
SAT ’2002

A Tool for Measuring Progress of
Backtrack-Search Solvers

Fadi A. Aloul, Brian D. Sierawski, Karem A. Sakallah
Department of Electrical Engineering and Computer Science

University of Michigan
{faloul, bsieraws, karem}@eecs.umich.edu
ABSTRACT
We introduce Satometer, a tool that can be used to estimate
the percentage of the search space actually explored by a
backtrack SAT solver. Satometer calculates a normalized
minterm count for those portions of the search space identi-
fied by conflicts. The computation is carried out using a
zero-suppressed BDD data structure and can have adjustable
accuracy. The data provided by Satometer can help diagnose
the performance of SAT solvers and can shed light on the na-
ture of a SAT instance.

1. INTRODUCTION
The last few years have seen significant algorithmic advanc-
es in, and carefully-crafted implementations of, Boolean Sat-
isfiability (SAT) solvers [3, 14, 16, 20, 23, 25]. This has led
to their successful application to a wide range of large-scale
EDA problem instances consisting of thousands of variables
and millions of clauses [4, 11, 17, 18, 21, 22]. Despite these
remarkable developments, SAT solvers cannot escape the
underlying worst-case exponential complexity of their
search space and must sometimes be aborted after a certain
time-out limit has been reached. Typically, when a solver
aborts it provides very little data about how much progress it
had achieved up to that point. Such data can be quite useful.
Knowing, for instance, that the solver had managed, after
several hours, to explore only 1% of the search space might
suggest a very hard problem instance and the need, perhaps,
to try a different approach. If, on the other hand, the solver
reports exploring more than 99% of the search space without
finding a solution, it may be reasonable to assume that the in-
stance has very few satisfying assignments or is possibly un-
satisfiable.

Satometer (pronounced like barometer) is an accessory that
can be used with any backtrack search SAT solver to report
the percentage of search space actually explored by the solv-
er. It requires the solver to emit the set of clauses correspond-
ing to the conflicts encountered during the search. It can be
used dynamically, while the SAT solver is running, to indi-
cate progress in the search for a solution. It is more useful,
however, as a postprocessor to analyze the result of an abort-
ed or completed search.

The paper is organized as follows. In Section 2 we introduce
our measure of search progress. We then describe, in Section
3, how this measure can be computed using BDDs and ZB-
DDs. In Section 4 we illustrate the utility of this measure in

a variety of experimental scenarios and conclude, in Section
5, with a summary of the paper’s main contributions.

2. MEASURING SEARCH PROGRESS
Despite the considerable activity in SAT research, the ques-
tion of measuring the progress of a search process does not
seem to have attracted much attention. The only relevant
work that we were able to find is that of Kokotov and Shly-
akhter [10]. They describe a progress bar that can be integrat-
ed into a backtrack SAT solver to measure its progress. The
bar is updated based on either historical or predictive esti-
mates of the size of the decision tree maintained by the SAT
solver. They reported that the bar is able to predict progress
with an accuracy of 80-90% without significantly impacting
the solver’s run time.

In our approach, we view the search process as a sequence of
moves that continually (and systematically) modify a (par-
tial) variable assignment until 1) a satisfying assignment (a
solution) is found, 2) the formula is proven to be unsatisfi-
able (has no solution), or 3) a time-out limit is reached.
Along the way, many assignments that are explored will cor-
respond to zeros of the function represented by the formula
and will cause the search process to backtrack. Every time
such a “conflict” occurs, it identifies a portion of the search
space that can be regarded as having been explored and
found to contain no solutions.

Let denote the assignments that correspond to
the first i conflicts. We can measure how much of the search
space has been explored by counting the number of min-
terms1 covered by the function . Normal-
izing this count by the total size of the space yields the
percentage of the space that has been explored up to this
point. We will use the notation to express the normal-
ized number of minterms of the function . Thus,

, , and .2 In
the sequel, we will refer to as the size of .

This measure can be equivalently computed by considering
the conflict clauses identified at each conflict. Let

 denote the conflict clauses identified after the
first i conflicts. In general, as one or more conflict
clauses may be identified at each conflict. The portion of the
search space that would have been explored after processing

1. Complete truth assignment that sets the function to 1.
2. Assuming that the number of variables is 2.

A1 A2 … Ai, , ,

A1 A2 … Ai+ + +

 f
f

a b+ 75%= a b⋅ 25%= a b⊕ 50%=
 f f

C1 C2 … Cj, , ,
j i≥

SAT ’2002
the ith conflict can now be computed as
.

