
Symmetry Breaking for Pseudo-Boolean
Formulas

FADI A. ALOUL

American University of Sharjah

and

ARATHI RAMANI, IGOR L. MARKOV, and KAREM A. SAKALLAH

University of Michigan, Ann Arbor

Many important tasks in design automation and artificial intelligence can be performed in practice
via reductions to Boolean satisfiability (SAT). However, such reductions often omit application-
specific structure, thus handicapping tools in their competition with creative engineers. Successful
attempts to represent and utilize additional structure on Boolean variables include recent work
on 0-1 integer linear programming (ILP) and symmetries in SAT. Those extensions gracefully
accommodate well-known advances in SAT solving, however, no previous work has attempted to
combine both extensions. Our work shows (i) how one can detect and use symmetries in instances
of 0-1 ILP, and (ii) what benefits this may bring.

Categories and Subject Descriptors: I.1 [Computing Methodologies]: Symbolic and Algebraic
Manipulation—Expressions and their representation, algorithms

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Graph automorphism

ACM Reference Format:
Aloul, F. A., Ramani, A., Markov, I. L., and Sakallah, K. A. 2007. Symmetry breaking for pseudo-
Boolean formulas. ACM J. Exp. Algor. 12, Article 1.3 (2007), 14 pages DOI = 10.1145/1227161.
1278375 http://doi.acm.org/10.1145/1227161.1278375

1. INTRODUCTION

Recent impressive speed-ups of solvers for Boolean satisfiability (SAT)
[Moskewicz et al. 2001] enabled new applications in design automation

Authors’ addresses: Fadi A. Aloul, Department of Computer Engineering, American University
of Sharjah, UAE; Arathi Ramani, Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, 48109; Igor L. Markov, Department of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor, MI, 48109; Karem A. Sakallah,
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI, 48109.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-6654/2007/ART1.3 $5.00 DOI 10.1145/1227161.1278375 http://doi.acm.org
10.1145/1227161.1278375

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

1.3

2 • F. A. Aloul et al.

[Crawford et al. 1996; DIMACS; Nam et al. 2001] and artificial intelligence
[Creignou et al. 2001]. Reducing an application to SAT facilitates the reuse of
existing efficient computational cores and leads to high-performance tools with
little development effort. However, major concerns about this approach are the
loss and ignorance of high-level information and application-specific structure.
With this in mind, researchers extended leading algorithms for SAT solving to
handle more powerful constraint representations, e.g., 0-1 integer linear pro-
gramming (ILP) [Crawford et al. 1996; Barth 1995; Chai and Kuehlmann 2003].
Another broad avenue of research leads to preprocessors for existing solvers
and constraint representations, that extract high-level information and guide
the solvers accordingly [Aloul et al. 2003b, 2003c; Crawford et al. 1996]. Our
work extends existing techniques for detecting and using symmetries in SAT
to the more general 0-1 ILP formulation that includes pseudo-Boolean (PB)
constraints and an optional optimization objective.

In this paper, we contribute a framework for detecting and using symmetries
in instances of 0-1 ILP. When applied to SAT instances encoded as 0-1 ILPs, our
framework works at least as well as those in Aloul et al. [2003b, 2003c], and
Crawford et al. [1996]. In general, it detects all existing structural permuta-
tional symmetries, phase shift symmetries, and their compositions. We present
experimental evidence showing that design automation problems expressed in
PB form can (1) have symmetries and (2) be solved faster within our framework
than previously.

The remainder of the paper is organized as follows. Section 2 presents a brief
description of the CNF and PB representations. Section 3 presents the frame-
work for detecting and using symmetries in CNF formulas. The framework is
extended to handle PB formulas in Section 4. We show experimental results in
Section 5; the paper concludes in Section 6.

2. PRELIMINARIES

A Boolean formula ϕ given in conjunctive normal form (CNF) consists of a
conjunction of clauses, where each clause is a disjunction of literals. A literal
is either a variable or its complement. A clause is satisfied if at least one of
its literals has a value of 1, unsatisfied if all its literals are 0, and unresolved
otherwise. Consequently, a formula is satisfied if all its clauses are satisfied
and unsatisfied if at least one clause is unsatisfied. The goal of the SAT solver
is to identify an assignment to a set of binary variables that would satisfy
the formula or prove that no such assignment exists (and that the formula is
unsatisfiable).

