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ABSTRACT
Research in algorithms for Boolean satisfiability and their efficient
implementations [26, 8] has recently outpaced benchmarking ef-
forts. Most of the classic DIMACS benchmarks from the early
1990s [12] can be solved in seconds on commodity PCs. More
recent benchmarks take longer to solve primarily because of their
large size, but are still solved in minutes [28]. However, small and
difficult SAT instances must exist because Boolean satisfiability is
NP-complete.

Our work articulates a number of SAT instances that are un-
usually difficult for their size, including satisfiable instances from
global routing and detailed routing for FPGAs [22]. Using an ef-
ficient implementation to solve the graph automorphism problem
[21, 23, 25], we show that in structured SAT instances difficulty is
sometimes associated with large numbers of symmetries.

We propose a new, improved construction of symmetry-breaking
clauses [11] and apply them to empirically demonstrate very signif-
icant speed-ups over current state of the art in Boolean satisfiability.
Our techniques are formulated as pre-processing and can be applied
to an arbitrary SAT solver without modifying its source code. We
also show that considerations of symmetry may lead to more effi-
cient reductions to SAT in the routing domain and potentially other
applications.

1. INTRODUCTION
Boolean satisfiability (SAT) is a pivotal problem in Computer

Science and has numerous applications in Design Automation that
range from microprocessor verification [28] to FPGA layout [22].
A one-million-dollar prize is offered by the Clay Institute for Math-
ematical Sciences for a complete truly polynomial-time SAT solver
or a proof that such an algorithm does not exist (the P-vs-NP prob-
lem). Hardly anyone expects that such an algorithm will ever be
found. Nevertheless, industrial applications motivated intensive re-
search in SAT algorithms that quickly solve instances arising in
applications. The fundamental framework for state-of-the-art SAT
algorithms was laid out in 1960s, but a number of recent improve-
ments in algorithms and implementation techniques [26, 8] have
lead to performance breakthroughs. A majority of the DIMACS
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benchmarks [12] published as a challenge in the early 1990s are
now solved in seconds on commodity PCs. With the exception of
several artificially constructed families of benchmarks, it looks like
SAT can be solved in polynomial time “for practical purposes”. Re-
cently posted SAT benchmarks [28] take somewhat longer to solve
(minutes), but that is primarily due to their enormous size (many
of them require 50MB+ files). This only reinforces the apparent
polynomial-time solvability of practical SAT instances.

It is well-known that the dominant back-track solvers, such as
GRASP [26] and CHAFF [8] do not perform well on randomly
created 3-SAT instances with� 4:3 clauses per variable. How-
ever, such instances do not arise in Design Automation because
application-derived SAT instances are typically structured. Attempts
to explain the easyness of structured instances were successful for
certain applications [24], and generic ways to exploit certain types
of structure were proposed [1].

Our work addresses both benchmarking aspects of SAT research
and algorithmic aspects. Given the excellent performance of ex-
isting SAT solvers, there is little room for improvement on easy
benchmarks, and we focus on difficult instances.1 Since the works
of Haken and Urquhart [27] on lower bounds for resolution and
back-tracking algorithms for SAT in the 1980s, several instance
families have been known to require exponential time for DP/DLL
solvers. For example, a recently improved lower bound for the
pigeon-hole problem isΩ(2n=20) [3] wheren is the number of pi-
geons. The pigeon-hole problem can be quickly solved by induc-
tion, but the proof system behind back-track solvers is rather re-
strictive and does not allow polynomial-sized proofs for pigeon-
hole instances. Another such family was constructed by Urquhart
in terms of expander graphs and with considerable use of random-
ization [27]. Indeed, state-of-the-art SAT solvers, such as CHAFF,
take a very long time to solve those instances (see Table 1), but the
relevance of such pathological cases to Design Automation is ques-
tionable. In particular, lower bounds for SAT are typically proven
for unsatisfiable instances, and it remains to be seen whether any
satisfiable instances can be difficult for state-of-the-art solvers. In
this paper, we demonstrate CAD-related SAT instances — both sat-
isfiable and unsatisfiable — that are very difficult for their size.
Moreover, an easy instance of any size can be made very difficult
by adding a small difficult instance to it and connecting the two by
inconsequential clauses to defeat partitioning.2

1In practice, the difficulty of domain-specific classes of SAT in-
stances is often known, and the relevant SAT algorithms can be
easily chosen. Alternatively, one can run several SAT solvers in
parallel until the first one finishes. On a single-processor computer
this may potentially bring exponential speed-ups for the cost of a
constant-factor slow-down.
2Note that this argument easily defeats global statistical measures
of instance complexity such as the clause-to-variable ratio.