An illustration of these computations is shown in Figure 1
for the 4-variable formula

(1)

3. COMPUTING SPACE COVERAGE
When the conflicting assignments are disjoint (i.e., when

 for), space coverage can be simply calcu-
lated by the formula:

. (2)

Equivalently, if the conflict clauses are disjoint, i.e. if
 for , then space coverage is simply

. (3)

In other words, if conflicts identify non-overlapping pieces
of the search space, then the size of the explored space can
be found by simply adding the sizes of the different pieces.
In general, this will not be the case except for standard back-
track algorithms that do not employ conflict diagnosis to
prune the search space. To compute the size of the explored
space in such cases we have no choice but to build some type
of symbolic representation for the disjunction of conflict as-
signments or the conjunction of conflict clauses. We de-
scribe below the two representations we examined and show
how we used them to measure space coverage. Without loss
of generality, we restrict the discussion to building represen-
tations for conjunctions of conflict clauses.

3.1 Using BDDs
The conflict clauses can be symbolically “anded” using a re-
duced ordered binary decision diagram (ROBDD or BDD

for short) [5]. BDD semantics allow us to write the function
 at a node labeled with variable using Boole’s expansion:

(4)

where and are the functions associated with the 0- and
1-children of that node (see Table 1.) This immediately leads
to the following formula for the size of :

(5)

The size of the function represented by a BDD can now be
obtained by sweeping the BDD from the terminal nodes to-
wards the top node and applying (5) at each visited node. The
sweep is initialized by setting and for the
constant functions of the terminal nodes.

3.2 Using ZBDDs
The problem with the BDD representation, of course, is that

1 C1 C2 … Cj⋅ ⋅ ⋅–

Decisions Implications
Conflicts Explored Space

Y/N Clause Minterms %

1 N

2 N

3 Y 2 12.5

4 Y 4 25

5 Y 8 50

6 N

7 N

8 Y 10 62.5

9 N Solution!

a

ab

abc d ′ a ′ b ′ c ′+ +()
abc ′ d a ′ b ′ c+ +()
ab ′ c ′d a ′ b+()
a ′
a ′b
a ′bc d ′ a b ′ c ′+ +()
a ′bc ′ d

Decisions Implications
Conflicts Explored Space

Y/N Clause Minterms %

1 N

2 N

3 Y 4 25

4 Y 6 37.5

5 Y 10 62.5

N

6 N Solution!

a

ab

abc d ′ b ′ c ′+()
ab c ′d a ′ b ′+()
a b ′c ′d a ′()

a ′
b a ′c ′d

Figure 1. Execution traces of two different SAT solvers on the formula in (1)
illustrating how search progress is measured.

(a) Execution trace of a basic backtrack SAT Solver (b) Execution trace of a conflict-based backtrack SAT Solver

ϕ a b c+ +() a b c ′+ +() a ′ b c ′+ +() a c d+ +() ⋅=

a ′ c d+ +() a ′ c d ′+ +() b ′ c ′ d ′+ +() b ′ c ′ d+ +()

Ak Al⋅ 0= k l≠

A1 A2 … Ai+ + + Ak
1 k≤ i≤

∑=

Ck Cl+ 1= k l≠

1 C1 C2 … Cj⋅ ⋅ ⋅– 1 Ck–()
1 k≤ j≤

∑= Table 1. Semantics of Decision Diagrams

Internal Nodes Terminal Nodes

BDD

Z
B

D
D

Set

CNF

DNF

x
f

g h

0
f

1
f

f x′ g⋅ x h⋅+= f 0= f 1=

f g x{ } h×∪= f ∅= f ∅{ }=

f g() x h+()⋅= f 1= f 0=

f g() x h⋅()+= f 0= f 1=

R
epresentation

D
iagram

 Type

f x

f x′ g⋅ x h⋅+=

g h

f

 f
1
2
--- g h+()=

0 0= 1 1=

SAT ’2002
it quickly runs out of memory. An alternative that has lower
memory requirements is the zero-suppressed BDD (ZBDD)
originally proposed by Minato [15] for manipulating large
combination sets, including sets of Boolean cubes. A combi-
nation set can be regarded as a set of sets, e.g.

. Recently, Chatalic and Si-
mon [6] demonstrated that ZBDDs can be an effective im-
plicit representation of large CNF formulas and showed how
they can be used to perform “multi-resolution” to solve some
large structured SAT instances. In this scenario, the above
example set corresponds to the CNF formula

, i.e. each combination is
viewed as an OR term (a clause) and the entire set (a union
of combinations) as an AND term. Such an interpretation al-
lows the semantics of Boolean algebra to be layered on top
of the semantics of set algebra to obtain further compression
of the ZBDD structure. In particular, Chatalic and Simon ex-
tended the standard ZBDD set-union operation to a sub-
sumption-free union that automatically removes any clause
that is completely subsumed by another clause. In the above
example, combination is subsumed by combination

 yielding the logically equivalent set
. Additional reduction rules based

on literal absorption, i.e. ,
were subsequently described in [1].