In addition to CNF constraints, a Boolean formula can include PB constraints
which are linear inequalities with integer coefficients1 of the form: a1x1 +a2x2 +
. . . + anxn ≤ b where ai, b ∈ Z +and xi are literals of Boolean variables.2 Using
the relations x̄i = (1 − xi), (Ax = b) ⇔ (Ax ≤ b)(Ax ≥ b), and (Ax ≥ b) ⇔
(−Ax ≤ −b) any arbitrary PB constraint can be converted to the normalized
form of consisting of only positive coefficients. This normalization facilitates

1Floating-point coefficients are also easily handled [Aloul et al. 2002].
2Any CNF clause can be viewed as a PB constraint, e.g., clause (a∨b∨c) is equivalent to (a+b+c ≥ 1).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

Symmetry Breaking for Pseudo-Boolean Formulas • 3

Fig. 1. (a) Two possible encodings of the unsatisfiable pigeon-hole instance consisting of two holes
and three pigeons using CNF and PB constraints. Pij denotes pigeon I in hole j ; (b) graph represent-
ing the CNF formula; (c) graph representing the PB formula. Different vertex shapes correspond
to different vertex colors; (d) generators of the graph automorphism group of (b) and (c).

more efficient algorithms. Figure 1(a) illustrates the difference between the
CNF and PB encodings for the pigeon-hole (hole-2) instance. The instance can
be represented by 6 variables, 9 clauses, and 18 literals when using the CNF
encoding or by 6 variables, 5 PB constraints, and 12 literals when using the
PB encoding. Clearly, PB constraints are more efficient than CNF clauses in
representing counting constraints.

3. DETECTING AND USING CNF SYMMETRIES

Leading-edge complete SAT solvers [Moskewicz et al. 2001] implement the ba-
sic Davis–Logemann–Loveland (DLL) algorithm [Davis et al. 1962] for back-
track search with various improvements. This algorithm has exponential worst-
case complexity and, despite dramatic improvements for practical inputs, the
runtime of those SAT solvers grows exponentially with the size of the input
on various instances. The work in Aloul et al. [2003b, 2003c] and Crawford
et al. [1996] empirically showed that the use of symmetry-breaking predicates
(i) makes runtime on those instances polynomial and (ii) speeds up the solution

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

4 • F. A. Aloul et al.

of some application-derived instances. Crawford et al. [2001] presented a the-
oretical framework for detecting and using permutational symmetries in CNF
formulas. An extension of this framework in Aloul et al. [2003b] showed how
to detect phase-shift symmetries (i.e., symmetries that map variables to their
complements) and their compositions with permutational symmetries. Asymp-
totic efficiency of these techniques was improved in Aloul et al. [2003c]. The
general framework is described next.

3.1 Detecting Symmetries Via Graph Automorphism

Given a graph, a symmetry (also called an automorphism) is a permutation of
its vertices that maps edges to edges. For a directed graph, edge orientations
must be maintained. The collection of symmetries of a graph is closed under
composition and is known as the automorphism group of the graph. The problem
of finding all symmetries of the graph is known as the graph automorphism
problem. Efficient tools for detecting graph automorphism have been developed,
such as NAUTY [McKay 1990] and SAUCY [Darga 2004].

Structural symmetries in CNF formulas can be detected via a reduction
to graph automorphism [McKay 1981]. A CNF formula is represented as an
undirected graph with colored vertices such that the automorphism group of
the graph is isomorphic to the symmetry group of the CNF formula. The two
groups must share a one-to-one correspondence and also be isomorphic to enable
the use of group generators, as explained in the Section 3.2.

Assuming a CNF formula with V vertices and C clauses (single-literal
clauses are removed by preprocessing the CNF formula), a graph is constructed
as follows:

� A single vertex represents each clause (clause vertices).
� Each variable is represented by two vertices: positive and negative literals

(literal vertices).
� Edges are added connecting a clause vertex to its respective literal vertices

(incidence edges).
� Edges are added between opposite literals (Boolean consistency edges).
� Clause vertices are painted with color 1 and all literal vertices (positive and

negative) with color 2.

As the runtime of graph automorphism tools usually increases with growing
number of vertices, each binary clause can be represented with a single edge
between the two literal vertices rather than a vertex and two edges. This op-
timization can, in some cases, result in spurious graph automorphisms [Aloul
et al. 2003b]. Fortunately, this is uncommon in CNF applications and spurious
graph symmetries are easy to test for [Aloul et al. 2003b].

3.2 Using Symmetries

Symmetries induce an equivalence relation on the set of truth assignments of
the CNF formula and every equivalence class (orbit) contains either satisfying
assignments only or unsatisfying assignments only [Crawford et al. 2001].

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

Symmetry Breaking for Pseudo-Boolean Formulas • 5

Therefore, SAT solving can be sped up, without affecting correctness, by
considering only a few representatives (at least one) from each equivalence
class. This constraint can be conveniently represented by conjoining additional
clauses (symmetry-breaking predicates—SBPs) to the original CNF formula.
One particular family of representatives are lexicographically smallest assign-
ments in each equivalence class (lex-leaders). Crawford et al. [2001] introduced
an SBP construction whose CNF representation is quadratic in the number
of problem variables. Their construction assumes a given variable ordering
x1 < x2 < · · · < xn and produces a permutation predicate (PP) for each permu-
tational symmetry in the group of symmetries as follows:

PP(π) =
⋂

1≤i≤n

[⋂
1≤ j≤i−1

(
x j = xπ

j

)] → (
xi ≤ xπ

i

)

where xπ
i is the image of variable xi under permutation π .