Over many years, empirical research in algorithms for Design
Automation identified a number of fundamental problem formula-
tions, such as Boolean satisfiability, and mustered significant ef-
forts to solve them efficiently. State of the art is gauged by op-
timized solver implementations (“engines”). Performance break-
throughs are often due to novel algorithmic ideas, leaner imple-
mentations or the ability to apply a highly optimized engine in a
novel way. In this work, we suggest that graph automorphism en-
gines can be applied to the satisfiability problem in certain cases.
Given that the graph automorphism problem is thought to not be
NP-complete (thus potentially easier than SAT!) and that very little
CAD research was done on high-performance engines for graph au-
tomorphism (one such work is [19]), there may be significant room
for future improvement. To be precise, we will be dealing with
the colored variant of the graph automorphism problem that can be
easily extended to hypergraphs (see definitions in Section 3).

Besides complexity-theoretic connections between variants of
Boolean satisfiability, symmetries and the hypergraph automorphism
problem [2, 18], a number of works suggested that “breaking sym-
metries” in CNF formulae can speed up SAT solvers [4, 5, 6, 7, 11,
19]. By a symmetry of a CNF formula we mean a permutation of
its variables that does not change the formula, i.e., maps clauses
to clauses. Such a permutation can, in principle, affect arbitrarily
many variables at once, e.g., as in the case of a complete cyclic
shift. In this work, we do not address permutations that change the
CNF formula but leave unchanged the Boolean function it repre-
sents.3 However, if such symmetries are detected by other tech-
niques (e.g., [16]), our proposed methods can process them in the
same way as symmetries of the CNF formula. Similarly, many of
the works we cite do not deal with symmetry detection, but rather
assume that symmetries of the Boolean function are given. Using
this assumption, two main directions were explored: (a) prepro-
cessing the original CNF formula by adding “symmetry-breaking”
clauses that do not affect satisfiability but speed up search [11], (b)
extending SAT solvers, particularly those based on back-tracking,
to dynamically use symmetries during the search process [7]. In
this paper we pursue the pre-processing approach due to its sim-
plicity, but will outline how our techniques can be applied within a
back-tracking solver for increased efficiency.

Prior works on symmetries in SAT predate recent breakthroughs
in SAT solvers and typically use several carefully constructed in-
stances to illustrate their approach. For example, the work in [11]
suggests that symmetry-based techniques allow the pigeon-hole in-
stances to be solved in polynomial time,4 but it remains unclear
whether the performance of leading-edge SAT solvers can be im-
proved via the use of symmetries. In principle, the overhead due to
symmetry detection and usage may outweigh the benefits. More-
over, it remains to be seen that useful CNF formulae have suffi-
ciently many symmetries. It was proved by P´olya (1937), Erd¨os
and Rényi (1963) that a random graph onn vertices hasno sym-
metrieswith probability 1�

�n
2

�
2�n�2(1+o(1)) [14, p. 1461]. A

similar claim can be extended to CNF formulae using constructions
in Section 3, but structured instances that arise in applications may
have richer symmetries.5 On the other hand, if exponentially many
symmetries exist, adding exponentially many symmetry-breaking
clauses can be disastrous, as pointed out in [11]. Nevertheless,
symmetry-based approaches have been successful in model check-

3Such permutations can be called “semantic” symmetries versus
“syntactic” symmetries that leave the CNF formula unchanged.
4The empirical data in [11, Figure 3] does not appear consistent
with this suggestion.
5To this end, [16] demonstrated large numbers of symmetries in
Boolean functions from synthesis applications.

ing [15, 9], verification [19], synthesis of logic circuits [17] and
DSP algorithms [13].6

In this work, we propose a completely automated flow that:

� starts with a CNF formula in the DIMACS format,

� detects all of its symmetries (not just pairwise swaps),

� represents all symmetries implicitly andalwayswith expo-
nential compression,

� preprocesses the CNF formula by adding symmetry-breaking
clauses that do not affect satisfiability, and

� applies a black-box SAT solver to the preprocessed CNF in-
stance to produce the final answer; any satisfying assignment
to this instance is (or corresponds to) a satisfying assignment
of the original instance, and if the preprocessed instance is
unsatisfiable then so is the original instance.