The semantics of ZBDD nodes were first articulated by Lob-
bing et al. in [12]. Given a set of atoms , a
ZBDD node labeled with atom represents a combination
set constructed according to the formula:

(6)

where and are the combination sets associated with the
0- and 1-children of that node (see Table 1.) The terminal 0
and 1 nodes correspond, respectively, to the empty set (set of
no combinations) and to the set of consisting of the empty
combination. The “product” in (6) is similar to the Cartesian
product of two sets and is defined by

(7)

For example, given the combination sets
 and , their prod-

uct is3

(8)

When used to represent a CNF formula, the formula asso-
ciated with a ZBDD node labeled by variable follows the
same template of (6) except that the union of atoms in a com-
bination is viewed as logical OR and the union of the combi-
nations is viewed as logical AND yielding

(9)

where and are the formulas associated with the 0- and
1-children of that node (see Table 1.) The terminal 0 and 1
nodes, correspond, respectively, to the constant 1 and con-
stant 0 functions.

To represent CNF formulas with ZBDDs, the set of atoms is
taken to be the set of literals over which the formula is de-
fined. In addition, the positive and negative literals of each
variable are grouped together so that they are adjacent in the
total order used in constructing the ZBDD. This restriction
facilitates, among other things, the identification and auto-
matic removal of tautologies, i.e. combinations that have the
form , to further reduce the size of the ZBDD
[6].

To determine the size of the function represented by the CNF
formula associated with a ZBDD node, we must first re-write
(9) as the disjoint sum of two terms

(10)

This immediately leads to

(11)

which, unlike (5) for BDDs, requires that we compute the
size of the product of the two child formulas. This is not a
problem if one or both of the children is a terminal node, but
does pose a serious complication if they are both internal
nodes. One way to resolve this complication is to (recursive-
ly) create additional ZBDD nodes for such products until one
of the children becomes terminal. This will provide us with
the exact answer, but may exponentially increase the size of
the ZBDD. Some of that increase can be ameliorated with
caching and garbage collection. In particular, created nodes
can be eliminated as soon as they have been used to tighten
the bound of their parent.

3. Note that . For this example,
.

S
a b,{ } c d e, ,{ } a d,{ } b{ }, , ,{ }

a b+() c d e+ +() a d+() b()

a b,{ }
b{ }

c d e, ,{ } a d,{ } b{ }, ,{ }
a() a ′ b c+ +() a() b c+()=

a b c …, , ,{ }
x

f

f g x{ } h×∪=

g h

S T× s t∪{ }
s S∈ t T∈,

∪=

S a b,{ } b c,{ },{ }= T a d,{ } e{ },{ }=

S T× S T∪≠
S T∪ a b,{ } b c,{ } a d,{ } e{ }, , ,{ }=

S T× a b d, ,{ } a b e, ,{ } a b c d, , ,{ } b c e, ,{ }, , ,{ }=

f
x

f g() x h+()⋅=

g h

x x ′ …+ +()

f g() x h+()⋅ x g⋅ x ′ g h⋅()⋅+= =

 f
1
2
--- g g h⋅+()=

Figure 2. Computation of using (11)
and (12).

a b ′+() b c+()

b

a

c

1
0%

0
100%

50%

75%

[50%, 62.5%]

b ′
50%

b

a

c

1
0%

0
100%

50%

75%

50%

b ′
50%

b ′
25%

(a) Using bound in (12) (b) By computing

hg

g h⋅

g h⋅

SAT ’2002
An alternative to computing exactly is to bound it.
The upper bound is easily established as and
occurs when either or . The lower bound can be
determined by noting that . Thus

 is smallest when is largest which occurs
when and are disjoint. This gives a lower bound of

 and yields the interval

(12)

where the max in the lower bound insures that the estimate
remains non-negative.

An illustration of these computations is given in Figure 2 for
the example formula . The percentages an-
notating the ZBDD nodes denote the function sizes of their
corresponding formulas as computed by (11) and (12). The
uncertainty in the size at the top node is resolved, in part b of
the figure, by creating a node for the product of its children.

Between the two extremes of an exact count and a bound
computed according to (12) we can produce a range of ap-
proximations that trade accuracy with speed and memory
consumption. Specifically, when a given level of accuracy,
say 10%, is exceeded by the bound computed from (12), ad-
ditional ZBDD nodes are created for the product formulas
until the desired level of accuracy is achieved.

We must finally note that (11) is correct only when is vac-
uous in . The only situation when this is not true is depicted
in Figure 3 where g’s node is labeled by the literal .4 Sub-
stituting in (10) produces the disjoint
sum

(13)

which readily leads to

(14)

Figure 4 illustrates the three possible modes of our approach
on the bridging-fault bf2670-001 instance. Despite setting an
error limit of 20%, on average, the restricted bound and the

unrestricted bound methods reported results within 7% and
24%, respectively, of the exact answer.

4. EXPERIMENTAL EVALUATION
Satometer is implemented in C++ using the CUDD package
[19]. It incorporates the ZBDD enhancements described in
[1] and [6] for symbolic manipulation of CNF formulas. In
this section we demonstrate its utility by applying it in a
number of experimental scenarios. We configured it to report
the size of the explored search space to within 20% of the ex-
act answer; in many cases it was able to achieve a higher lev-
el of accuracy or to even report the exact answer. In the
tables to follow, a single number in the explored space col-
umns indicates that an exact answer was reported; ranges are
indicated as intervals. All experiments were performed on an
AMD Athlon 1.4 GHz machine with 1GB of RAM running
the Linux operating system.

