEX. The ¯rst two

columns show the name and size of the circuit; Time is the runtime in seconds needed

to solve the problem; Value is the optimal cost achieved by the solver as explained in

(a) (b)

Fig. 1. (a) An illustrative example showing an FSM with four states and four edges. The weight of each

edge is shown. (b) Shows the FSM with the corresponding state assignments (in bold).

Using SAT-Based Techniques in Low Power State Assignment 1611

T
ab

le
1.

E
x
p
er
im

en
ta
l
re
su
lt
s
u
si
n
g
th
e
S
A
T
-b
as
ed

0-
1
IL
P
so
lv
er

M
in
iS
A
T
þ

an
d
th
e
ge
n
er
ic
IL
P
so
lv
er

C
P
L
E
X

10
.0
.
T
im

e
is
in

se
co
n
d
s.
V
al
u
e
re
p
re
se
n
ts

th
e
m
in
im

u
m

op
ti
m
iz
at
io
n
co
st

fo
u
n
d
b
y
th
e
so
lv
er
.

C
ir
cu
it

0
E
x
tr
a
b
it
s

1
E
x
tr
a
b
it
s

2
E
x
tr
a
b
it
s

C
P
L
E
X

M
in
iS
A
T
þ

C
P
L
E
X

M
in
iS
A
T
þ

C
P
L
E
X

M
in
iS
A
T
þ

N
am

e
#

S
ta
te
s

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
a
lu
e

d
k
15

4
0.
02

10
60

43
3

0
10

60
43

3
0.
03

10
60
43

3
0.
01

10
60

43
3

0.
08

10
60
43

3
0.
03

1
0
6
04
3
3

s8
5

0.
13

16
16

35
0
.0
5

16
16

35
0.
49

16
16
35

0.
82

16
16
35

0.
99

16
16
35

1.
78

1
6
1
63
5

s2
7

6
0
.6
5

89
47

72
3.
9

89
47

72
1.
45

89
47
72

14
.8
2

89
47
72

8.
63

89
47
72

14
.4
8

8
9
4
77
2

d
k
l4

7
2
.1
4

12
73

86
3

17
.5
8

12
73
86

3
29

.3
4

12
73
86

3
12

2.
91

12
73

86
3

60
.0
5

12
73
86

3
36

9.
3

1
2
7
38
6
3

d
k
27

7
1
.2
4

13
09

51
9

2.
38

13
09
51

9
10

.8
12

97
61

4
7.
28

12
97

61
4

60
.2

12
97
61

4
82

.4
3

1
2
9
76
1
4

d
k
l7

8
2
.9

10
63

78
4

7.
78

10
63
78

4
50

.9
8

10
63
78

4
40

.7
6

10
63

78
4

62
.6
2

10
63
78

4
38

.2
3

1
0
6
37
8
4

ex
6

8
3
.9
8

10
71

09
2

7.
38

10
71
09

2
28

.3
9

10
71
09

2
76

.5
9

10
71

09
2

67
.4
3

10
64
26

2
18

2.
16

1
0
6
42
6
2

ex
3

10
0.
09

0
>
10

00
0

0
0.
11

0
>
10

00
0

0
0
.0
6

0
>
10

00
0

0

op
u
s

10
22

.5
9

83
55

10
1
1
.2
8

83
55

10
35

5.
8

83
55
10

12
1.
43

83
55
10

28
31

83
55
10

48
2.
6

8
3
5
51
0

s3
86

13
56

9.
2

96
70

95
4
2
.5
7

96
70

95
>
10

00
0

91
08
45

12
16

91
08
45

45
83

89
99
96

56
1.
8

8
9
9
99
6

ex
4

14
12

6.
2

47
82

57
0.
93

47
82

57
30

.3
6

47
82
57

0.
48

47
82
57

24
.5
2

47
82
57

0
.3
2

4
7
8
25
7

d
k
51

2
15

>
10

00
0

12
23

20
2

1
2
2
9
.2

12
18
73

8
>
10

00
0

12
00
88

0
>
10

00
0

12
00

88
0

>
10

00
0

12
00
88

0
>
10

00
0

1
2
0
08
8
0

m
ar
k
l

15
>
10

00
0

10
57

20
5

86
3.
5

10
57
20

5
>
10

00
0

10
47
79

7
7
4
9
.6

10
47

79
7

>
10

00
0

10
40
74

9
13

99
1
0
4
07
4
9

k
ir
k
m
.