Our construction of symmetry-breaking clauses is novel. It is more
economical and provides better coverage than that in [11]. Ad-
ditionally, it directly applies to the compressed representation of
all symmetries in the exact format produced by modern software
for the group automorphism problem [20, 21, 23, 25]. Most im-
portantly, our empirical results show significant improvements on
CNF instances arising in Design Automation applications as well
as highly randomized provably-difficult Urquhart benchmarks [27].

Two extensions are developed to reduce the runtime of sym-
metry detection. One targets opportunistic symmetry detection,
where only some symmetries are found (the main automated flow
in no way relies on having all symmetries). The other extension
attempts to point out domain-specific symmetries to users and sug-
gest improvements of domain-specific SAT formulations by adding
domain-specific symmetry-breaking clauses. The goal is to create
symmetry-less SAT instances that can be solved much faster and
entirely avoid generic symmetry detection.

The remaining part of the paper is organized as follows. The nec-
essary algebraic background is covered in Section 2, Techniques for
detecting symmetries are described in Section 3 and a simple exam-
ple is given. Symmetry-breaking clauses are introduced in Section
4. Section 5 discusses constructions of SAT benchmarks and our
empirical results. Further extensions are described in Section 6,
and Section 7 concludes our work.

2. ALGEBRAIC BACKGROUND
In general, a symmetry of a discrete object is a permutation of its

components that leaves the object unchanged. Every discrete ob-
ject has at least one symmetry — the “do-nothing” permutation. It
is easy to see that a composition of two symmetries is a symmetry,
and that the composition with the do-nothing permutation never
changes symmetries. The composition of symmetries is associa-
tive, and every symmetry has an inverse. Composition is oftennot
commutative. Abstract algebraic structures defined axiomatically
in terms of such a composition operation (multiplication) are com-
monly calledgroups. In this work we will only deal with groups
of symmetries, whose elements can be thought of as permutations.
A permutation can be represented by cycles, e.g.,(23)(567) repre-
sents a permutation on a set of at least 7 elements (marks). This
permutation swaps marks 2 and 3, it cycles marks 5, 6 and 7 in that
order. All other marks, e.g., 1 and 4, are left unchanged.

The computational group theory is approximately 25 years old,
and made great strides in the last decade with the development of

6Some researchers limited the notion of symmetry to swaps of vari-
ables or groups of variables to achieve efficiency.



the GAP package (“Groups, Algebra and Programming”) [25]. A
major efficiency in the computational group theory comes from the
notion of irredundant sets of generators of a group. A set of gener-
ators is made of group elements such that any other group element
can be composed of generators and their inverses (no uniqueness
required). Elementary group theory implies that any irredundant
set of generators for any group withN > 1 elements containsat
mostlog2N elements.7 Thus, representing groups by sets of gen-
eratorsalways ensures exponential compression. Computational
group theory provides efficient algorithms for manipulating groups
represented by sets of generators, without decompression. There-
fore, it is reasonable to expect that an intelligent algorithm for sym-
metry detection will return a small set of generators rather than list
all symmetries.

3. FINDING AND USING SYMMETRIES

3.1 Colored Automorphism Problems
Given a graph, asymmetryis a permutation of its vertices that

maps edges to edges. In case of directed graphs, edge orientations
must be preserved. The Graph Automorphism problem must find
all symmetries of a given graph, e.g., in terms of group generators.8

It is known that all graphs except for an exponentially small family
haveno symmetries[14, p. 1461]. No worst-case polynomial-time
algorithms are known for this problem, but it is commonly believed
not to be NP-complete unless P=NP. Polynomial-time algorithms
are available in many special cases [14, p. 1511]. Generic algo-
rithms [20, 19] are based on linear-time partition refinement passes;
a simple version finishes in three passes for all but an exponentially
small family of graphs [14, p. 1513].