4.1 Effect of Preprocessing the CNF Formula
A variety of preprocessing techniques have been proposed to
modify a CNF formula before submitting it to a SAT solver.
These techniques generally add clauses to the formula in or-
der to increase the number of potential implications or per-
form stylized algebraic simplifications to reduce the number
of variables. We used Satometer to study the effectiveness of
such techniques. In each case we compare the size of the
space explored by a standard DLL algorithm5 [8] (i.e. with-
out conflict analysis) on the original as well as on the modi-
fied formula. The time-out limit in these experiments was set
to 10 seconds; Satometer’s run time was negligible. The re-
sults of these experiments are given in Table 2, Table 3, and
Table 4.

Addition of consensus clauses. In [2] the authors report
that augmenting a CNF formula with clauses identified using
consensus can reduce search time. To avoid generating an
exponential number of clauses, they proposed a truncated it-
erative consensus procedure that augments the original for-

4. Note that h’s node cannot be labeled by as this would cre-
ate a tautology that is automatically eliminated.

g h⋅
min g h,()

g h≤ h g≤
g h⋅ 1 g ′ h ′+–=

g h⋅ g ′ h ′+
g ′ h ′

g h 1–+

g h⋅ max 0 g h 1–+,() min g h,(),[]∈

a b ′+() b c+()⋅

x
f

g h

p q

x ′

Figure 3. The special case when is not vacuous in .g x

g
x

x ′

x ′

g p() x ′ q+()⋅=

f x p q⋅()⋅ x ′ p h⋅()⋅+=

 f
1
2
--- p q⋅ p h⋅+()=

5. The solver uses a fixed decision heuristic, chronological back-
tracking, and implements BCP as implemented in Chaff.

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Conflict Number

Exact
Unrestricted bound-high
Unrestricted bound-low

Bound with 20% error limit-high
Bound with 20% error limit-low

Figure 4. Applying three modes of the proposed
approach to bf2670-001.cnf instance

SAT ’2002
mula with clauses whose size (number of literals) is limited
by a small user-specified constant. They report speedups on
the aim benchmarks from the DIMACS set [9] when the size
of added clauses are limited to 3 or fewer literals.

A sampling of results on some unsatisfiable instances from
this suite is shown in Table 2. Column 1 lists the name of the
benchmark; columns 2 and 3 give the number of variables
(V) and clauses (C) in the original formula; column 4 gives
the number of consensus clauses that are added to the formu-
la; and columns 5 and 6 indicate the size of explored space
reported by Satometer. The data in this table clearly show the
effectiveness of these added clauses. For the two smaller in-
stances, the search algorithm was actually able to explore the
entire search space, and thus prove the unsatisfiability of the
modified formula. In all cases, the addition of these clauses
helped the SAT solver explore a significantly larger portion
of the search space in the allotted amount of time.

Addition of symmetry-breaking predicates. In [7] the
authors propose analyzing a CNF formula 1) to identify its
symmetries, and 2) to augment it with clauses that break
those symmetries. The intuition here is that the symmetry-
breaking clauses act by allowing only one of many equiva-
lent variable assignments to be a potential solution to the for-
mula. If the original formula is satisfiable, the number of
solutions may considerably decrease after pre-processing,
clearly indicating that the search space was reduced. Howev-
er, even if the original instance was not satisfiable, “the num-
ber of equivalent roads leading nowhere” would be reduced,
and a generic SAT solver is likely to conclude much faster
that no solution exists.

This intuition is confirmed by the data in Table 3 (whose lay-
out is identical to that of Table 2.) The benchmarks in this
experiment are members of the unsatisfiable hole suite
(which relates to the Pigeonhole principle.) The augmenta-
tion of each instance by a small number of symmetry-break-
ing clauses drastically enhances the ability of the SAT solver
to prove unsatisfiability. This trend is clearly accentuated as
instance sizes increase.

Algebraic simplification. Another formula preprocessing
technique is based on formula simplification rules aimed at
reducing the number of variables or clauses in the formula
[13]. We studied this approach on some large hard bounded
model checking [4] and microprocessor verification [22] in-
stances. Results on a representative sample are given in
Table 4.

Unlike the earlier experiments, the performance of the SAT
solver on the modified formulas is not significantly better
than its performance on the original formulas. The best im-
provement is in the barrel7 benchmark and can be attributed
to the simplifier’s ability to drastically reduce the number of
variables (from 3523 to 800.) The low coverage in this ex-
periment is also an indication of the difficulty of these in-
stances.

