
Abstract - State assignment for finite state machines is a criti-
cal optimization problem in the synthesis of sequential circuits.
In this paper we address the state assignment problem from a
low power perspective. We experiment with Boolean Satisfiabili-
ty and Integer Linear Programming techniques to solve the as-
signment problem where the primary goal is the reduction of
switching activity during state transitions. We also detect and
evaluate the use of symmetries in speeding up the search process.
These techniques have been applied to the MCNC benchmark
circuits and yielded promising results.

Keywords - State Assignment, Power, Integer Linear Program-
ming, Boolean Satisfiability

I. INTRODUCTION
With the ever increasing integration scale, power con-

sumption has emerged as a major design constraint for inte-
grated circuits. During logic synthesis of sequential circuits,
i.e. finite state machines (FSMs), assigning binary codes to
each state in the circuit is a critical step in the low power de-
sign of the circuit. The state encoding problem for low power
has been explored by a number of researchers. Recent work
has attempted to address this issue using various techniques.
In [7], using a probabilistic description of the circuit, a state
assignment algorithm that minimizes the Boolean distance be-
tween the codes of the state with high transition probability
was proposed. The primary objective was to reduce the aver-
age switching activity of the input and output state variables
by minimizing the number of bit changes during state transi-
tion. Symbolic methods for re-encoding a circuit to reduce the
dissipated power are discussed in [17]. The authors experi-
mented with two encoding strategies. One based on recursive
weighted no-bipartite matching, and one on recursive mincut
bi-partitioning. The authors conclude that even though the re-
sults are promising, their synthesis procedure needs refine-
ments in both circuit transformation and the power estimation
phases. Encoding of states for a given user-specified input se-
quence was addressed in [18]. Simulation was used to deter-
mine the relative frequency for all state transitions. By
defining and using a register switching rate as a cost, the au-
thors then used simulated annealing to solve the state assign-
ment problem. In [12], given an FSM description and the input
probabilities, the total state transition probabilities for each

edge in a state transition graph of the circuit are computed
first. This is done by modeling the FSM as a Markov chain. A
cost function that is the summation of the products of distinct
code words with the Hamming distance between any two ad-
jacent states is used to measure the effectiveness of the assign-
ments. Similar to [7], the goal is to assign codewords with
minimum Hamming distances to states with higher transition
probabilities. A spanning tree based encoding approach was
tested in [25]. The assignment problem was formulated as a
hypercube embedding problem, where the embedding process
is directed by a maximum spanning tree of the attraction graph
of the FSM. In [6], heuristic techniques were used to visit the
state transition graph of the circuit and assign a priority to the
symbolic states. Next, an encoding technique that follows the
priority established in the first part is used to assign binary
codes to the states. As assignment method that utilized dy-
namic loop information extracted from FSM profiling data
was presented in [16]. The authors then experimented with
three different loop-based state assignment algorithms, depth-
first search, loop-based depth first and per state encoding. An
m-block partitioning technique for the state assignment to re-
duce the number of feedback cycles and keep low switching
activities among state variables is discussed in [26]. The ob-
jective was both, to improve power consumption and testabil-
ity of the circuit. Re-engineering (targeting low power) an
FSM by constructing a functionally equivalent but topologi-
cally different design based on an optimization objective was
presented in [31]. The authors argue that this will allow the ex-
ploration of a larger solution space making it possible to ob-
tain solutions better than the optimal ones for the original
circuit. They used genetic algorithms and heuristics to re-en-
gineer existing low power state encoding procedures with fa-
vorable results. 

The last decade have seen a remarkable growth in the use
of Boolean Satisfiability (SAT) models and algorithms for
solving various problems in Electronic Design Automation
(EDA). This is mainly due to the fact that SAT algorithms
have seen tremendous improvements in the last few years, al-
lowing larger problem instances to be solved in different ap-
plications domains [5, 8, 22, 27]. Such applications include
formal verification [9], FPGA routing [23], global routing [4],
logic synthesis [21], and power optimization [28]. 
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SAT solvers have traditionally been used to solve decision
problems. Given a set of Boolean variables and constraints ex-
pressed in products-of-sum form (also known as conjunctive
normal form (CNF)), the goal is to identify a variable assign-
ment that will satisfy all constraints in the problem or prove
that no such assignment exists. Recently, SAT solvers have
been extended to handle Pseudo-Boolean (PB) constraints [4,
10, 14, 15, 29]. PB constraints are more expressive and can re-
place an exponential number of CNF constraints. Another key
advantage of PB constraints is the ability to express optimiza-
tion problems which are traditionally handled as integer linear
programming (ILP) problems. Hence, SAT solvers can now
handle both decision and optimization problems and compete
with the best available generic ILP solvers such as IBM-ILOG
CPLEX [19].