The Graph Automorphism problem is often constrained by ver-
tex labels — symmetries must map each vertex into a vertex with
the same label. In practice, label constraints do not introduce any
computational difficulties and can be formally reduced to plain graph
automorphism. They can be thought of as integers and are often
called colors (this has nothing to do with the graph coloring prob-
lem). Another extension is to consider general colored hypergraphs
rather than colored graphs. Symmetries must map hyperedges to
hyperedges (of the same cardinality because no two vertices can
map to one).

The colored hypergraph automorphism problem easily reduces
to the colored graph automorphism via the bipartite graph of the
hypergraph (which represents each vertex and each hyperedge by a
vertex, and connects them with edges according to the incidence re-
lation of the hypergraph). Graph vertices in the hyper-edge part are
painted with a new color, and other vertices preserve their colors.

Brendan McKay implemented a practical algorithm for Graph
Automorphism [20] in a software package called NAUTY [21],
which has been continually improved for the last 20 years (version
2.0 released in 2001). NAUTY has been integrated into the com-
putational group theory system GAP [25] by means of the GRAPE
package [23]. This integration enables efficient group-theoretic op-
erations on the results returned by NAUTY and facilitates some of
our proposed algorithms. In 1998, the work in [19] claimed speed
improvements over a pre-2.0 version of NAUTY in the context of
hardware verification. However, their code is not generic (is built
into an application-specific system) and is no longer supported.

7For example, the group ofall permutations onk marks hask! el-
ements, but can be generated by only two generators:(12) and
(12::k).
8Isomorphism testingfor a pair of graphs, i.e., testing the existence
of a 1:1 mapping of one graph onto another reduces to a special
case of the Graph Automorphism problem.
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Figure 1: A CNF formula with three clauses A, B and C
and three variables (a) is converted into a bipartite (2-colored)
graph (b) for symmetry detection purposes. Note that the two-
literal clause C is represented by one edge (bold) while larger
clauses A and B are represented by a vertex and three edges
each. Any symmetry must map the clause C must onto it-
self, therefore, this instance has only one non-trivial symme-
try (1 -1)(2 -3)(-2 3)(A B) shown in (c). The first cycle yields a
symmetry-breaking clause(1̄) which reduces the search space
by half (d). Alternatively, the clause (2 + 3) corresponding to
the third cycle can be added.

3.2 CNF Symmetries via Graph Automorphism
The problem of finding symmetries of a CNF formula is reduced

to colored graph automorphism, similarly to the reduction from the
hypergraph automorphism outlined above. Every variable is repre-
sented by two vertices that correspond to the positive and negative
literals. Every clause is represented by a vertex, and bipartite edges
connect those vertices to vertices of relevant literals. Clause ver-
tices are painted with color 1 and literal vertices are painted with
color 2. To ensure Boolean consistency, vertices of opposite literals
are mated by direct edges. Among several competing reductions,
the reduction above worked best in our experiments; it has an added
advantage of detecting symmetries of the typea! ā (phase shifts)
and their compositions with permutational symmetries. An addi-
tional simplification, originally suggested in [11, footnote 6] in the
context of the pigeon-hole instances, allows for the representation
of arbitrary two-literal clauses by edges directly connecting their
two literals rather than by two edges and a vertex. This simplifica-
tion lead to very significant improvements in our experiments. In
the final colored graph, 2Vars vertices represent the positive and
negative literals and the remainingClauses�2LitClausesvertices
represent clauses. An example is given in Figure 1.

4. SYMMETRY BREAKING
Symmetries induce equivalence classes in the solution space (in

group theory, they are calledorbits). Given a satisfying truth as-
signment, all truth assignments to which it can be mapped by sym-
metries, must also be satisfying. Similarly, symmetries always map
unsatisfying assignments to unsatisfying assignments. Therefore,
for a complete SAT solver it suffices to reason about one represen-
tative from each such class. Such a restriction can be achieved by
selecting unique representatives from every equivalence class and
adding clauses that are only satisfied on those representatives. A
construction for such symmetry-breaking clauses was proposed in
[11], based on a given ordering of variables. The main idea is (i)
to order all elements from the solution space lexicographically, and
(ii) to select the lexicographically smallest representative from each
equivalence class as its representative.