Aloul et al. [2003c] described a logically equivalent, but more efficient
tautology-free SBP construction, whose size is linear, rather than quadratic, in
the number of problem variables. Their permutation predicate for each permu-
tational symmetry in the group of symmetries is described as follows:

PP(π) =
[⋂

1≤k≤n

(pk → gk−1 → lk pk+1)

]

where li = (xi ≤ xπ
i), gi = (xi ≥ xπ

i), g0 = 1, p1 = 1, and pn+1 = 1. In practice
smaller SBPs may decrease search time. Strong empirical evidence in Aloul
et al. [2003c] shows that full symmetry breaking is unnecessary and that partial
symmetry breaking is often more effective, because the number of symmetries
can be very large. In particular, the authors showed that applying symmetry
breaking to the generators3 of the group of symmetries rather than the entire set
of symmetries is sufficient to yield significant runtime and memory reductions.

4. DETECTING AND USING PB SYMMETRIES

Similar to the techniques from Aloul et al. [2003b] (summarized in Section 3),
we build a graph whose automorphism group is isomorphic to the group of
PB symmetries (See Figure 1). A graph automorphism program would produce
generators of the automorphism group, which we reapply to the original PB
instance. The isomorphism of the two symmetry groups is required to implicitly
manipulate these groups in terms of generators. While our graph construction
is novel, detected symmetries can be used by means of the known SBP for SAT
[Aloul et al. 2003c], because those are also applicable to 0-1 ILPs.

3Generators represent a set of symmetries whose product generates the complete set of symmetries.
An irredundant set of generators for a group with N > 1 symmetries consists of at, most, log2 N
symmetries [Hall 1959]. While their number can be as small as two, it typically grows with the size
of the group. The graph shown in Figure 1(b) has 12 symmetries that can be captured using the 3
generators shown in Figure 1(d).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

6 • F. A. Aloul et al.

Fig. 2. Example showing the graph representing formula ϕ. Different vertex shapes corresponds
to different vertex colors. The binary clause C2 is expressed as a single edge between two literal
vertices.

4.1 Graph Construction for PB Formulas

Given a formula with V variables, C clauses, and P PB constraints, we build a
graph as follows:

� Variables are treated exactly the same as in the CNF case.
� Any non-PB (pure CNF) clauses are also treated just like in the CNF case.
� Clause vertices are painted in color 1; literal vertices in color 2.
� Literals in a PB constraint Pi are organized as follows:

—The literals in Pi are sorted by coefficient value; literals with the same
coefficient are grouped together. Thus, if there are M different coefficients
in Pi, we have M disjoint groups of literals, L1, . . . , Lm.

—For each group of literals, L j , with the same coefficient, a single vertex
X i, j (coefficient vertex) is created to represent the coefficient value. Edges
are then added to connect this vertex to each literal vertex in the group.

—A different color is used for each distinct coefficient value encountered in
the formula. This means that coefficient vertices that represent the same
coefficient value in different constraints are colored the same.

� Each PB constraint Pi is itself represented by a single vertex Yi (PB con-
straint vertex). Edges are added to connect Yi to each of the coefficient ver-
tices, X i,1, . . . , X i,M that represent its M distinct coefficients.

� The vertices Y1, . . . , Y p are colored according to the constraint’s right-hand
side (RHS) value b. Every unique value b implies a new color and vertices
representing different constraints with the same RHS value are colored the
same.

Figure 2 shows a graph that represents a formula with both CNF clauses
and PB constraints. CNF clauses are represented as in Section 3, but PB con-
straints have different coefficients and require special treatment, as explained
above. Vertices X 1,1 and X 1,1 represent the coefficient value of 1 and are shown
as upward triangles (for color), while X 1,2 and X 2,2 represent the coefficient
value of 2 and are shown as downward triangles (a different color). The two
PB constraint vertices, Y1 and Y2, have the same color/shape since the two PB
constraints have equal RHS values.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

Symmetry Breaking for Pseudo-Boolean Formulas • 7

4.2 Proof of Correctness

We will rely on the correctness proof of the graph construction for CNFs
proposed in Aloul et al. [2003b]. To restate their key result, we first review
the necessary terminology. A circular chain of implications over the variables
x1, x2, . . . , xn is defined in Aloul et al. [2003b] as a set of N binary clauses
equivalent to (y1 ⇒ y2)(y2 ⇒ y3) . . . (yN−1 ⇒ yN)(yN ⇒ y1), where for each
k ∈ 1 . . . N , yk = xk or yk = x̄k . Lets assume that assigning a value to any
yk triggers an implication sequence that determines the values of all literals
involved. Thus, such a chain allows only two satisfying assignments. The key
theorem follows.

THEOREM 4.1. Assume that a given CNF formula does not contain a circular
chain of implications over any subset of its variables. With respect to the proposed
construction of the colored graph from a CNF formula, the symmetris of the
formula then correspond one-to-one to the symmetries of the graph [Aloul et al.
2003b].

The caveat with circular chains is because of an optimization where binary
clauses, unlike larger clauses, are represented by single edges. This reduces
the number of vertices, but now binary-clause edges and Boolean consistency
edges are indistinguishable. A graph symmetry mapping a binary-clause edge
to a Boolean consistency edge (or vice versa) would not correspond to a SAT
symmetry. Using a graph-theoretical lemma, the work in Aloul et al. [2003b]
shows that such spurious symmetries require circular chains of implications.
Moreover, such chains are trivial to test for and do not appear in practice. In the
graph, a chain of implications corresponds to a cycle with alternating positive
and negative literal vertices.