In this paper, we propose using SAT-based and generic ILP
solvers to handle the state assignment problem. We formulate
the problem as an optimization instance and use SAT-based
ILP solvers to find a solution. The problem is also solved us-
ing generic ILP solvers, e.g. CPLEX [19], for performance
comparison. Interestingly, presented empirical results show
that SAT-based ILP solvers outperform generic commercial
ILP solvers when solving such instances.

Previous work has shown that breaking symmetries in SAT
0-1 ILP formulas effectively prunes the search space and can
lead to significant runtime speedups [1]. The idea is that
breaking symmetries prevents symmetric images of search
paths from being searched, thus pruning the search tree [2,
11]. Since industrial instances, in general, have some struc-
ture, they are likely to have symmetries. 

In this paper, we statically detect and break the symmetries
in the generated SAT 0-1 ILP instances and evaluate the ad-
vantage of that on SAT-based and generic ILP solvers. Our re-
sults indicate the presence of symmetries in the tested
instances. Furthermore, as suggested by previous work [30],
SAT-based ILP solvers perform better on instances with bro-
ken symmetries while generic ILP solvers show mixed perfor-
mance.

The rest of the paper is organized as follows: Section 2 pro-
vides background information on the state assignment prob-
lem and Boolean satisfiability; Section 3 explains how to
formulate the state assignment problem as a SAT 0-1 ILP
problem. Section 4 gives a summary of the experimental re-
sults and the paper is concluded in Section 5.

II. BACKGROUND
In this section, we review the state assignment problem and

we introduce some key concepts related to Boolean satisfiabil-
ity. This will serve in clarifying our proposed approach to
solve the state assignment problem.

A.  The State Transition Graph
The state assignment problem entails the codification of

states in an FSM, and is a known NP-complete problem [24].
In [7], a brief attempt was made to formulate the state encod-

ing as an integer linear programming (ILP) problem. Howev-
er, at the time there were no commercial or state-of-the-art
solvers available and the authors only briefly discussed a
framework to formulate the problem. 

In this work, prior to formulating the problem as an ILP in-
stance, the state transition graph (STG) for each benchmark
circuit is developed. That is, given the FSM description and
the input probabilities; we compute the transition probabilities
for each edge in the STG, by modeling the FSM as a Markov
chain. Thereafter, all unreachable states and self-loops are
eliminated from the graph. The STG is then transformed into
an undirected graph converting all multiple edges into a single
undirected edge with weights that equals to the sum of the di-
rected edge probabilities [7, 6]. Thus the weights on the edges
are proportional to the total probability of transition between
every two connected states.

B.  Boolean Satisfiability
Boolean Satisfiability (SAT) is often used as the underly-

ing model in the field of computer aided designs of integrated
circuits. A number of SAT solvers have been proposed and
implemented [5, 8, 22, 27]. These solvers employ powerful al-
gorithms that are sufficiently efficient to deal with large-scale
SAT problems that typically arise in the design automation
domain. Most of these algorithms claim competitive results in
runtime efficiency and robustness.

In SAT, given a formula f, the objective is to identify an as-
signment to a set of Boolean variables that will satisfy a set of
constraints. If an assignment is found, it is known as a satisfy-
ing assignment, and the formula is called satisfiable. Other-
wise if an assignment doesn’t exist, the formula is called
unsatisfiable. The constraints are typically expressed in con-
junctive normal form (CNF). In CNF, the formula consists of
the conjunction (AND) of m clauses  each of which
consists of the disjunction (OR) of k literals. A literal l is an
occurrence of a Boolean variable or its complement. Hence, in
order to satisfy a formula, each of its clauses must have at least
one literal evaluated to true.

As an example, a CNF instance
 consists of 3 variables, 2 claus-

es, and 5 literals. The assignment {a = 0, b = 1, c = 0} leads to
a conflict, whereas the assignment {a = 0, b = 0, c = 1} satis-
fies f.