4.2 Analysis of Dynamic Techniques
In this set of experiments, we report on the application of
Satometer to various SAT solvers with a variety of parame-
ters. Our experiments involve three different SAT solvers: a
simple DLL solver [8], SATIRE [23], and Chaff [16]. The
last two solvers represent efficient implementations of the
basic DLL solver. Chaff, however, is currently known as the
leading DLL-based SAT solver. The goals of this experiment
are to determine a) the best of two black-box SAT solvers, in
which each solver’s description is hidden, b) the best of a va-
riety of decision heuristics c) the difficulty of CNF instances
d) the best of various conflict analysis techniques, and e) an
estimate of the number of satisfying assignments in a satisfi-
able instance.

Black box A vs. black box B experiment. In the follow-
ing experiment, several SAT solvers are provided. However,
the user has no knowledge of the internals of any of the SAT
solvers. Given a set of hard instances, the user is required to
identify the best solver in the shortest possible time. In gen-
eral, the user will need to run each SAT solver for a specified
time or randomly select a solver and hope that it is the best
among all others. Using the proposed method, however, can
give an insight to which solver performs best within the
specified run time limit. Table 5 shows several results for

Table 2. Addition of consensus clauses

Benchmark
Original Modified Explored Space, %

V C Extra C Original Modified

aim-50-1_6-no-4 50 80 54 57.06 100

aim-100-1_6-no-3 100 160 73 0.015 100

aim-200-1_6-no-3 200 320 233 0.049 [97.72, 100]

aim-200-2_0-no-1 200 400 191 0 [87.75, 100]

Table 3. Addition of symmetry-breaking predicates

Benchmark
Original Modified Explored Space, %

V C Extra C Original Modified

hole-7 56 204 14 100 100

hole-8 72 297 16 79.2 100

hole-9 90 415 18 37.5 100

hole-10 110 561 20 18.75 [99.98, 100]

hole-11 132 738 22 9.39 [99.96, 100]

hole-12 156 949 24 4.68 [99.96, 100]

Table 4. Algebraic Simplification

Benchmark
Original Modified Explored Space, %

V C V C Original Modified

longmutl7 3319 10335 2184 7635 0.280 0.341

queinvar20 2435 20671 2343 28438 50 50.1

barrel7 3523 13765 800 3447 51.02 62.46

dlx2_cc_bug08 1515 12808 1486 13875 0 9.38

SAT ’2002
various hard instances from bounded model checking [4],
microprocessor verification [22], FPGA routing [17], and
the DIMACs set [9]. We tested each instance for 10 seconds
using the following three SAT solvers and options: standard
DLL solver, Chaff with a fixed decision heuristic, and Chaff
with the default cherry.smj heuristic. The results clearly in-
dicate the superiority of the third solver among the other two
solvers for almost all benchmarks, due to the significantly
high search space coverage achieved in the given time limit.
Figure 5 shows a detailed space coverage analysis of the
barrel5 instance for all three solvers.

Comparison of decision heuristics. As shown in Table 5,
the proposed method can also be used classify decision heu-
ristics and rate their performance on various SAT instances.
We show the results for two decision heuristics: a) static
fixed [9]: unresolved variables with minimum index are se-
lected first for decisions; b) dynamic VSIDS [16]: variables
that appear in the highest number of clauses are selected first.
(Some weight is given to variables appearing in recent con-
flict-induced clauses). Again, the results show the effective-
ness of VSIDS as opposed to the fixed decision heuristic.
Nevertheless, the k2fix_gr_rcs_w9 instance show a larger
upper bound of the explored search space using the fixed de-
cision order as opposed to VSIDS. However, since the rang-
es for both heuristics overlap, its hard to identify the optimal
decision heuristic.

Hard problem prediction. Table 5 also shows the diffi-
culty of solving the FPGA routing instances as opposed to
other hard instances for the given decision heuristics and
SAT solvers. Figure 6 shows a detailed space coverage anal-
ysis of the k2fix_gr_rcs_w9 instance after unsuccessfully
trying to solve it with Chaff for up to 150 seconds. Perhaps,

this method can be used as a metric to rate the difficulty of
SAT instances and assist SAT solver developers in improv-
ing their SAT tools.

One UIP vs. all UIPs conflict analysis. Recently, [24]
analyzed various conflict clause learning schemes. They
found that different learning schemes can significantly effect
the behavior of SAT solvers. Based on various EDA instanc-
es, they were able to prove that the learning scheme based on
the first Unique Implication Point (UIP) [14] of the implica-
tion graph can be very effective in solving SAT problems in
comparison with other schemes such as the “All UIP” ap-
proach. In order to further confirm this conclusion, we plot-
ted the growth range, using the “All UIP” and the “1 UIP”
approach, for the queueinvar8 instance from the bounded
model checking set. We implemented both approaches in
SATIRE. Figure 7 shows the runs using the SATIRE SAT

Table 5. Percentage of Explored Search Space for Various SAT Solver and Decision Heuristics

Benchmark Space Explored,%

Family Name V C DLL Chaff–Fixed Chaff–VSIDS

uP
V

er
if

ic
at

io
n 2dlx_cc 4524 41704 0 [81, 100] [99.06, 100]