The construction described in [11] is applied to every symmetry
given and generates many redundant clauses. To prune redundant
clauses, the authors propose the concept of a symmetry tree, but it is
not well supported by efficient algorithms for permutation groups,



does not always prevent redundant clauses and is itself not always
prunable to polynomial size [11]. Phase shift symmetries were not
addressed in that work.

As in [11], we compute compute symmetry-breaking clauses on
a per-symmetry basis, but will achieve pruning by only processing
symmetries from an irredundant set of generators, which can be re-
turned by graph automorphism programs. [11] mentions that but
by breaking generator symmetries only, one does not necessarily
breaks all symmetries except for some cases. While no evaluation
(empirical or theoretical) is available for the power of such par-
tial symmetry-breaking, we expect it to achieve a reasonable cov-
erage for only a small fraction of the cost entailed by breaking all
symmetries. This is because an irredundant set of generators con-
tains “maximally independent” symmetries (none of them can be
expressed in terms of others).

Unlike that in [11], our construction is formulated in terms of
cycles of a permutation, i.e., the format in which permutations are
commonly represented. First consider the variable swap(ab). The
construction in [11] entails one additional variable and the total of
six symmetry-breaking clauses. Our construction below achieves
the same effect with only one clause. First observe that if the cy-
cle (ab) is a symmetry, whenever there is a satisfying assignment
with a= 1;b= 0, there should be a symmetric (equivalent) satis-
fying assignment witha= 0;b= 1 and other variables unchanged.
In order to allow only the first assignment, we add the symmetry-
breaking clause(ā+b), which can also be interpreted as(a� b).
Similarly, in order to “break” a cycle of length three(abc), we add
(ā+b)(b̄+c), i.e.,(a� b)(b� c). In order to prevent transitivity
violations, one has to choose an ordering of all variables at the be-
ginning, and always use the� sign consistently with that ordering.
Longer cycles require more complex symmetry-breaking clauses,
but one can always improve on the construction from [11]. Never-
theless, we observed that symmetry generators produced for CNF
formulae typically have 2-cycles only, and only in rare cases have
3-cycles. A cycle of the form(āa) means that the value of vari-
ablea does not matter, and can be fixed arbitrarily. This can be
expressed as one-literal symmetry-breaking clause. The construc-
tion in [11] does not address “phase-shift” symmetries and never
results in one-literal clauses.

It can be seen that the above techniques handle all possible cycles
of lengths two and three, and can be used with any one cycle of a
symmetry. That significantly speeds up SAT solvers in many cases.
However, symmetry-breaking clauses of the form(ā+b) achieve
no pruning on those areas of the solution space where the variables
involved have identical values.9 A key idea in that case, similar to
that in [11] is to process another cycle. Namely, for a symmetry
(ab)(cd)(e f):::, we first add(ā+b), then(a= b)) (c� d), then
((a = b)(c = d))) (e� f ), etc. This construction can be effi-
ciently implemented with additional variables, one per cycle, that
indicate the equality of all variables in the cycle. A sample clause
with new variables can look like(x̄a=b+ x̄c=d+ ē+ f ). To ensure
consistency, we sort marks within cycles and sort cycles by their
first marks. An example is given in Figure 1.

The construction of symmetry-breaking clauses is dwarfed by
the time required for symmetry detection. However, with every cy-
cle processed, we add larger and larger symmetry-breaking clauses.
Since large clauses typically do not have a great effect on the behav-
ior of SAT solvers, we optionally limit symmetry-breaking clauses
to the first 10 cycles of every symmetry. For the price of incom-
plete coverage, this technique considerably reduces the overhead of

9In practice, we first look for cycles that can generate single-literal
clauses. One such clause achieves maximal pruning possible for a
given symmetry if all cycles have length�2.
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Figure 2: Construction of difficult SAT instances based on
switch-boxes. The left picture shows two switch-boxes in the
style of common FPGA architectures. In this example, one is
trying to route four connections through three tracks (0,1,2),
which is impossible by the pigeon-hole principle. On the right,
similar N-by-M switch-boxes are used to construct difficult sat-
isfiable instances.

symmetry-breaking clauses. In our experiments it often performed
better than the addition of symmetry-breaking clauses for all cycles.
Moreover, extending back-track algorithms for SAT to dynamically
check the conditions of the form((a = b)(c= d):::(u= v)) may
lead to improvements over pure pre-processing.

