
Detecting Replay Attack on Voice-Controlled 
Systems using Small Neural Networks 

Nadeen Ahmed 
Computer Science and Engineering 

American University of Sharjah 
Sharjah, UAE 

g00079991@aus.edu  

Rahma Tarek  
Computer Science and Engineering 

American University of Sharjah 
Sharjah, UAE 

g00079160@aus.edu 

Jowaria Khan  
Computer Science and Engineering 

American University of Sharjah 
Sharjah, UAE 

g00084343@aus.edu  

Imran Zualkernan  
Computer Science and Engineering 

American University of Sharjah 
Sharjah, UAE 

izualkernan@aus.edu 

Nouran Sheta  
Computer Science and Engineering 

American University of Sharjah 
Sharjah, UAE 

g00080065@aus.edu 

Fadi Aloul 
Computer Science and Engineering 

American University of Sharjah 
Sharjah, UAE 

faloul@aus.edu

Abstract- Voice-control is becoming a common interface for 
many consumer IoT systems. Common threats to such systems 
include impersonation, replay, speech synthesis, and voice 
conversion attacks. Of these attacks, replay is the easiest to 
implement where a command is recorded and replayed. This 
paper explores the development of a lightweight intrusion 
detection neural network based on a recent command voice replay 
dataset.  A lightweight model based on 1D Convolutional Neural 
Networks (CNN), and Long Short-Term Memory (LSTM) was 
proposed. The trained model was compared with baseline models 
based on Gaussian Mixture Models (GMM) using Constant Q 
Cepstral Coefficients (CQCC) and Mel-Frequency Cepstral 
Coefficient (MFCC).  The proposed model outperformed the 
GMM models, and its size was significantly lower making it more 
feasible for embedded systems implementation.   

Keywords— replay attack, IoT, deep learning, voice-controlled 
systems, convolutional neural network, audio classification, 
ReMASC 

I. INTRODUCTION

Voice interfaces have increasingly been incorporated into 
home devices. Many smart home appliances today can be 
voice-controlled to adjust temperature, activate home security 
systems, or to shop online, for example. While convenient, such 
voice interfaces expose the home owners to a variety of attacks 
[1]. These attacks include impersonation, replay, speech 
synthesis, and voice conversion attacks [2]. Impersonation is 
when an attacker sounds like a target speaker. Similarly, a 
replay attack involves an attacker presenting a prerecorded 
speech sample from the target speaker. Speech synthesis is the 
process of creating artificial speech and voice conversion tries 
to covert the speaker’s voice to sound like the target’s voice. 
Most smartphones today have smart voice assistants such as 
Google Assistant, Siri and Cortana that assist users to control 
their phones or IoT devices. Some threats to these voice-
controlled systems (VCSs) include the unlocking of doors, 
making unauthorized purchases, controlling sensitive home 
appliances, and transmitting sensitive information [3].  

Among the aforementioned attacks, replay attacks are the 
easiest to implement by using a recording device. The counter 

measure to this type of attack is hence the ability to tell the 
original speech signal apart from the signal when it is played 
back through a playback device. This paper explores how 
replay attacks can be detected using deep learning techniques. 
Specifically, the paper explores how a light-weight neural 
network can be developed to detect such spoofing using a recent 
dataset of voice commands for replay attacks in realistic 
scenarios called Realistic Replay Attack Microphone Array 
Speech Corpus (ReMASC)  [1].   

II. RELATED WORK

Equal Error Rate (EER) is a commonly used metric to 
measure how good spoof detection systems are. EER is based 
on the Detection Error Tradeoff (DET) curve where EER is the 
point on the curve where the False Rejection Rate (FRR) and 
False Acceptance Rate (FAR) are equal and minimal  [4]. The 
lower the EER, the better the system at identifying spoofing. 
Most spoofing detection systems consist of two components: 
feature extraction and classification. Feature extraction consists 
of determining the relevant features that help distinguish real 
from spoofed speech while the classification stage constructs a 
discriminator based on the features.  