3pipe 2392 27533 0.098 [47.23, 62.63] [80.41, 100]

4pipe 5096 80213 0.025 [69.68, 88.15] [77.77, 95.46]

9vliw 19148 179492 0 [28.91, 35.16] [99.97, 100]

DIMACS par32-1-c 1315 5254 0 [78.64, 89.39] [82.72, 100]

B
ou

nd
ed

 M
od

el
C

he
ck

in
g

barrel6 2306 8931 52.77 [60.94, 63.83] 100

barrel7 3523 13765 51.02 [60.95, 68.79] [98.34, 100]

barrel9 8903 36606 50.11 [58.59, 58.84] [99.94, 100]

longmult6 2848 8853 0.40 [72.39, 80.43] [99.93, 100]

longmult8 3810 11877 0.21 [80.27, 87.78] [90.48, 100]

queuin18 2081 17368 0 [96.57, 100] 100

queuin20 2435 20671 50 [92.3, 100] [97.59, 100]

F
P

G
A

R
ou

ti
ng

alu2_gr_rcs_w7 3570 73478 2.36 [29.99, 36.55] [50, 58.75]

k2fix_gr_rcs_w8 10056 271393 1.18 [0.665, 7.65] [0.798, 9.03]

k2fix_gr_rcs_w9 11313 305160 0.59 [0.393, 5.147] [0.400, 3.34]

vda_gr_rcs_w8 5776 116522 0 [0.615, 6.65] [0.819, 9.75]

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Conflict Number

DLL-low
DLL-high

Chaff-Fixed-low
Chaff-Fixed-high
Chaff-VSIDS-low

Chaff-VSIDS-high

Figure 5. Search Space Coverage for Barrel5.cnf

SAT ’2002
solver. The coverage percentage was measured after each
backtrack call. As the plot clearly shows, the addition of all
UIPs resulted in a minor benefit and perhaps slowed the
search process as additional time is spent to generate all the
UIP clauses. This detailed analysis of the internals of the
search process provides a better understanding of the prob-
lem’s structure and the effectivity of the SAT solver and en-
hancement being tested.

Number of satisfiable assignments. As mentioned earli-
er, the search space will never be totally explored in “satisfi-
able” instances, as SAT solvers typically abort after
identifying the first satisfying assignment. However, in some
cases, several satisfying assignments, if not all, are needed.
An example is to identify all possible primary input assign-
ments for a circuit that would minimize the total gate delay.
An insight into the number of possible satisfying assign-
ments can be very helpful. A satisfiable instance in which a
satisfying assignment is identified at an early stage of the
search process is likely to have many satisfying assignments.
In contrast, an instance that identifies a satisfying assignment
after exploring almost the complete search space probably
has a few satisfying assignments only. In order to test our as-
sumption, we selected two satisfiable instances from the DI-
MACS set [9], namely the aim-200-1_6-yes1-1.cnf and
ssa7552-160.cnf. The former is known to have a single satis-
fying assignment only, whereas the latter represents a stuck-

at-fault problem with many satisfying assignments. Both in-
stances were solved by Chaff in less than a second. We mea-
sured the explored search space after the search was
completed for a single satisfying assignment. Table 6 shows
the results.

As expected, the percentage of the search space explored by
the aim* instance was tremendously larger than the ssa* in-
stance.

Again, as in the experiments in Section 4.1, the accuracy of
our results are significant. Although a user specified error
limit of 20% is set, out of the 78 runs, 47, 6, 16, 8, reported
results with 100%, >99%, 90%~99%, 80%~90% accuracy.

In terms of run time and memory consumption, constructing
the ZBDDs is fast and is usually dependent on the size of the
clauses. Furthermore, the high compression power of the
ZBDD data structure utilizes less memory than a list data
structure. As mentioned in Section 3.2, computing the search
space coverage with an unrestricted bound is done by a sin-
gle traversal of the ZBDD. On the other hand, the restricted
bound and the exact count methods are slower, since addi-
tional ZBDD nodes are created during the ZBDD traversal.
The size of the ZBDD, however, doesn’t grow exponentially
since the additional ZBDD nodes are removed as soon as the
function sizes of their corresponding formulas are computed.

One way to reduce the run time and memory consumption is
to only analyze conflict-induced clauses of size or less. In
general, smaller clauses are more useful in measuring the ex-
plored search space and require less ZBDD construction
time and fewer ZBDD nodes. This approach, however, can
only be used to measure the lower bound of the explored
search space. For the instances reported in Table 5 and
Table 6, Satometer was able to compute the search space
coverage for almost all instances in less than a second each.