5. DIFFICULT SAT INSTANCES
AND EMPIRICAL RESULTS

The pigeon-hole instances are provably difficult for back-track
SAT solvers in general [3] and empirically difficult for leading-
edge implementations CHAFF and GRASP as shown in Table 1.
However, they are typically treated as artificial. Below, we derive
equivalent instances from the domain of detailed routing for FPGAs
and generalize them in several ways. We also give randomized
constructions of difficult global routing instances.

5.1 Difficult FPGA Routing Instances
A recent comparative study of two Boolean formulations of FPGA

detailed routing constraints [22] demonstrated that problem encod-
ing can affect the difficulty of the resulting SAT instances. In this
work, we use the better formulation from [22] and still produce dif-
ficult instances. Two such constructions are shown in Figure 2 in
terms of FPGA switch-boxes (see [22] for details on SAT formula-
tions). The one on the left entails routingN+k connections through
N tracks and yields unsatisfiable instances that fork= 1 resemble
the well-known pigeon-hole instances. Empirical results in Table 1
are shown for six routing configurations (chnl ) in which one tries
to route (a) 11, 12 or 13 connections through 10 tracks, and (b) 12,
13 or 20 connections through 11 tracks. These results confirm that
such unsatisfiable instances are extremely difficult for the leading-
edge SAT solver CHAFF [8]. We point out that such instances can
routinely appear as subproblems in larger FPGA routing problems
and may not be easy to identify. Another important observation is
that they possess a large number of symmetries (see Table 1).

From the benchmarking point of view, it is natural to expectun-
satisfiableinstances among the most difficult to solve. Indeed, ran-
domized restarts used by CHAFF [8] typically allow it to avoid
difficult regions of search space and to quickly find satisfying solu-
tions if they exists. However, our second construction is designed to
create difficultsatisfiableinstances that trap even the best solvers
in hopeless regions of their solution space for a long time before
a satisfying solution can be found. The main idea is to create a
satisfiable instance with a large number of hard-to-avoid unsatisfi-
able sub-instances. If the number of unsatisfiable branches is much
larger than the number of satisfiable branches, then random restart
will keep on jumping from one unsatisfiable branch to another for
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Figure 3: Construction of difficult SAT instances from the
global routing domain.

a long time. Solvers without random restarts will fare no better as
they will, too, need to prove the unsatisfiability of many branches.

Our second construction entails routing a number of wires through
four N-by-K FPGA switch-boxes of the type used in the first con-
struction. The rightmost switch-box in the configuration in Fig-
ure 2 has several redundant outgoing tracks that are divided into
two channels. Each channel is connected to a smaller switch-box
with an insufficient number of outgoing tracks. The two groups
of tracks that leave smaller switch-boxes are connected to the left-
most switch-box. When routing connections through tracks right-
to-left, connections must be split between switch-boxes subject to
the throughput constraints of switch-boxes. However, to a SAT
solver, the throughput constraints are obscured by the pigeon-hole
principle. SAT solvers first partition connections between two chan-
nels and back-track from every partition that does not lead to a
satisfying assignment. If the capacities of the two channels lead-
ing to smaller switchboxes are greater than the throughput of those
switchboxes, an overwhelming majority of partitions will lead to
unsatisfiable pigeon-hole instances. On average, at least several
such instances must be solved before a good partition is found.
SAT solvers without random restarts will also need to solve many
pigeon-hole sub-instances before finding satisfying solutions. Em-
pirical results for these satisfiable instances (fpga ) in Table 1 show
that they are very difficult for CHAFF. We observed that these sat-
isfiable instances become more difficult with the increase of the
difference between the throughput of the small switchboxes and
the capacities of the channels that lead to them. This is consistent
with our observations for the unsatisfiablechnl instances.

5.2 Difficult Global Routing Instances
We propose another construction of difficultsatisfiableinstances.

These are randomized, entirely unrelated to pigeon-hole instances
and come from the domain of global grid-based routing. The goal
is to route a number of two-pin connections in a grid with edge
capacity constraints. To ensure that the instance is satisfiable but
difficult to solve, we propose construction byrandomized flooding.
Namely, we create a routing configuration by adding shortest possi-
ble routes while unused routing resources (edge capacities) remain.
Shortest routes are created by breadth-first-search between two ran-
domly chosen grid cells or, if that fails, by finding a maximal short-
est route starting at a given grid cell with unused routing resources.
After a routing configuration is created, routes are erased and their
end-points are used to formulate a SAT instance.