16
>
10

00
0

76
16

85
2
5
.7
1

76
16

85
>
10

00
0

76
16
08

14
9.
4

76
16
08

>
10

00
0

76
15
40

16
7.
9

7
6
1
54
0

ex
1

19
>
10

00
0

71
59

21
>
10

00
0

72
30

29
>
10

00
0

68
96
71

>
10

00
0

71
21
27

>
10

00
0

68
62
77

>
10

00
0

1
4
8
22
5
4

ex
2

19
10

28
.6

10
00

00
0

0.
04

10
00
00

0
45

.7
5

10
00
00

0
0.
04

10
00

00
0

79
.7
7

10
00
00

0
0
.0
3

1
0
0
00
0
0

tm
a

20
>
10

00
0

25
06

24
>
10

00
0

24
87

33
>
10

00
0

24
96
97

5
1
2
1

24
82
41

>
10

00
0

25
11
61

>
10

00
0

2
4
8
24
1

T
ot
al

51
75

8
14

12
45

97
3
2
2
1
2

14
12
53

50
60

55
4

13
99
74

58
37

62
2

14
01

84
58

57
77
9

1
3
9
7
0
7
3
3

43
30

1
1
4
7
63
7
9
0

*N
u
m
b
er

in
b
ol
d
re
p
re
se
n
ts

th
e
sm

al
le
st

¯
gu

re
in

th
ei
r
re
sp
ec
ti
v
e
ro
w
s.

1612 A. Sagahyroon, F. A. Aloul & A. Sudnitson

Eq. (5). Since the solver does not accept fraction coe±cients, all probability Values

were multiplied by 106. The table also includes three categories labeled 0-, 1-, and

2-extra bits. In the ¯rst category, i.e., 0 extra bits, the minimum number of bits were

used to represent the states, i.e., dlog2xe where x is the number of states. Note that

we are not constrained by using the minimum number of bits to encode the states,

and hence we decided to experiment by increasing the number of bits and try

di®erent solutions. The increase in the number of bits needs to be reasonable

otherwise this increase will lead to a complex combinational component of the cir-

cuit. The second and third categories, i.e., 1 and 2 extra bits, used ðlog2xþ 1Þ and
ðlog2xþ 2Þ bits, respectively, to represent each state.

Overall, the results obtained show the superiority of MiniSATþ over CPLEX in

most instances. Although CPLEX outperformedMiniSATþ in some smaller circuits,

for complex larger circuits MiniSATþ produced better results. For example, when

considering the kirkman circuit, CPLEX timed-out after 10,000 s while MiniSATþ
found the optimal solution in 26 s.

Note that while both solvers did time-out on some instances, the solvers did

identify some solutions almost instantly. The identi¯ed solutions are useful since

they represent state assignments with a low number of weighted transitions. The

identi¯ed solution could also be the optimal solution, except that the solver timed-

out because it was busy trying to prove the solution's optimality. The Value col-

umn in Table 1 shows a value for all instances that did time-out. These values

re°ect the best identi¯ed solution within the 10,000 s of search. In Table 1, CPLEX

times-out when solving the mark1 and kirkm instances while MiniSATþ solves

them in less than 900 s. However, the solution identi¯ed by CPLEX is in fact the

optimal solution since its value is equivalent to the MiniSATþ solution's value.

The remaining instances that time-out with CPLEX, e.g., dk512, identify solutions

with values close to the optimal solution's value identi¯ed by MiniSATþ. Perhaps,

given some extra time CPLEX would have been able to identify the optimal

solution.

When testing the advantage of adding extra bits to encode the states, results show

that extra bits lead to better optimization cost values, but at the expense of

increasing search runtimes and added circuit complexity.

Figure 2 shows the FSM of the s8 instance and its corresponding state assign-

ment. The circuit has ¯ve states and hence, needs three bits to represent each state.

The minimal optimization cost which represents the minimum weighted transitions

is 161635.