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Time (sec)

Chaff-VSIDS-low
Chaff-VSIDS-high

Figure 6. Search Space Coverage for
k2fix_gr_rcs_w9.cnf

Table 6. Percentage of explored search space for satisfi-
able instances with different numbers of satisfying

assignments

Benchmark
Explored
Space, %

aim-200-1_6-yes1-1.cnf 99.999

ssa7552-160.cnf 28.125

0

20

40

60

80

100

0 2 4 6 8 10 12

%
 C

ov
er

ed
 S

ea
rc

h
S

pa
ce

Time (sec)

1-UIP-low
1-UIP-high
All-UIP-low

All-UIP-high

Figure 7. Search space coverage of the queueinvar8
instance using the 1 UIP vs. All UIP conflict analysis

learning scheme

k

SAT ’2002
5. SUMMARY AND CONCLUSIONS
We described Satometer, a tool that measures the percentage
of search space explored by a SAT solver. The tool can pro-
vide helpful diagnostic information, either during or at the
conclusion of a SAT run. We believe that tools such as this
are needed to complement the powerful SAT engines that
have been developed in recent years. We plan to identify oth-
er metrics that can help characterize a search process (e.g.,
the maximum number of satisfied clauses encountered at any
point during the search), to look for ways to further improve
the efficiency of Satometer (e.g., by caching computation re-
sults), and to use it to analyze the performance of solvers on
hard SAT instances. We are also planning to integrate
Satometer into known SAT solvers and use the search space
information to improve decision and restart heuristics.

6. ACKNOWLEDGMENTS

This work is funded by the DARPA/MARCO Gigascale Sil-
icon Research Center and an Agere Systems/SRC Research
fellowship.

7. REFERENCES
[1] F. Aloul, M. Mneimneh, and K. Sakallah, “Backtrack

Search Using ZBDDs,” in Int’l Workshop on Logic
Synthesis, 2001.

[2] F. Aloul, J. Silva, and K. Sakallah, “An Experimental
Study of Satisfiability Search Heuristics,” in the Proc.
of Design, Automation and Test in Europe, 2000.

[3] R. Bayardo Jr. and R. Schrag, “Using CSP look-back
techniques to solve real world SAT instances,” in Proc.
of the 14th National Conf. on Artificial Intelligence,
203-208, 1997.

[4] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu,
“Symbolic Model Checking using SAT procedures
instead of BDDs,” in Proc. of the Design Automation
Conference (DAC), 1999.

[5] R. Bryant, “Graph-based algorithms for boolean func-
tion manipulation,” in Proc. of IEEE Trans. on Com-
puters, 35(8), 1986.

[6] P. Chatalic and L. Simon, “Multi-Resolution on Com-
pressed Sets of Clauses,” in Proc. of the International
Conference on Tools with Artificial Intelligence, 2000.

[7] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Sym-
metry-Breaking Predicates for Search Problems,” in
Knowledge Representation: Principles of Knowledge
Representation and Reasoning, 148-159, 1996.

[8] M. Davis, G. Logemann, and D. Loveland, “A Machine
Program for Theorem Proving,” in Comm. of the ACM,
5(7), 394-397, 1962.

[9] DIMACS Challenge benchmarks in ftp://Dimacs.rut-
gers.EDU/pub/challenge/sat/benchmarks/cnf.

[10] D. Kokotov, I. Shlyakhter, “Progress Bar for SAT Solv-
ers,” unpublished manuscript, http://sdg.lcs.mit.edu/
satsolvers/progressbar.html, 2000.

[11] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” in IEEE Transactions on Computer-
Aided Design, 11(1), 4-15, 1992.

[12] M. Lobbing, O. Schroer, and I. Wegner, “The Theory of
Zero-Suppressed BDDs and the Number of Knight's
Tours,” in IFIP WG 10.5 Workshop on Applications of
the Reed-Muller Expansion in Circuit Design, 1995.

[13] J.-P. Marques-Silva, “Algebraic Simplification Tech-
niques for Propositional Satisfiability,” in Proc. of the
Int’l Conf. on Principles and Practise of Constraint
Programming, 2000.

[14] J. Marques-Silva and K. Sakallah, “GRASP: A Search
Algorithm for Propositional Satisfiability,” in IEEE
Transactions on Computers, 48(5), 506-521, 1999.

[15] S. Minato, “Zero-Suppressed BDDs for Set Manipula-
tion in Combinatorial Problems,” in Proc. of the Design
Automation Conference (DAC), 1993.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,”
in Proc. of the Design Automation Conference (DAC),
2001.

[17] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A
Comparative Study of Two Boolean Formulations of
FPGA Detailed Routing Constraints,” in the Proc. of
the International Symposium on Physical Design, 2001.

[18] L. Silva, J. Silva, L. Silveira and K. Sakallah, “Timing
Analysis Using Propositional Satisfiability,” in IEEE
International Conference on Electronics, Circuits and
Systems, 1998.

[19] F. Somenzi, CUDD: CU Decision Diagram Package,
University of Colorado at Boulder, ftp://vlsi.colo-
rado.edu/pub/.

[20] G. Stalmarck, “System for Determining Propositional
Logic Theorems by Applying Values and Rules to Trip-
lets that are Generated from Boolean Formula,” United
States Patent no. 5,276,897, 1994.