Despite the problem being NP-Complete, there have been
dramatic improvements in SAT solver technology over the
past decade. This has lead to the development of several pow-
erful SAT solvers that are capable of handling problems con-
sisting of thousands of variables and millions of constraints [5,
8, 22, 27].

Recently, SAT solvers [4, 10, 14, 15, 29] have been extend-
ed to handle pseudo-Boolean (PB) constraints which are linear
inequalities with integer coefficients that can be expressed in
the normalized form [4] of:

(1)

ω1 … ωm, ,
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where  and  are Boolean variables. PB constraints
can, in some cases, replace an exponential number of CNF
constraints. They have been found to be very efficient in ex-
pressing “counting constraints” [4]. Furthermore, PB extends
SAT solvers to handle optimization problems as opposed to
only decision problems. Subject to a given set of CNF and PB
constraints, one can request the minimization (or maximiza-
tion) of an objective function which consists of a linear com-
bination of the problem’s variables. Note that each CNF
constraint can be viewed as a PB constraint. For example the
CNF constraint ( ) can be viewed as the PB constraint

. PB constraints represent 0-1 ILP inequalities.
Detecting and breaking symmetries in SAT instances have

been shown to help prune the search space explored by a SAT
solver. The basic framework for utilizing symmetries was pro-
posed in [11], and later extended by [2, 3] to account for
phase-shift symmetries and consider only generators of the
group of symmetries. In [1], the authors extended previous
work to detect and break symmetries in SAT PB, i.e. 0-1 ILP,
instances.

Symmetries in a SAT 0-1 ILP instance are first detected by
reduction to graph automorphism and then broken by adding
symmetry breaking predicates (SBPs) to the formulation. In
the graph automorphism step, the instance is represented by a
graph and the automorphism problem for that graph is solved
using graph automorphism software packages, such as saucy
[13]. SBPs, representing the generators of group of symme-
tries, are then added to the SAT instances in CNF clause for-
mat.

III. PROBLEM FORMULATION AND IMPLEMENTATION
In this section we show how to formulate the state assign-

ment problem as a 0-1 ILP instance. We used an approach
similar to the one discussed in [7]. The goal is to find the state
assignment that leads to the minimum number of weighted
transitions. To illustrate the approach, assume an FSM with x
states and a defined weight between every two connected
states. The number of bits, referred to as , needed to encode
each state is . The objective is to find a unique state as-
signment to each state while minimizing the weighted ham-
ming distance between the adjacent states. 

Two sets of variables are defined for the problem:
• A Boolean variable  that represents bit  of state . A

total of  variables are defined. A value of 1 (0) for
each variable indicates that the corresponding bit is a 1
(0) in the original problem.

• A Boolean variable  that represents the XOR
operation between the  bits of states  and . A total of

 variables are defined. A value of 1 (0) for each
variable indicates that the corresponding bit
assignments are different (similar) in the original
problem.

The following set of constraints are generated:
• The XOR relation between the  and  variables for all

state bits must be defined using the following constraint: 

(2)

Each XOR relation of the form  is expressed
using 4 CNF constraints as follows:

(3)

This relation yields a total of  3-CNF constraints.
• Each state must have a unique state assignment. This is

represented using the following PB constraint:

(4)

This relation yields a total of  PB constraints.
The optimization goal is to minimize the weighted hamming
distance between the states. This is expressed using the fol-
lowing:

(5)

where n is the number of edges in the FSM and  is the
weight of the edge between states  and . 

A.  An Illustrative Example
In this subsection we use the FSM shown in Figure 1 to

provide the reader with an example that clearly illustrates the
various steps of the formulation. The shown FSM has a total
of 4 states. Therefore, 2 bits are needed to represent each state.
A maximum of , i.e. 6, state combinations can exist. A to-
tal of 8  and 12  variables are declared. The XOR relation
constraints are:

(6)

Since only 4 edges exist, 8  variables were used only. The
XOR relations generate a total of 32 3-CNF constraints.
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Fig. 1.  An illustrative example showing an FSM with 4 states and 4 edges. 
The weight of edge is shown.
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The unique state assignment condition is expressed using
the following 4 PB constraints:

(7)

Finally, the optimization goal is expressed using:

(8)

The optimization instance is passed to the ILP solver which
returns the assignment: 
= . The assignment yields the min-
imum possible optimization cost of 36 that the given FSM can
experience.