Our SAT encoding of routing instances has two components.
One deals withroute definitionand captures possible ways to route
each connection. The other addressescapacity constraintsand re-
stricts the number of connections that can be routed across a grid
cell boundary.

Route definition. Routes are specified in terms of edges across
cell boundaries in a grid. For each connection, there are routing
tracks across each cell boundary on the grid. In the SAT formu-

lation, each track is treated as a variable. Figure 3 (a) illustrates
routing tracks in a 3-by-3 grid. Horizontal tracks for connectioni
are labeledhir;c , wherer andc are the row and column indices of
the cell whose boundary the track crosses. Vertical tracks are la-
beledvir;c . In Figure 3 (a), let the points markedS andE be the
terminals of some two-terminal connectioni. The SAT formula-
tion proceeds as follows. Consider the terminal markedS. A route
for this connection must pass throughhi1;1 or vi1;1. Therefore, we
add the clause(hi1;1 + vi1;1). Clearly, these two tracks cannot be
selected at the same time, therefore we add the mutual exclusion
clause(h̄i1;1 + v̄i1;1).

We now push the cells reachable from the possible tracks into
queue. The queue contains cells reachable from those already vis-
ited. A list of visited cells is also maintained so that a cell is not
pushed on the queue twice. While the queue is not empty, cells are
popped off it and new clauses are introduced for the route tracks
across the cell boundaries. In our example, assume that the cell
to the right ofS is popped off the queue. Since this cell is not an
endpoint of the connection, exactly two of its boundaries must be
selected. The cell boundaries in this case arehi1;2;hi1;1 and vi1;2.
We therefore introduce the clauses(hi1;1 + vi1;2), (hi1;1 + hi1;2, and
(hi1;2 + vi1;2). However, again it is not possible for more than two
tracks to be selected. Therefore, we add clauses of the form:(hi1;1^

vi1;2)) h̄i1;2. This procedure is repeated for every cell popped off
the queue until the queue is empty.

Capacity constraints. Each grid cell boundary has a capacity
associated with it, to restrict the number of connections that can
be routed through it. The capacity limits are intended to prevent
congestion. IfC is the capacity limit for an edge of a grid cell, we
includeC variables per edge for each connection. In other words,
each connection can be routed through one ofC tracks across a cell
boundary as shown in Figure 3 (b).

Consider two connectionsi and j . Consider horizontal route
tracks for each connections,hir;c , andhjr;c for some rowr and col-
umn c. Let ir;c1

; ir;c2
; : : : ir;cC

and jr;c1
; jr;c2

; : : : jr;cC
be theC extra

variables introduced in the SAT formulation for the horizontal track
in question. Then clearly, for anyir;ck

;1� k�C, ir;ck
) hir;c , and

alsohir;c ) (ir;c1
+ : : :+ ir;cC

). Clauses of this form are added to
the SAT instance. Another restriction is that a route cannot pass
through two tracks in the same channel (edge of a grid cell), i.e.,
if for some k;1 � k � C, if ir;ck

is true, then for alll ;1 � l �
C; l 6= k;(ir;ck

)�ir;cl )
. These clauses are also added. Finally, two

connections cannot be routed through the same track, i.e. for all
k;1� k�C, (ir;ck

)� jr;ck
) for all j 6= i, where j represents an-

other connection. By combining the aforementioned techniques,
we are able to express routing instances as SAT problems.

We created ten routing configurations by randomly flooding a
3-by-3 routing grid with connections subject to edge capacity con-
straints of 3. Then we applied the SAT encoding above. Table 1
shows empirical results for the five most difficult instances (grout ).

5.3 The Effect of Symmetry-breaking Clauses
Our computational experiments were performed on PCs with

AMD Athlon processors @1.2GHz and 1Gb of RAM. All codes
were compiled withg++ 2.95.4 -O3 and ran on Debian Linux.

In addition to the instances described in Sections 5.1 (chnl
and fpga ) and 5.2 (grout ), Table 1 lists six standard pigeon-
hole instances (hole ), five families of artificially constructed ran-
domized Urquhart benchmarks (Urq ) [27] and seven recent bench-
marks from the micro-processor verification domain [28].