In an e®ort to prune the search space and speed up the ILP solver, the tested

instances were preprocessed and checked for symmetries, using the ShatterPB tool.31

As shown in Table 2, ShatterPB was able to ¯nd symmetries in all instances in a

short amount of time. Table 3 shows the results after detecting the symmetries and

adding SBPs to the instances. Upon comparing the results of Tables 1 and 3, it is

evident that MiniSATþ signi¯cantly bene¯ted from the addition of the SBPs. For

Using SAT-Based Techniques in Low Power State Assignment 1613

example, in the tma circuit, MiniSATþ was able to solve the instance with sym-

metries in 8524 s while it timed-out when solving the original instance. In terms of the

e®ect of symmetry breaking on the performance of CPLEX, the results are mixed.

For the category with 0 extra bits, CPLEX performed better on two instances

Table 2. Symmetry breaking results. S, G, and T represent the number of symmetries,

number of generators, and the time (in seconds) needed by ShatterPB to ¯nd the

symmetries, respectively.

Circuit 0 Extra bits 1 Extra bits 2 Extra bits

Name # States S G T S G T S G T

dkl5 4 2 1 0.01 6 2 0 24 3 0

s8 5 6 2 0 24 3 0.01 120 4 0
s27 6 6 2 0 24 3 0 120 4 0.01

dkl4 7 6 2 0.01 24 3 0.01 120 4 0.01

dk27 7 6 2 0.01 24 3 0 120 4 0.01
dkl7 8 6 2 0.01 24 3 0.02 120 4 0.03

ex6 8 6 2 0.01 24 3 0.02 120 4 0.03

ex3 10 8.7E7 12 0.22 4.4E8 13 0.33 2.6E9 14 0.5

opus 10 24 3 0.04 120 4 0.07 720 5 0.1
s386 13 24 3 0.11 120 4 0.19 720 5 0.29

ex4 14 24 3 0.14 120 4 0.24 720 5 0.38

dk512 15 24 3 0.19 120 4 0.33 720 5 0.5

mark1 15 48 4 0.24 240 5 0.41 1440 6 0.63
Kirk. 16 24 3 0.25 120 4 0.41 720 5 0.65

ex1 19 120 4 0.8 120 4 1.06 24 3 1.04

ex2 19 5040 6 1.04 120 4 1.02 24 3 1.05
tma 20 120 4 1 24 3 1.03 6 2 1.07

Fig. 2. An illustrative example showing the FSM and the corresponding state assignments for the s8
instance. The instance has a total of 5 states and needs 3 bits to represent each state. The minimum

possible optimization cost is 161635.

1614 A. Sagahyroon, F. A. Aloul & A. Sudnitson

T
ab

le
3.

E
x
p
er
im

en
ta
l
re
su
lt
s
u
si
n
g
th
e
S
A
T
-b
as
ed

0-
1
IL
P
so
lv
er

M
in
iS
A
T
þ

an
d
th
e
ge
n
er
ic
IL
P
so
lv
er

C
P
L
E
X
10

.0
.
A
ll
in
st
an

ce
s
w
er
e
p
re
p
ro
ce
ss
ed

w
it
h

S
h
at
te
rP

B
an

d
u
p
d
at
ed

w
it
h

sy
m
m
et
ry

b
re
ak

in
g
p
re
d
ic
at
es

(S
B
P
s)
.
T
im

e
(i
n

se
co
n
d
s)

re
p
re
se
n
ts

th
e
so
lv
er

ru
n
ti
m
e.

V
al
u
e
re
p
re
se
n
ts

th
e
m
in
im

u
m

op
ti
m
iz
at
io
n
co
st

fo
u
n
d
b
y
th
e
so
lv
er
.