A. Support Vector Machine (SVM)

Methods relying on iterative adaptive Inverse Filtering (IA-
IF) and Linear Frequency Cepstral Coefficients (LFCC) have 
resulted in 8.32% EER and 22.65% EER respectively [5],[6]. 
Similarly, Acoustic Ternary Patterns-Gammatone Cepstral 
Coefficient (ATP-GTCC) used with the multi-class SVM 
classifier yielded an EER of 0.6% [7], [8]. Lavrentyeva et al. [9] 
proposed a fusion of SVM i-vector, Light CNN (LCNN) with 
Fast Fourier Transforms (FFT), CNN with FFT, and Recurrent 
Neural Networks (RNN). The system scored 3.95% EER and 
6.73% EER on the development and evaluation set of the 
ASVspoof 2017 dataset [10].  

B. Convolution Neural Network (CNN)

Parasu et al. created light ResNet  with spectrogram features
which outperformed CQCC-GMM and Attentive Filtering 
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Network (AFN) baselines [11], [12]. The model achieved 0.81% 
EER on ASVspoof 2015. Hyun et al. [13] proposed a multiple 
points input method to increase the amount of information that 
could be considered at one time. This method handled the 
limitation of the low amount of information that is considered 
at a time in CNN-based models. This methodology also reduced 
the relative EER by about 44% compared to the baseline. 
Duraibi et al. [14] developed a new approach that uses MFCC 
and CQCC as input features, a CNN based front-end feature 
extractor, and SVM back-end classifier. The experiment 
conducted on ASVspoof 2017 datasets showed an improvement 
in the state-of-the-art performance achieving 7.1% EER. 
Elsaeidy et al. [15] proposed a deep CNN architecture 
consisting of an input layer, four hidden layers, a global average 
pooling layer and an output layer that achieved an accuracy of 
98.04%, False Positive Rate (FPR) of 5.66%, sensitivity of 
97.64%, specificity of 97.6422%, and precision of 97.64% 
compared to baseline. Another approach using Constant Q 
Cepstral Coefficients (CQCC) features and a CNN as an input 
to a LSTM classifier resulted in 7.73% EER on the ASVspoof 
dataset [16],[17].  

C. Gaussian Mixture Models (GMM) 

 Tan et al [19] conducted a survey to explore the limitations 
and future directions of Presentation Attack Detection (PAD). 
They found that the GMM were more robust than other 
speaking modelling approaches. Suthokumar et al. proposed a 
system that used Spectro-Temporal Modulation Features 
(STMF) and CQCC to obtain an EER of 7.11% and 0.83% on 
ASVSpoof 2017 and BTAS 2016 datasets [20], [21]. Pradhan 
et al. [22] developed an end-to-end system called REVOLT that 
uses SVM and GMM models and their ensemble to detect 
replay attacks that intelligently exploits the inherent differences 
between the spectral characteristics of the original and replayed 
voice signals. Their proposed system yields best EER of 0.88% 
and 10.32% respectively in their own dataset and ASV2017 
dataset respectively as compared to standard LFCC and MFCC 
combined with GMM and SVM as a classifier.  

D. Deep Neural Networks (DNN) 

Gomez-Alanis et al. [23] trained DNN based on a loss 
function that used kernel density estimation (KDE) techniques. 
Their results outperformed the systems trained using other loss 
function with EER of 0.82% on ASVspoof 2019. Duraibi et al. 
created a DNN classifier using hybrid features from Mel-
frequency cepstral coefficient (MFCC) and CQCC which 
outperformed the conventional GMM classifier [24], [25]. The 
model achieved EERs of 2.68% on development set, 7.65% on 
evaluation set, and 5.64% on development and evaluation set. 
Jung et al. [26] detected unrevealed characteristics that reside 
in a replayed speech by directly inputting spectrograms into an 
end-to-end DNN without knowledge-based intervention. Their 
experiments conducted on the ASVspoof 2019 physical access 
challenge showed promising results, where EER was 2.45 % 
for the evaluation set. 