IV. EXPERIMENTAL RESULTS
In this section, we report and discuss the experimental re-

sults obtained for the state assignment technique. The results
for the MCNC benchmark circuits [20] are presented in
Table I. We used the SAT-based 0-1 ILP solver MiniSAT+
[15], in addition to the generic commercial ILP solver, IBM-
ILOG CPLEX 10.0 [19]. All experiments were conducted on
a Intel Xeon 3Ghz workstation running Linux and equipped
with 4 GB of RAM. We used the default settings for Mini-
SAT+ and CPLEX. A time-out limit of 10,000 seconds was

set for all experiments. Since some SAT solvers don’t accept
fractions for edge weights and to improve the results accuracy,
weights were multiplied by 1M.

Table I lists the experimental results for MiniSAT+ and
CPLEX. The first two columns show the name and size of the
circuit; Time is the runtime in seconds needed to solve the
problem; Value is the optimal cost achieved by the solver as
explained in equation (5). The table also includes three cate-
gories labeled 0-, 1-, and 2- extra bits. In the first category, i.e.
0 extra bits, the minimum number of bits were used to repre-
sent the states, i.e.  where x is the number of states. Note
that we are not constrained by the using the minimum number
of bits to encode the states, and hence we decided to experi-
ment by increasing the number of bits and try different solu-
tions. The increase in the number of bits needs to be
reasonable otherwise this increase will lead to a complex com-
binational component of the circuit. The second and third cat-
egories, i.e. 1 and 2 extra bits, used and 
bits, respectively, to represent each state. 

Overall, the results obtained show the superiority of Min-
SAT+ over CPLEX in most instances. Although CPLEX out-
performed MiniSAT+ in some smaller circuits, for complex
larger circuits MiniSAT+ produced better results. For exam-
ple, when considering the kirkman circuit, CPLEX timed-out
after 10,000 seconds while MiniSAT+ found the optimal solu-
tion in 26 seconds.

eA B,
1 eA B,

2+ 1≥

eB C,
1 eB C,

2+ 1≥
       

eC D,
1 eC D,

2+ 1≥

eB D,
1 eB D,

2+ 1≥

Min
3 eA B,

1⋅ 3 eA B,
2 6 eB C,

1 6 eB C,
2⋅+ +⋅+⋅+

12 eC D,
1 12 eC D,

2 9 eB D,
1 9 eB D,

2⋅+⋅+⋅+⋅⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

bA
1 bA

2,( ) bB
1 bB

2,( ) bC
1 bC

2,( ) bD
1 bD

2,( ), , ,( )
0 0,( ) 0 1,( ) 1 0,( ) 1 1,( ), , ,( )

TABLE I. EXPERIMENTAL RESULTS USING THE SAT-BASED 0-1 ILP SOLVER MINISAT+ AND THE GENERIC ILP SOLVER CPLEX 10.0. TIME IS IN SECONDS. 
VALUE REPRESENTS THE MINIMUM OPTIMIZATION COST FOUND BY THE SOLVER.

Circuit 0 Extra Bits 1 Extra Bits 2 Extra Bits

Name # 
States

CPLEX MiniSAT+ CPLEX MiniSAT+ CPLEX MiniSAT+
Time Value Time Value Time Value Time Value Time Value Time Value