[21] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-
Vincentelli, “Combinational Test Generation Using
Satisfiability,” in IEEE Transactions on Computer-
Aided Design, 1996.

[22] M. Velev and R. Bryant, “Boolean Satisfiability with
Transitivity Constraints,” in Proc. of the Conference on
Computer-Aided Verification (CAV), 2000.

[23] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A
New Incremental Satisfiability Engine,” in Proc. of the
Design Automation Conference (DAC), 2001.

[24] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, “Effi-
cient Conflict Driven Learning in a Boolean Satisfiabil-
ity Solver,” in Proc. of Int’l Conference on Computer
Aided Design (ICCAD), 2001.

[25] H. Zhang, “SATO: An Efficient Propositional Prover,”
in International Conference on Automated Deduction,
1997.

	A Tool for Measuring Progress of Backtrack-Search Solvers
	ABSTRACT
	1. INTRODUCTION
	2. MEASURING SEARCH PROGRESS
	Figure 1. Execution traces of two different SAT solvers on the formula in (1) illustrating how se...
	(1)

	3. COMPUTING SPACE COVERAGE
	. (2)
	. (3)
	3.1 Using BDDs
	Table�1.� Semantics of Decision Diagrams
	(4)
	(5)

	3.2 Using ZBDDs
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	Figure 2. Computation of using (11) and (12).
	(12)

	Figure 3. The special case when is not vacuous in .
	(13)
	(14)

	4. EXPERIMENTAL EVALUATION
	Figure 4. Applying three modes of the proposed approach to bf2670-001.cnf instance
	4.1 Effect of Preprocessing the CNF Formula
	Addition of consensus clauses
	Addition of symmetry-breaking predicates
	Algebraic simplification

	4.2 Analysis of Dynamic Techniques
	Table�2.� Addition of consensus clauses
	Table�3.� Addition of symmetry-breaking predicates
	Table�4.� Algebraic Simplification
	Black box A vs. black box B experiment

	Table�5.� Percentage of Explored Search Space for Various SAT Solver and Decision Heuristics
	Comparison of decision heuristics

	Figure 5. Search Space Coverage for Barrel5.cnf
	Hard problem prediction
	One UIP vs. all UIPs conflict analysis

	Figure 6. Search Space Coverage for k2fix_gr_rcs_w9.cnf
	Number of satisfiable assignments
	Table�6.� Percentage of explored search space for satisfiable instances with different numbers of...

	Figure 7. Search space coverage of the queueinvar8 instance using the 1 UIP vs. All UIP conflict ...

	5. SUMMARY AND CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	[1] F. Aloul, M. Mneimneh, and K. Sakallah, “Backtrack Search Using ZBDDs,” in Int’l Workshop on ...
	[2] F. Aloul, J. Silva, and K. Sakallah, “An Experimental Study of Satisfiability Search Heuristi...
	[3] R. Bayardo Jr. and R. Schrag, “Using CSP look-back techniques to solve real world SAT instanc...
	[4] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model Checking using SAT pr...
	[5] R. Bryant, “Graph-based algorithms for boolean function manipulation,” in Proc. of IEEE Trans...
	[6] P. Chatalic and L. Simon, “Multi-Resolution on Compressed Sets of Clauses,” in Proc. of the I...
	[7] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-Breaking Predicates for Search Probl...
	[8] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving,” in Comm. of ...
	[9] DIMACS Challenge benchmarks in ftp://Dimacs.rutgers.EDU/pub/challenge/sat/benchmarks/cnf.
	[10] D. Kokotov, I. Shlyakhter, “Progress Bar for SAT Solvers,” unpublished manuscript, http://sd...
	[11] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” in IEEE Transactions on...
	[12] M. Lobbing, O. Schroer, and I. Wegner, “The Theory of Zero-Suppressed BDDs and the Number of...
	[13] J.-P. Marques-Silva, “Algebraic Simplification Techniques for Propositional Satisfiability,”...
	[14] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfiabilit...
	[15] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in Proc. o...
	[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient ...
	[17] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of Two Boolean Formulat...
	[18] L. Silva, J. Silva, L. Silveira and K. Sakallah, “Timing Analysis Using Propositional Satisf...
	[19] F. Somenzi, CUDD: CU Decision Diagram Package, University of Colorado at Boulder, ftp://vlsi...
	[20] G. Stalmarck, “System for Determining Propositional Logic Theorems by Applying Values and Ru...
	[21] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni- Vincentelli, “Combinational Test Generat...
	[22] M. Velev and R. Bryant, “Boolean Satisfiability with Transitivity Constraints,” in Proc. of ...
	[23] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A New Incremental Satisfiability Engine,” i...
	[24] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, “Efficient Conflict Driven Learning in a Boole...
	[25] H. Zhang, “SATO: An Efficient Propositional Prover,” in International Conference on Automate...