In summary most previous approaches have used feature 
extraction like CQCC or MFCC in conjunction with 
classification techniques like SVM, CNN, DNN, GMM or 
LSTM to achieve reasonable EER on primarily ASVProof-type 
datasets.  

III.  METHODOLOGY 

A. Dataset Description 

This paper uses the Realistic Replay Attack Microphone 
Array Speech Corpus (ReMASC) [1]. Unlike previous datasets, 
this dataset contains both authentic voice commands and 
replayed recordings of these commands that were collected in a 
realistic setting.  This dataset has been designed specifically for 
voice-command replay attacks. Recordings from 50 subjects 
are included that vary in age, gender, and accents. The dataset 
contains 132 voice commands in four environments, two indoor, 
one outdoor, and one in a moving vehicle, with different forms 
of background noise. The relative positions between speaker 
and device range from 0.5m to 6m with varying placements and 
microphone configuration of devices. The corpus contains the 
core, evaluation, and complete datasets. The complete set has 
all the data that is in the core set and the evaluation set to allow 
freedom of splitting the training/test split of the model. The core 
and evaluation sets have a default training/test split. The data 
contains 54,712 audio clips out of which 9,240 are genuine and 
45,472 are replayed.  

B. Data Preprocessing and Feature Engineering  

All clips were converted to mono, down sampled to 16kHz, 
and the bit-depth was normalized between -1 and 1. Fig. 1 
shows examples of genuine and replay clips.  

 
Fig. 1. Time domain signal of the genuine and replay clips 

Next, each signal was randomly sampled into 5 samples of 
0.5 seconds each. Short-Term Fourier Transform (STFT) was 
then calculated. An example of STFT of the genuine and replay 
clips is shown in Fig. 2.  

 
Fig. 2. STFT of the genuine and replay signals 



Fig. 3 shows the results of subsequent creation of a Mel 
spectrogram after applying Mel filters.  

 
Fig. 3. Mel spectrogram of the audio signals 

Finally, a discrete cosine transform was then performed on 
the logs of the Mel Spectrogram to produce MFCC as shown in 
Fig. 4.  

 
Fig. 4. The Mel Frequency Cepstral Coefficient of the audio signals 

C. Models Used  

The 1D CNN with LSTM (1D CNN-LSTM) model shown in 
Fig. 5 was used. Table I shows the various layers in more detail. 
The MFCC representation of the audio signal, which is shown 
in Fig. 4, was fed into a 1DCNN for feature recognition and the 
time sequence was being captured by an LSTM. The classifier 
was a simple DNN. A 1D CNN has lower computational 
complexity than a 2D CNN and uses more compact 
configuration [27]. In addition to a 1D CNN, an LSTM was 
used to support time series sequence prediction [28]. Both CNN 
and LSTM were used in this model for feature extraction 
followed by a fully connected network for classification.  

 
Fig. 5. The 1D CNN-LSTM Model 

To be able to evaluate the overall performance of the models, 
a baseline GMM combined with MFCC and CQCC features 
was trained on the same dataset [29].  

TABLE I.  VARIOUS LAYERS IN THE 1DCNN+LSTM MODEL 

Layers Parameters 
Con1D Filter_size = 16, Kernel_size = 3, activation = “relu”, 

strides = 1, padding = “same” 
Con1D Filter_size = 32, Kernel_size = 3, activation = “relu”, 

strides = 1, padding = “same” 

Con1D Filter_size = 64, Kernel_size = 3, activation = “relu”, 
strides = 1, padding = “same” 

Con1D Filter_size = 128, Kernel_size = 3, activation = “relu”, 
strides = 1, padding = “same” 

MaxPool1D Pool size=2 
Dropout Rate=0.5 
LSTM Units=128 
Flatten - 
Dense Units=128, activation= “relu” 
Dense Units=64, activation= “relu” 
Dense Units=2, activation= “relu” 

IV.RESULTS  

10-Fold cross validation was used to assess the model 
robustness. The models were evaluated using a variety of 
metrics including EER [30]. The 10-Fold cross-validation 
generally resulted in very low standard deviations for most 
metrics (e.g., 0.006). All models were evaluated on a subset of 
the development set which was unseen by the model and on an 
evaluation set also unseen. The various evaluation metrics for 
each model are shown in the Table I below.  