To establish an analogous result for our graph construction for PB formulas,
we first observe that the addition of PB constraints to a CNF formula cannot
create new alternating cycles in the graph. That is because the colors of PB con-
straint and coefficient vertices are different from the colors of literal and clause
vertices. It is thus impossible for an edge-connecting literal vertices to coeffi-
cient vertices (or coefficients to PB constraints) to be mapped into a Boolean
consistency edge. Therefore, the only prohibited case for PB formulas is the
presence of implication chains in the CNF component.

THEOREM 4.2. Assume that a given formula, with CNF and PB constraints,
does not contain a circular chain of implications over any subset of its variables
in its CNF component. With respect to the proposed construction of the colored
graph from a PB formula, the symmetries of the formula then correspond one-
to-one to the symmetries of the graph [Aloul et al. 2003a].

PROOF. We begin by showing that any symmetry in the original formula
corresponds to a colored symmetry in the constructed graph. A permutational
symmetry that maps a to b in the formula will map vertex a to vertex b, vertex
ā to vertex b̄, and the edge aā to bb̄ in the graph. Since a, ā, b, b̄ all have the
same color, the symmetry is preserved. For a phase-shift symmetry, vertices a
and ā are interchanged, leaving the edge aā in place, and any binary clausal

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

8 • F. A. Aloul et al.

edges are swapped at the corresponding clause vertex. For example, edges ac
and āc are swapped through vertex c. For a PB formula, a and ā might also be
connected to one or more coefficient vertices. These connections would also be
swapped at the respective vertices. Again, only vertices of the same color are
mapped one to another. Thus a consistent mapping of literals or variables in
the formula, when carried over to the graph, must preserve the colors of graph
vertices.

We now show that every colored symmetry in the graph corresponds to a
symmetry in the original formula. This is easily seen in the PB case, because
we use one color for literals, one for nonbinary clauses, one set of colors for
coefficient values, and one set for coloring constraints according to RHS value.
Different groups above use different colors. Therefore, if a → b then ā → b̄,
since b̄ is the only vertex connected to b that is the same color as ā. A similar
statement is more difficult to prove in the presence of CNF clauses, but it is
proved in Aloul et al. [2003b] for CNF clauses under the assumption that no
circular chains of implications exist and is extended to mixed CNFPB formulas,
as explained above.

THEOREM 4.3. Under the assumption of Theorem 4.2, the symmetry groups
of the PB formula and the multicolored graph are isomorphic.

PROOF. It can be easily verified that the one-to-one mapping of symmetries
described above is a homomorphism. Furthermore, a one-to-one homomorphism
is an isomorphism.

Given a colored-graph symmetry, we can uniquely reconstruct the PB sym-
metry to which it corresponds, provided we maintain the correspondence be-
tween variables and their positive and negative literal vertices. Symmetries
in the graph are detected using SAUCY [Darga 2004] and used to reconstruct
symmetries in the PB formula. SBPs are added to the formula as CNF clauses
using the efficient construction in Aloul et al. [2003c]. The use of SBPs re-
sults in significant pruning of the search space and can speed up PB solvers as
demonstrated in Section 5.

4.3 Handling an Optimization Function

To accommodate an optimization objective in 0-1 ILP instances, one has to in-
tersect the symmetries of the PB constraints (which we already can detect)
with the symmetries of the objective. Rather than find those two groups sep-
arately and compute the intersection explicitly, we modify our original graph
construction to instantly produce the intersection. The objective function is rep-
resented by a new vertex of a unique color (note that whether we are dealing
with a maximization or a minimization objective does not affect symmetries;
hence, this information is ignored) and coefficient vertices in the same way as
PB constraints are represented. The function vertex connects to its coefficient
vertices, which connect to literals appearing in the objective function with re-
spective coefficients. This construction prohibits all PB symmetries that modify
the objective function. An example is shown in Figure 3.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

Symmetry Breaking for Pseudo-Boolean Formulas • 9

Fig. 3. Example showing the graph representing the formula ϕ with an optimization objective.
Different vertex shapes corresponds to different vertex colors. The binary clause C2 is expressed
as a single edge between the two literal vertices.

When symmetries are detected for PB constraints, their use through known
SBPs for SAT symmetries is justified by the fact that we are still dealing with a
constraint satisfaction problem on Boolean variables. However, additional rea-
soning is required to substantiate the use of the same SBPs in an optimization
problem. The intuition here is that by breaking symmetries, one can speed up
search without affecting the optimal cost in the optimization problem. We now
show that adding SBPs preserves at least one optimal solution and, thus, the
optimal cost. SBPs must pick at least one representative from every equiva-
lence class under symmetry. If one truth assignment in such an orbit satisfies
all PB constraints, then so do all assignments in the orbit. All satisfying assign-
ments in an orbit must have the same cost because they are symmetric. Given
an optimization problem, there must be at least one solution with the optimal
cost. By the arguments above, SBPs will preserve at least one solution from the
same orbit and that solution must have the same cost. Thus, the optimal cost
is preserved.