C
ir
cu
it

0
E
x
tr
a
b
it
s
w
/S

B
P

1
E
x
tr
a
b
it
s
w
/S

B
P

2
E
x
tr
a
b
it
s
w
/S

B
P

C
P
L
E
X

M
in
iS
A
T
þ

C
P
L
E
X

M
in
iS
A
T
þ

C
P
L
E
X

M
in
iS
A
T
þ

N
am

e
#

S
ta
te
s

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
al
u
e

T
im

e
V
a
lu
e

d
k
15

4
0.
02

10
60
43

3
0

10
60

43
3

0.
06

10
60
43

3
0.
01

10
60
43

3
0.
22

10
60
43

3
0.
01

1
0
6
0
4
3
3

s8
5

0.
21

16
16
35

0
.0
3

16
16
35

0.
62

16
16
35

0.
6

16
16
35

1.
75

16
16
35

1.
03

1
6
1
6
3
5

s2
7

6
0
.6

89
47
72

2.
03

89
47
72

2.
77

89
47
72

4.
27

89
47
72

10
.4
6

89
47
72

8
8
9
4
7
7
2

d
k
l4

7
2
.5
3

12
73
86

3
7.
25

12
73

86
3

15
.2
1

12
73
86

3
14

.4
12

73
86

3
76

.9
9

12
73
86

3
88

.2
5

1
2
7
3
8
6
3

d
k
27

7
2.
07

1
30

95
19

1
.4
5

13
09

51
9

12
.8
8

12
97
61

4
2.
34

12
97
61

4
42

.6
8

12
97
61

4
4.
91

1
2
9
7
6
1
4

d
k
l7

8
5.
58

10
63
78

4
4
.4
3

10
63

78
4

16
.8
5

10
63
78

4
9.
76

10
63
78

4
61

.1
9

10
63
78

4
32

.9
1

1
0
6
3
7
8
4

ex
6

8
4.
9

10
71
09

2
3
.6

10
71

09
2

22
.5
8

10
71
09

2
9.
92

10
71
09

2
35

7.
4

10
64
26

2
41

.2
1
0
6
4
2
6
2

ex
3

10
0
.4
5

0
>
10

00
0

0
0.
76

0
>
10

00
0

0
0.
84

0
>
10

00
0

0

op
u
s

10
50

.0
9

83
55
10

3
.3
5

83
55
10

14
5.
4

83
55
10

7.
37

83
55
10

12
94

83
55
10

12
.2
8

8
3
5
5
1
0

s3
86

13
95

2.
6

96
70
95

1
1
.3
2

96
70
95

41
22

91
08
45

61
.6
7

91
08
45

70
43

89
99
96

42
.1
8

8
9
9
9
9
6

ex
4

14
13

9
47

82
57

0.
94

47
82
57

44
.6
4

47
82
57

0
.7

47
82
57

79
.2
9

47
82
57

1.
44

4
7
8
2
5
7

d
k
51

2
15

>
10

00
0

12
24
69

0
1
4
4

12
18

73
8

>
10

00
0

12
00
88

0
10

15
.5

12
00
88

0
>
10

00
0

12
00
88

0
21

09
1
2
0
0
8
8
0

m
ar
k
l

15
74

38
10

57
20

5
1
2
0
.4

10
57

20
5

>
10

00
0

10
47
79

7
35

3.
45

10
47
79

7
>
10

00
0

10
41
97

7
32

0.
3

1
0
4
0
7
4
9

k
ir
k
m
.

16
>
10

00
0

76
16
85

5
.1
4

76
16
85

>
10

00
0

76
16
08

19
.5
3

76
16
08

>
10

00
0

76
15
40

27
.3
2

7
6
1
5
4
0

ex
1

19
>
10

00
0

70
36
09

>
10

00
0

68
12
96

>
10

00
0

69
98
56

>
10

00
0

68
02
82

>
10

00
0

69
49
10

>
10

00
0

7
2
6
5
2
2

ex
2

19
57

.0
7

10
00
00

0
0.
07

10
00

00
0

96
.7
5

10
00
00

0
0.
06

10
00
00

0
83

.7
2

10
00
00

0
0
.0
5

1
0
0
0
0
0
0

tm
a

20
>
10

00
0

25
36
92

85
24

24
87
33

>
10

00
0

25
28
87

7
4
6
3

24
82
41

>
10

00
0

24
90
29

>
10

00
0

2
4
9
4
6
9

T
ot
al

48
65

3
14

11
68

41
2
8
8
2
8

14
08

36
17

54
48

0
14

01
08

33
28

96
3

13
98
66

13
59

05
2

1
3
9
7
8
4
6
2

32
68
9

14
0
0
9
2
86

*N
u
m
b
er

in
b
ol
d
re
p
re
se
n
ts

th
e
sm

al
le
st

¯
gu

re
in

th
ei
r
re
sp
ec
ti
v
e
ro
w
s.