TABLE II.  COMPARING GMM WITH 1DCNN+LSTM 

Dataset Metric GMM 1DCNN 
+LSTM 

MFCC CQCC MFCC 

 
 
 
 

Development 

Accuracy 51% 38% 83% 

Precision 60% 57% 83% 

Recall 51% 38% 83% 

F1 Score 55% 46% 83% 

AUC 0.50 0.50 0.92 

EER 50% 48.1% 28.1% 

 
 
 

       Evaluation 

Accuracy 24% 34% 81% 

Precision 71% 75% 86% 

Recall 24% 34% 81% 

F1 Score 27% 41% 83% 

AUC 0.56 0.58 0.88 

EER 46.1% 47.3% 31.9% 

 
   As Table II shows, the 1DCNN+LSTM model using MFCC 
outperformed the baseline GMM models.  The 1DCNN+LSTM 
model achieved a decent F1-Score of 83% for both the unseen 
development and evaluation datasets. The EER seemed high for 
the models but were closer to the best EER reported for this 
dataset. The GMM obviously did not perform well and there 
does not seem to be a difference between the usage of MFCC 
or CQCC in terms of the results. 
    Since any spoof detection model would typically run on an 
embedded device with low computational capability, the size of 
the model is also important. As Table III shows, the 
1DCNN+LSTM model was significantly smaller than either 
version of the GMM model.   
   As shown in Fig. 6 and Fig. 7, the model training and 
validation losses and accuracies did not deviate much 
suggesting that the model did not overfit.  Fig. 8 and Fig. 9 show 
the Receiver Operating Curves (ROC) for the unseen 
development and evaluation data for the best models. As 
expected, the Area Under the Curve (AUC) for the development 



data was 0.89 and a bit better than the AUC of the evaluation 
data which was 0.80.   

TABLE III. COMPARISON BETWEEN GMM AND 1DCNN+LSTM SIZE 

Model Features Size in 
MB 

F1 Score 
Development Evaluation 

GMM MFCC 9.75 0.53 0.27 
CQCC 300.82 0.62 0.71 

1DCNN+LSTM MFCC 0.80 0.8 0.83 

   Since the dataset was imbalanced, Synthetic Minority Over-
sampling Technique (SMOTE) was used to see if the 
performance would improve [31]. SMOTE is a synthetic 
minority oversampling technique which statistically increases 
the number of cases in a dataset by generating new instances 
from existing minority cases while keeping the majority classes 
as is. However, using SMOTE did not result in a significant 
change in the results as it raised accuracies and the F1 scores by 
around 1%-2%. 
   Overall, the proposed model achieved higher results on the 
development set than the evaluation set which showed that it 
classified attacks in environments similar to the ones it had been 
trained on better than those on which it had not been trained. To 
achieve close results between seen and unseen environments, 
features could be extracted from the complete set instead of 
only the core set so that it could capture all the different 
environments available in the dataset. The captured features can 
then be split into training and testing sets to be passed later to 

the model. To further improve the model performance, grid 
search can be conducted to find the most optimal number of 
filters and features. These hyperparameters can then be used in 
feature extraction functions like MFCC to capture most of the 
audio important information. Since the model had only been 
trained using audio files with mono channel configuration, 
models that leverage features extracted from the multi-channels 
of the audio could also be explored. Additionally, latest models 
like transformers could be explored to detect replay attacks. 
Finally, the most obvious extension is to use 2D CNNs that 
have been used in many audio classification tasks. 

V.CONCLUSION

The number of voice-controlled systems have been 
increasing as IoT devices become more 
common. Consequently, there are also ever-increasing security 
threats associated with such systems. These threats include 
replay attacks, self-triggered attacks, hidden voice commands 
and audio adversarial attacks. This paper has shown that it is 
possible to derive fairly small neural networks with less than 
180k parameters to detect such attacks making these models 
feasible for embedded devices.  
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