5. EXPERIMENTAL RESULTS

Below, we empirically evaluate symmetry breaking in 0-1 ILP. We use an Intel
Pentium IV 2.8 GHz machine with 1 GB of RAM running Linux. All time-outs
are 1000 s. Our benchmarks include instances from the pigeon-hole [DIMACS]
(hole), global routing (grout) [Aloul et al. 2002], and FPGA routing (fpga, chnl)
[SAT 2002] sets. We use the PB SAT solver PBS [Aloul et al. 2002] (with set-
tings “-D 1 -z”), which incorporates modern techniques for CNF-SAT imple-
mented in Chaff [Moskewicz et al. 2001] and also handles PB constraints. We
use the new graph automorphism tool SAUCY [Darga 2004], which is empir-
ically faster than NAUTY [McKay 1990], on all our benchmarks. SBP from
Aloul et al. [2003c] are applied to generators of the symmetry groups found by
SAUCY.

Table I lists symmetry detection runtimes, the number of symmetries, and
symmetry generators. The size of the original formula and the SBP, in terms of
the number of variables, clauses, and PB constraints, are also shown. The table

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

10 • F. A. Aloul et al.

T
ab

le
I.

S
ea

rc
h

R
u

n
ti

m
es

of
P

B
F

or
m

u
la

s
w

it
h

an
d

w
it

h
ou

t
S

B
P

s
(f

or
ge

n
er

at
or

s
on

ly
)

U
si

n
g

P
B

S

A
lt

er
n

at
iv

e
P

B
E

n
co

di
n

g
C

N
F

-O
n

ly
E

xp
on

en
ti

al
E

n
co

di
n

g
In

st
an

ce
S

iz
e

S
ym

m
et

ry
S

ta
ti

st
ic

s
In

st
an

ce
S

iz
e

In
st

an
ce

S
iz

e
S

ym
m

et
ry

S
ta

ti
st

ic
s

In
st

an
ce

S
/

O
ri

g
S

B
P

S
A

U
C

Y
#

#
P

B
S

T
im

e
O

ri
g

S
B

P
S

A
U

C
Y

#
#

P
B

S
T

im
e

N
am

e
U

V
C

P
B

V
C

T
im

e
S

ym
G

en
O

ri
g

w
/S

B
P

V
C

V
C

T
im

e
S

ym
G

en
O

ri
g

w
/S

B
P

h
ol

e7
U

56
8

7
97

36
2

0.
01

2.
0E

+
08

13
0.

11
0

56
20

4
97

36
2

0.
01

2.
0E

+
08

13
0.

2
0

h
ol

e8
U

72
9

8
12

7
47

8
0.

01
1.

5E
+

10
15

0.
64

0
72

29
7

12
7

47
8

0.
01

1.
5E

+
10

15
4.

2
0

h
ol

e9
U

90
10

9
16

1
61

0
0.

01
1.

3E
+

12
17

7.
35

0
90

41
5

16
1

61
0

0.
01

1.
3E

+
12

17
11

1
0

h
ol

e1
0

U
11

0
11

10
19

9
75

8
0.

01
1.

5E
+

14
19

66
.3

0
11

0
56

1
19

9
75

8
0.

01
1.

5E
+

14
19

85
0

0
h

ol
e1

1
U

13
2

12
11

24
1

92
2

0.
01

1.
9E

+
16

21
43

1
0

13
2

73
8

24
1

92
2

0.
02

1.
9E

+
16

21
>

10
00

0.
01

fp
ga

10
8

S
12

0
88

18
25

6
98

0
0.

02
6.

7E
+

11
22

34
9

0
12

0
44

8
25

6
98

0
0.

01
6.

7E
+

11
22

13
.2

0
fp

ga
10

9
S

13
5

99
19

22
3

84
6

0.
02

1.
5E

+
13

23
>

10
00

0
13

5
54

9
22

3
84

6
0.

02
1.

5E
+

13
23

47
5

0
fp

ga
13

10
S

19
5

14
0

23
33

4
12

80
0.

06
1.

9E
+

17
28

>
10

00
0.

01
19

5
90

5
33

4
12

80
0.

04
1.

9E
+

17
28

>
10

00
0.

02
fp

ga
13

11
S

21
5

15
4

24
37

1
14

24
0.

06
1.

3E
+

19
30

>
10

00
0.

03
21

5
10

70
37

1
14

24
0.

05
1.

3E
+

19
30

>
10

00
0.

02
fp

ga
13

12
S

23
4

16
8

25
40

6
15

60
0.

08
9.

0E
+

20
32

>
10

00
0.

05
23

4
12

42
40

6
15

60
0.

07
9.

0E
+

20
32

>
10

00
0.

02
ch

n
l1

0
11

U
22

0
22

20
50

8
19

54
0.

05
4.

2E
+

28
39

65
0

22
0

11
22

50
8

19
54

0.
04

4.
2E

+
28

39
62

8
0

ch
n

l1
0

12
U

24
0

24
20

55
6

21
42

0.
06

6.
0E

+
30

41
93

0
24

0
13

44
55

6
21

42
0.