Using SAT-Based Techniques in Low Power State Assignment 1615

(mark1 and ex2), but worse on six instances. This observation agrees with earlier

work26 that suggests that the generic ILP solver CPLEX is actually slowed down by

the addition of SBPs. Since CPLEX is a commercial tool and the algorithms used by

it are not publicly known, it is di±cult to pinpoint a reason for this disparity.

5. Conclusion

Starting from a probabilistic description of a FSM, this work has attempted to ¯nd a

state assignment solution that minimizes the switching activity of the state variables.

The main contributions of this work are as follows: (1) We showed how to formulate

the assignment problem as a SAT 0-1 ILP problem. (2) We experimented and

compared the performance of advanced Boolean SAT and generic ILP solvers when

solving the SAT 0-1 ILP state assignment problem. Results indicate that for larger

topologies, the SAT-based 0-1 ILP solver, MiniSATþ, outperforms the commercial

generic ILP solver, CPLEX. (3) We showed empirically, for the presented sample of

MCNC instances, that increasing the number of state variables does not lead to

noticeable improvement in reaching an optimal solution. (4) We tested the state

assignment instances for the existence of symmetries and were able to detect sym-

metries in all instances. The detected symmetries were broken and used to improve

the search runtime. Presented results indicate that detecting and breaking sym-

metries in such instances signi¯cantly improves the 0-1 ILP SAT solver runtime. As

far as we know, this is the ¯rst work that shows that state assignment problem

contains symmetries that can be utilized to speed up search. The e®ects of the code

assigned using the technique presented here on the switching activity of the com-

binational part of the circuits will be studied in future work.

Acknowledgment

This research was partially supported by the European Union through the European

Regional Development Fund.

References

1. L. Benini and G. De Micheli, State assignment for low power dissipation, IEEE J. Solid-
State Circuits 30 (1995) 258�268.

2. G. Hachtel, M. Hermida, A. Pardo, M. Poncino and F. Somenzi, Re-encoding sequential
circuits to reduce power dissipation, Proc. Int. Conf. Computer Aided Design (1994),
pp. 70�73.

3. M. Koegst, G. Franke and K. Feske, State assignment for FSM low power design, Proc.
European Design Automation Conf. (1996), pp. 28�33.

4. L. Daldoss, D. Sciuto and C. Silvano, State encoding for low power embedded controllers,
Proc. IEEE Int. Symp. Circuits and Systems (1998), pp. 421�424.

5. W. Noth and R. Kolla, Spanning tree based state encoding for low power dissipation,
Proc. Design Automation and Test in Europe Conf. (1999), pp. 168�174.

1616 A. Sagahyroon, F. A. Aloul & A. Sudnitson

6. P. Bacchetta, L. Daldoss, D. Sciuto and C. Silvano, Low-power state assignment
techniques for ¯nite state machines, Proc. IEEE Int. Symp. Circuits and Systems (2000),
pp. 641�644.

7. R. Eggermont, S. Cotofana and C. Lageweg, Pro¯ling-based state assignment for low
power dissipation, Proc. Program for Research on Integrated Systems and Circuits
(2004).

8. S. Park, S. Cho, S. Yang and M. Ciesielski, A new state assignment technique for testing
and low power, Proc. Design Automation Conf. (2004), pp. 510�513.

9. L. Yuan, G. Qu, T. Villa and A. Sangiovanni-Vincentelli, FSM Re-engineering and its
application in low power state encoding, Proc. Asia and South Paci¯c Design Automation
Conf. (2005), pp. 254�259.

10. G. Audemard and L. Simon, Predicting learnt clauses quality in modern SAT solver,
Proc. Int. Joint Conf. Arti¯cial Intelligence (2009), pp. 399�404.