dk15 4 0.02 1060433 0 1060433 0.03 1060433 0.01 1060433 0.08 1060433 0.03 1060433
s8 5 0.13 161635 0.05 161635 0.49 161635 0.82 161635 0.99 161635 1.78 161635
s27 6 0.65 894772 3.9 894772 1.45 894772 14.82 894772 8.63 894772 14.48 894772
dk14 7 2.14 1273863 17.58 1273863 29.34 1273863 122.91 1273863 60.05 1273863 369.3 1273863
dk27 7 1.24 1309519 2.38 1309519 10.8 1297614 7.28 1297614 60.2 1297614 82.43 1297614
dk17 8 2.9 1063784 7.78 1063784 50.98 1063784 40.76 1063784 62.62 1063784 38.23 1063784
ex6 8 3.98 1071092 7.38 1071092 28.39 1071092 76.59 1071092 67.43 1064262 182.16 1064262
ex3 10 0.09 0 >10000 0 0.11 0 >10000 0 0.06 0 >10000 0
opus 10 22.59 835510 11.28 835510 355.8 835510 121.43 835510 2831 835510 482.6 835510
s386 13 569.2 967095 42.57 967095 >10000 910845 1216 910845 4583 899996 561.8 899996
ex4 14 126.2 478257 0.93 478257 30.36 478257 0.48 478257 24.52 478257 0.32 478257
dk512 15 >10000 1223202 1229.2 1218738 >10000 1200880 >10000 1200880 >10000 1200880 >10000 1200880
mark1 15 >10000 1057205 863.5 1057205 >10000 1047797 749.6 1047797 >10000 1040749 1399 1040749
kirkm. 16 >10000 761685 25.71 761685 >10000 761608 149.4 761608 >10000 761540 167.9 761540
ex1 19 >10000 715921 >10000 723029 >10000 689671 >10000 712127 >10000 686277 >10000 1482254
ex2 19 1028.6 1000000 0.04 1000000 45.75 1000000 0.04 1000000 79.77 1000000 0.03 1000000
tma 20 >10000 250624 >10000 248733 >10000 249697 5121 248241 >10000 251161 >10000 248241

Total 51758 14124597 32212 14125350 60554 13997458 37622 14018458 57779 13970733 43301 14763790

x2log

x2log 1+( ) x2log 2+( )



When testing the advantage of adding extra bits to encode
the states, results show that extra bits lead to better optimiza-
tion cost values, but at the expense of increasing search runt-
imes and added circuit complexity. 

In an effort to prune the search space and speed up the ILP
solver, the tested instances were pre-processed and checked
for symmetries, using the ShatterPB tool [1]. As shown in
Table III, ShatterPB was able to find symmetries in all in-
stances in a short amount of time. Table II shows the results
after detecting the symmetries and adding symmetry breaking
predicates (SBPs) to the instances. Upon comparing the re-
sults of Tables 1 and 3, it is evident that MiniSAT+ signifi-
cantly benefited from the addition of the SBPs. For example,
in the tma circuit, MiniSAT+ was able to solve the instance
with symmetries in 8524 seconds while it timed-out when
solving the original instance. In terms of the effect of symme-
try breaking on the performance of CPLEX, the results are
mixed. For the category with 0 extra bits, CPLEX performed
better on 2 instances (mark1 and ex2), but worse on 6 instanc-
es. This observation agrees with earlier work [30] that sug-
gests that the generic ILP solver CPLEX is actually slowed
down by the addition of SBPs. Since CPLEX is a commercial
tool and the algorithms used by it are not publicly known, it is
difficult to pinpoint a reason for this disparity.

V. CONCLUSIONS
Starting from a probabilistic description of an FSM, this work
has attempted to find a state assignment solution that minimiz-
es the switching activity of the state variables. The main con-
tributions of this work are as follows: (1) We showed how to
formulate the assignment problem as a SAT 0-1 ILP problem.
(2) We experimented and compared the performance of ad-
vanced Boolean satisfiability and generic ILP solvers when
solving the SAT 0-1 ILP state assignment problem. Results in-
dicate that for larger topologies, the SAT-based 0-1 ILP solv-
er, MiniSAT+, outperforms the commercial generic ILP
solver, CPLEX. (3) We showed empirically that increasing
the number of state variables does not lead to noticeable im-
provement in reaching an optimal solution. (4) We tested the
state assignment instances for the existence of symmetries and
were able to detect symmetries in all instances. The detected
symmetries were broken and used to improve the search runt-
ime. Presented results indicate that detecting and breaking
symmetries in such instances significantly improves the 0-1
ILP SAT solver runtime. As far as we know, this is the first
work that shows that state assignment problem contains sym-
metries that can be utilized to speedup search. The effects of
the code assigned using the technique presented here on the
switching activity of the combinational part of the circuits will
be studied in future work.

TABLE II. EXPERIMENTAL RESULTS USING THE SAT-BASED 0-1 ILP SOLVER MINISAT+ AND THE GENERIC ILP SOLVER CPLEX 10.0. ALL INSTANCES WERE 
PRE-PROCESSED WITH SHATTERPB AND UPDATED WITH SYMMETRY BREAKING PREDICATES (SBPS). TIME (IN SECONDS) REPRESENTS THE SOLVER RUNTIME. 