05
6.

0E
+

30
41

>
10

00
0

ch
n

l1
0

13
U

26
0

26
20

60
4

23
30

0.
07

1.
0E

+
33

43
11

2
0

26
0

15
86

60
4

23
30

0.
05

1.
0E

+
33

43
>

10
00

0
ch

n
l1

1
12

U
26

4
24

22
61

4
23

70
0.

07
7.

3E
+

32
43

71
9

0
26

4
14

76
61

4
23

70
0.

06
7.

3E
+

32
43

>
10

00
0

ch
n

l1
1

13
U

28
6

26
22

66
7

25
78

0.
09

1.
2E

+
35

45
74

3
0

28
6

17
42

66
7

25
78

0.
07

1.
2E

+
35

45
>

10
00

0
ch

n
l1

1
14

U
30

8
28

22
72

0
27

86
0.

10
2.

4E
+

37
47

>
10

00
0

30
8

20
30

72
0

27
86

0.
08

2.
4E

+
37

47
>

10
00

0
gr

ou
t-

3.
3-

1
S

21
6

57
2

12
24

92
0.

01
4

2
0.

04
0

21
6

37
29

2
24

92
2.

11
4

2
0.

07
0.

05
gr

ou
t-

3.
3-

2
S

26
4

70
0

12
60

23
0

0.
01

48
5

0.
12

0
26

4
88

48
0

60
23

0
18

.1
5

48
5

0.
21

0.
11

gr
ou

t-
3.

3-
3

S
24

0
63

6
12

60
23

0
0.

01
32

5
0.

05
0

24
0

58
77

6
60

23
0

10
.3

4
32

5
0.

11
0.

05
gr

ou
t-

3.
3-

4
S

22
8

60
4

12
36

13
8

0.
01

12
3

0.
04

0
22

8
47

11
6

36
13

8
3.

04
12

3
0.

28
0.

05
gr

ou
t-

3.
3-

5
S

24
0

63
4

12
48

18
4

0.
02

16
4

0.
01

0
24

0
58

77
4

48
18

4
7.

8
16

4
0.

09
0.

1
gr

ou
t-

3.
3u

-1
U

62
4

18
50

24
72

28
2

0.
07

8
3

10
2

0.
58

62
4

36
06

50
72

28
2

22
4

8
3

>
10

00
10

3
gr

ou
t-

3.
3u

-2
U

67
2

19
88

24
14

4
56

4
0.

11
96

6
35

3
2.

14
67

2
49

33
88

14
4

56
4

68
6

96
6

30
.2

11
.2

gr
ou

t-
3.

3u
-3

U
62

4
18

44
24

96
37

6
0.

07
16

4
42

0
3.

00
62

4
36

06
44

96
37

6
29

1
16

4
5.

00
1.

1
gr

ou
t-

3.
3u

-4
U

67
2

19
94

24
21

6
84

6
0.

17
11

52
9

9.
88

0.
33

67
2

49
33

94
n

/a
n

/a
>

10
00

n
/a

n
/a

2.
03

n
/a

gr
ou

t-
3.

3u
-5

U
64

8
19

24
24

26
4

10
34

0.
20

69
12

11
14

.7
0.

05
64

8
42

31
24

n
/a

n
/a

>
10

00
n

/a
n

/a
4.

03
n

/a
T

ot
al

—
73

65
13

59
5

46
0

71
04

27
35

6
1.

41
2.

4E
37

53
0

>
84

87
6.

19
73

65
2.

4M
>

6K
>

25
K

>
32

43
>

2.
4E

37
>

51
0

>
12

K
>

11
6

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

Symmetry Breaking for Pseudo-Boolean Formulas • 11

also compares runtimes for solving original instances and instances augmented
with SBPs. We also report on a CNF-only formulation derived by converting the
PB constraints using the exponential transformation described in Aloul et al.
[2002]. S/U indicates if the formula is satisfiable or unsatisfiable. We observe
the following:
� All our instances have structural symmetries, but none of those are phase-

shift symmetries.
� The hole and FPGA routing instances contain large numbers of symmetries,

which are compactly represented using irredundant sets of no more than 50
generators.

� SAUCY detects all symmetries in each instance in a fraction of a second for
PB formulas. Formulas expressed in CNF-only form yield larger graphs on
which SAUCY runs much slower.

� The addition of SBPs using the construction defined in Aloul et al. [2003c]
significantly reduces the SAT search runtime.

� Except for the grout-3.3u-2 and grout-3.3u-3 instances, all PB formulas are
solved in <1s with their SBPs. Note that the number of symmetries and
generators is small in the grout-3.3u-2 and grout-3.3u-3 instances and so
results in smaller speed-ups.