11. A. Biere, PicoSAT essentials, J. Satis¯ability, Boolean Model. Comput. 4 (2008) 75�97.
12. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, Cha®: Engineering an

e±cient SAT solver, Proc. Design Automation Conf. (2001), pp. 530�535.
13. K. Pipatsrisawat and A. Darwiche, RSat 2.0: SAT solver description, Technical report

D153, Automated Reasoning Group, Computer Science Department, University of
California, Los Angeles (2007).

14. A. Biere, A. Cimatti, E. Clarke, M. Fujita and Y. Zhu, Symbolic Model Checking
using SAT procedures instead of BDDs, Proc. Design Automation Conf. (1999),
pp. 317�320.

15. G. Nam, F. Aloul, K. Sakallah and R. Rutenbar, A comparative study of two Boolean
formulations of FPGA detailed routing constraints, IEEE Trans. Comput. 53 (2004)
688�696.

16. F. Aloul, A. Ramani, I. Markov and K. Sakallah, Generic ILP versus specialized 0-1 ILP:
An update, Proc. Int. Conf. Computer-Aided Design (2002), pp. 450�457.

17. S. Memik and F. Fallah, Accelerated Boolean satis¯ability-based scheduling of control/
data °ow graphs for high-level synthesis, Proc. Int. Conf. Computer Design (2002),
pp. 395�400.

18. A. Sagahyroon and F. Aloul, Using SAT-based techniques in power estimation, Micro-
electron J. 38 (2007) 706�715.

19. D. Chai and A. Kuehlmann, A fast pseudo-Boolean constraint solver, Proc. Design
Automation Conf. (2003), pp. 830�835.

20. H. Dixon and M. Ginsberg, Inference methods for a pseudo-Boolean satis¯ability solver,
Proc. National Conf. Arti¯cial Intelligence (2002), pp. 635�640.

21. N. Een and N. Sorensson, An extensible SAT-solver, Proc. Int. Conf. Theory and Ap-
plications of Satis¯ability Testing (2003), pp. 502�508.

22. H. Sheini and K. Sakallah, Pueblo: A modern pseudo-Boolean SAT solver, Proc. Design,
Automation, and Test Conf. Europe (2005), pp. 684�685.

23. ILOG CPLEX, http://www.ilog.com/products/cplex.
24. F. Aloul, A. Ramani, I. Markov and K. Sakallah, Solving di±cult instances of Boolean

satis¯ability in the presence of symmetry, IEEE Trans. Comput.-Aided Des. 22 (2003)
1117�1137.

25. J. Crawford, M. Ginsberg, E. Luks and A. Roy, Symmetry-breaking predicates for search
problems, Proc. 5th Int. Conf. Principles of Knowledge Representation and Reasoning
(1996), pp. 148�159.

26. A. Ramani, F. Aloul, I. Markov and K. Sakallah, Breaking instance-independent sym-
metries in exact graph coloring, J. Artif. Intell. Res. 26 (2006) 289�322.

Using SAT-Based Techniques in Low Power State Assignment 1617

27. J. Nelson, K. Tumer and J. Ghosh, Designing genetic algorithms for the state assignment
problem, IEEE Trans. Syst. Man Cybern. 25 (1999) 687�694.

28. F. Aloul, K. Sakallah and I. Markov, E±cient symmetry breaking for Boolean satis-
¯ability, IEEE Trans. Comput. 55 (2006) 549�558.

29. P. Darga, M. Li¯ton, K. Sakallah and I. L. Markov, Exploiting structure in symmetry
generation for CNF, Proc. Design Automation Conf. (2004), pp. 530�534.

30. MCNC Benchmarks, http://www.cbl.ncsu.edu/CBL Docs/Bench.htm.
31. F. Aloul, A. Ramani, I. Markov and K. Sakallah, Symmetry-breaking for pseudo-Boolean

formulas, ACM J. Exp. Algorithmics 12 (2007).

1618 A. Sagahyroon, F. A. Aloul & A. Sudnitson

	USING SAT-BASED TECHNIQUES IN LOW POWER STATE ASSIGNMENT∗
	1. Introduction
	2. Background
	2.1. The state transition graph
	2.2. Boolean SAT
	2.3. Symmetry detection and breaking for Boolean SAT

	3. Problem Formulation and Implementation
	3.1. An illustrative example

	4. Experimental Results
	5. Conclusion
	Acknowledgment
	References