VALUE REPRESENTS THE MINIMUM OPTIMIZATION COST FOUND BY THE SOLVER.

Circuit 0 Extra Bits w/ SBP 1 Extra Bits w/ SBP 2 Extra Bits w/ SBP

Name # 
States

CPLEX MiniSAT+ CPLEX MiniSAT+ CPLEX MiniSAT+
Time Value Time Value Time Value Time Value Time Value Time Value

dk15 4 0.02 1060433 0 1060433 0.06 1060433 0.01 1060433 0.22 1060433 0.01 1060433
s8 5 0.21 161635 0.03 161635 0.62 161635 0.6 161635 1.75 161635 1.03 161635
s27 6 0.6 894772 2.03 894772 2.77 894772 4.27 894772 10.46 894772 8 894772
dk14 7 2.53 1273863 7.25 1273863 15.21 1273863 14.4 1273863 76.99 1273863 88.25 1273863
dk27 7 2.07 1309519 1.45 1309519 12.88 1297614 2.34 1297614 42.68 1297614 4.91 1297614
dk17 8 5.58 1063784 4.43 1063784 16.85 1063784 9.76 1063784 61.19 1063784 32.91 1063784
ex6 8 4.9 1071092 3.6 1071092 22.58 1071092 9.92 1071092 357.4 1064262 41.2 1064262
ex3 10 0.45 0 >10000 0 0.76 0 >10000 0 0.84 0 >10000 0
opus 10 50.09 835510 3.35 835510 145.4 835510 7.37 835510 1294 835510 12.28 835510
s386 13 952.6 967095 11.32 967095 4122 910845 61.67 910845 7043 899996 42.18 899996
ex4 14 139 478257 0.94 478257 44.64 478257 0.7 478257 79.29 478257 1.44 478257
dk512 15 >10000 1224690 144 1218738 >10000 1200880 1015.5 1200880 >10000 1200880 2109 1200880
mark1 15 7438 1057205 120.4 1057205 >10000 1047797 353.45 1047797 >10000 1041977 320.3 1040749
kirkm. 16 >10000 761685 5.14 761685 >10000 761608 19.53 761608 >10000 761540 27.32 761540
ex1 19 >10000 703609 >10000 681296 >10000 699856 >10000 680282 >10000 694910 >10000 726522
ex2 19 57.07 1000000 0.07 1000000 96.75 1000000 0.06 1000000 83.72 1000000 0.05 1000000
tma 20 >10000 253692 8524 248733 >10000 252887 7463 248241 >10000 249029 >10000 249469

Total 48653 14116841 28828 14083617 54480 14010833 28963 13986613 59052 13978462 32689 14009286
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TABLE III. SYMMETRY BREAKING RESULTS. S, G, AND T REPRESENTS THE 
NUMBER OF SYMMETRIES, NUMBER OF GENERATORS, AND THE TIME (IN SEC-

ONDS) NEEDED BY SHATTERPB TO FIND THE SYMMETRIES, RESPECTIVELY.

Circuit 0 Extra Bits 1 Extra Bits 2 Extra Bits

Name # 
States S G T S G T S G T

dk15 4 2 1 0.01 6 2 0 24 3 0
s8 5 6 2 0 24 3 0.01 120 4 0
s27 6 6 2 0 24 3 0 120 4 0.01
dk14 7 6 2 0.01 24 3 0.01 120 4 0.01
dk27 7 6 2 0.01 24 3 0 120 4 0.01
dk17 8 6 2 0.01 24 3 0.02 120 4 0.03
ex6 8 6 2 0.01 24 3 0.02 120 4 0.03
ex3 10 8.7E7 12 0.22 4.4E8 13 0.33 2.6E9 14 0.5
opus 10 24 3 0.04 120 4 0.07 720 5 0.1
s386 13 24 3 0.11 120 4 0.19 720 5 0.29
ex4 14 24 3 0.14 120 4 0.24 720 5 0.38
dk512 15 24 3 0.19 120 4 0.33 720 5 0.5
mark1 15 48 4 0.24 240 5 0.41 1440 6 0.63
kirk. 16 24 3 0.25 120 4 0.41 720 5 0.65
ex1 19 120 4 0.8 120 4 1.06 24 3 1.04
ex2 19 5040 6 1.04 120 4 1.02 24 3 1.05
tma 20 120 4 1 24 3 1.03 6 2 1.07