� Typically SAT search runtimes for CNF-only instances exceed those for PB in-
stances. An exception is the instance grout-3.3u-3, which is solved in 1.1 with
SBPs added to the CNF-only formula, compared to 3 s for the PB formula.
We found that this is a side effect of the VSIDS decision heuristic [Moskewicz
et al. 2001] used in PBS, which prefers frequently occurring variables. Indeed,
the conversion to CNF replaces a single PB constraint with multiple CNF
clauses, making some variables more frequent. In any case, the symmetry
detection runtime in the CNF-only case is 291 s versus 0.07 s in the PB case.

� Runtimes of SAT search and symmetry finding do not correlate.

PB constraints can be expressed as pure CNF constraints (and vice versa),
but symmetries are not necessarily preserved during reexpression. One such
conversion does not add variables, but adds many clauses exponentially [Aloul
et al. 2002]. While it preserves all symmetries, symmetry detection runtimes
significantly increase, as seen from Table I. An alternate linear transforma-
tion used in Aloul et al. [2002] for global routing uses additional variables to
simulate “counting” constraints. It avoids exponential overhead, but obscures
original symmetries, because it uses adder and comparator circuits to enforce
counting constraints. The directional nature of the comparator is incompatible
with symmetry. The results for the linear transformation experiment are given
in Table II. Clearly, the size of the linear-encoded CNF instances is smaller than
the exponentially encoded CNF instances, but larger than the PB-encoded in-
stances (both in terms of the number of variables and clauses). None of the
linear-encoded instances contained symmetries. In general, the SAT search
runtimes for the linear-encoded CNF instances are slower than those for the
PB instances with SBPs. The only exception are the first three unsatisfiable
grout instances, which are solved slightly faster. This is because of the VSIDS

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

12 • F. A. Aloul et al.

Table II. Search Runtimes of PB Formulas Using PBSa

CNF-only Linear Encoding
Instant Size Symmetry Statistics PBS Time

Orig SBP SAUCY # #
Instant Name S/U V C V C Time Sym Gen Orig

grout-3.3-1 S 864 3692 0 0 0.07 1 0 0.60
grout-3.3-2 S 1056 4540 0 0 0.11 1 0 0.48
grout-3.3-3 S 960 4116 0 0 0.08 1 0 0.16
grout-3.3-4 S 912 3904 0 0 0.1 1 0 0.94
grout-3.3-5 S 960 4114 0 0 0.09 1 0 0.61
grout-3.3u-1 U 1248 5388 0 0 0.15 1 0 0.07
grout-3.3u-2 U 1344 5808 0 0 0.18 1 0 0.13
grout-3.3u-3 U 1248 5384 0 0 0.14 1 0 0.48
grout-3.3u-4 U 1344 5810 0 0 0.15 1 0 5.13
grout-3.3u-5 U 1296 5598 0 0 0.16 1 0 4.85

aThe formulas were converted to CNF using the linear transformation method.

Table III. Results of the Max-SAT Experiment

Unsat Instance Symmetry Statistics PBS Time
Name V C #Unsat SAUCY Time # Sym # Gen Orig w/SBP
chnl7 9 126 522 4 0.47 6.7E + 18 29 >1000 0.37
chnl8 9 144 594 2 0.56 4.3E + 20 31 35 0.43
chnl8 10 160 740 4 1.03 4.3E + 22 33 >1000 0.95
chnl9 10 180 830 2 1.10 3.5E + 24 35 438 0.37
chnl9 11 198 1012 4 2.01 4.2E + 26 37 >1000 10.8
hole7 56 204 1 0.04 (7!)(8!) 13 0.32 0.01
hole8 72 297 1 0.09 (8!)(9!) 15 7.51 0.01
hole9 90 415 1 0.19 (9!)(10!) 17 76 0.03
hole10 110 561 1 0.36 (10!)(11!) 19 >1000 0.02
hole11 132 738 1 0.66 (11!)(12!) 21 >1000 0.06

Table IV. Results of the Max-ONE Experiment

Satisfiable Instance Symmetry Statistics PBS Time
Name V C MaxOnes SAUCY Time # Sym # Gen Orig w/SBP
fpga8 7 84 273 14 0.01 4.2E + 08 17 >1000 0.01
fpga9 7 95 317 14 0.01 2.1E + 09 18 >1000 0.01
fpga9 8 108 396 16 0.01 6.7E + 10 20 >1000 0.01
fpga10 8 120 448 16 0.01 6.7E + 11 22 >1000 0.01
5-queens 125 6460 5 0.02 8(5!) 6 18.1 0.04
6-queens 216 16320 6 0.03 8(6!) 7 >1000 0.64
7-queens 343 35588 7 0.09 8(7!) 8 >1000 9.87
8-queens 512 69776 8 0.27 8(8!) 9 >1000 214

decision heuristic [Moskewicz et al. 2001] used in PBS which prefers frequently
occurring variables.

In alternate experiments, we replace PBS by the best commercial ILP solver
CPLEX [ILOG] (version 7.0) and found that symmetry breaking slows down
CPLEX. We cannot currently explain this, because the specific algorithms used
by CPLEX are not publicly described. It is known that symmetry breaking

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

Symmetry Breaking for Pseudo-Boolean Formulas • 13

slows down stochastic search for Boolean satisfiability [Preswitch 2002], e.g.,
the heuristic solver WalkSAT [Selman et al. 1994]. Yet, all major complete SAT
solvers are sped up by symmetry breaking [Aloul et al. 2003b].

To evaluate symmetry breaking in Boolean optimization problems, we tested
Max-SAT instances from FPGA routing and the optimization version of the
pigeon-hole problem, in addition to Max-ONEs instances from the FPGA rout-
ing and n-queens set. Max-SAT problems seek a variable assignment to max-
imize the number of satisfied CNF clauses and Max-ONE instances seek to
maximize the number of variables set to 1 in a satisfiable instance. The
Max-SAT and Max-ONEs instances were constructed following Aloul et al.
[2002]. The results of relevant experiments are given in Tables III and IV,
respectively. The tables show symmetry-detection runtimes, number of symme-
tries, and symmetry generators. Runtimes for solving original instances versus
instances augmented with SBPs are also shown. “Unsat” in Table III indicates
the minimum (i.e., optimal) number of original unsatisfiable clauses. “Max-
Ones” in Table IV gives the optimal number of 1s in a satisfying assignment.
Our instances contain a large number of symmetries and are solved much faster
when symmetry breaking is used.

6. CONCLUSIONS

Our work seeks to capture and exploit structure in Boolean problems. We de-
scribe how to preprocess 0-1 ILP instances to detect symmetries and use them
to speed up search and optimization. Empirically, we obtain a speedup of sev-
eral orders of magnitude on some application-derived instances, e.g., FPGA
routing. We show that reexpressing PB constraints in terms of CNF may lead
to the loss of symmetry information or cause a substantial increase in problem
size. Ongoing work deals with (i) improved graph constructions and (ii) EDA
applications.

REFERENCES

ALOUL, F., RAMANI, A., MARKOV, I. L., AND SAKALLAH, K. 2002. Generic ILP versus specialized 0-1
ILP. In Proceedings of the International Conference on Computer-Aided Design. 450–457.

ALOUL, F., RAMANI, A., MARKOV, I. L., AND SAKALLAH, K. 2003a. Symmetry-breaking for pseudo-
Boolean formulas. In Proceedings of the International Workshop on Symmetry on Constraint
Satisfaction Problems. 1–12.

ALOUL, F., RAMANI, A., MARKOV, I. L., AND SAKALLAH, K. 2003b. Solving difficult instances of boolean
satisfiability in the presence of symmetries. IEEE Transactions on Computer Aided Design, 22,
9, 1117–1137.

ALOUL, F., MARKOV, I. L., AND SAKALLAH, K. 2003c. Shatter: Efficient symmetry-breaking for
boolean satisfiability. In Proceedings of the Design Automation Conference. 836–839.

BARTH, P. 1995. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean opti-
mization. Technical Report MPI-I-95-2-003, Max-Planck-Institut Für Informatik.

CHAI, D. AND KUEHLMANN, A. 2003. A fast pseudo-Boolean constraint solver. In Proceedings of the
Design Automation Conference. 830–835.

CRAWFORD, J., GINSBERG, M., LUKS, E., AND ROY, A. 1996. Symmetry-breaking predicates for search
problems. In Proceedings of the International Conference Principles of Knowledge Representation
and Reasoning. 148–159.

CREIGNOU, N., KANNA, S., AND SUDAN, M. 2001. Complexity Classifications of Boolean Constraint
Satisfaction Problems. SIAM Press, Philadelphia, PA, USA, 2001.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

14 • F. A. Aloul et al.

DARGA, P. 2004. SAUCY: Graph automorphism tool. Available at: http://www.eecs.umich.
edu/∼pdarga/pub/auto/saucy.html

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem proving. Com-
munications of the ACM, 5, 7, 394–397.

DIMACS CHALLENGE BENCHMARKS. Available at: ftp://Dimacs.rutgers.EDU/pub/challenge/
sat/benchmarks/cnf

HALL JR. M. 1959. The Theory of Groups. McMillan, New York.
ILOG CPLEX, Available at: http://www.ilog.com/products/cplex
MCKAY, B. 1981. Practical graph isomorphism. Congressus Numerantium 30, 45–87.
MCKAY, B. 1990. NAUTY User’s Guide, Version 1.5. Technical Report TR-CS-90-02, Department

of Computer Science, Australian National University.
MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an

efficient SAT solver. In Proceedings of the Design Automation Conference. 530–535.
NAM, G., ALOUL, F., SAKALLAH, K., AND RUTENBAR, R. 2001. A comparative study of two Boolean for-

mulations of FPGA detailed routing constraints. In Proceedings of the International Symposium
on Physical Design. 222–227.

PRESWITCH, S. 2002. Supersymmetric modelling for local search. In Proceedings of the Interna-
tional Workshop on Symmetry on Constraint Satisfaction Problems.

SAT COMPETITION. 2002. Available at: http://www.satcomp.org
SELMAN, B., KAUTZ, H., AND COHEN, B. 1994. Noise strategies for local search. In Proceedings of

the National Conference on Artificial Intelligence. 337–343.

Received October 2006; accepted May 2007

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.3, Publication June: 2008.