CHAFF runtimes in Table 1 are averages of (up to) 20 indepen-
dent starts. Such experimental protocol is required because CHAFF
uses randomization internally and results of different runs often



Table 1: CHAFF runtime on original SAT instances is compared to the combined runtime of symmetry detection and
CHAFF on instances with symmetry-breaking clauses (the right-most column). The full name of benchmark2dlx ca mc
is 2dlx ca mc ex bp f . The numbers of symmetry generators and max cycles used per generator are shown (10 or
all). Pure search speed-up (that does not take symmetry detection into account) is also given. Results for opportunistic
window-based symmetry finding are also given and in most cases discover all or a large fraction of all symmetries.

Instance Satis- #varables Plain Time Symmetries Speed-up ratios:
fiable? and Chaff -out Finding Number #generators Chaff total ;

#clauses sec % sec of #cycles sec search only

hole06 UNS 42;133 0.03 0% 0.03 3.63e6 all 11 0.01 0.77; 4.07
hole07 UNS 56;204 0.37 0% 0.1 2.03e8 all 13 0.01 3.32; 36.50
hole08 UNS 72;297 1.27 0% 0.07 1.46e10 all 15 0.01 15.22; 94.15
hole09 UNS 90;415 3.79 0% 0.1 1.32e12 all 17 0.02 32.00; 204.97
hole10 UNS 110;561 22.44 0% 0.15 1.45e14 all 19 0.02 132; 1122
hole11 UNS 132;738 212.73 0% 0.18 1.91e16 all 21 0.03 1229.56; 7090.88
hole12 UNS 156;949 >1000 100% 0.24 2.98e18 all 23 0.04 — ; —

Urq3 5 UNS 46;470 232.44 10% 0.48 2.32e6 all 29 0.0 484.16; —
Urq4 5 UNS 74;694 250.01 25% 1.35 2.50e6 all 43 0.0 185.18; —
Urq5 5 UNS 121;1210 >1000 100% 13.15 >1e7 all 72 0.0 —; —
Urq6 5 UNS 180;1756 >1000 100% 62.93 >1e7 all 109 0.0 —; —
Urq7 5 UNS 240;2194 >1000 100% 176.62 >1e7 all 143 0.0 —; —

grout3.3-01 SAT 864;7592 19.01 0% 4.79 8.71e9 10 26 0.67 3.48; 28.37
grout3.3-03 SAT 960;9156 44.35 0% 8.94 6.97e10 10 29 0.40 4.75; 110.89
grout3.3-04 SAT 912;8356 19.36 0% 6.81 2.61e10 10 27 0.36 2.70; 53.79
grout3.3-08 SAT 912;8356 21.30 0% 7.14 3.48e10 10 28 0.67 2.73; 31.80
grout3.3-10 SAT 1056;10862 28.18 0% 10.65 3.48e10 10 28 0.85 2.45; 33.15

chnl10x11 UNS 220;1122 22.17 0% 0.45 4.20e28 all 39 0.11 39.91; 210.13
chnl10x12 UNS 240;1344 81.88 0% 0.61 6.04e30 all 41 0.12 111.63; 663.00
chnl10x13 UNS 300;2130 657.61 25% 1.28 4.50e37 all 47 0.17 454.78; 3961.4
chnl11x12 UNS 264;1476 207.37 0% 0.75 7.31e32 all 43 0.15 231.31; 1415.5
chnl11x13 UNS 286;1742 788.32 20% 1.08 1.24e35 all 45 0.16 633.45; 4792.2
chnl11x20 UNS 440;4220 >1000 100% 4.4 1.89e52 all 59 0.31 —; —

fpga10.08 SAT 120;448 7.56 0% 0.63 6.00e71 all 62 0.05 11.15; 157.56
fpga10.09 SAT 135;549 3.80 0% 0.88 6.33e77 all 68 0.03 4.16; 113.39
fpga12.11 SAT 198;968 694.00 50% 3.76 7.18e77 all 95 0.06 181.63; 11377.0
fpga12.12 SAT 216;1128 80.20 0% 5.31 7.44e77 all 104 0.13 14.74; 616.92
fpga12.08 SAT 144;560 246.70 10% 1.23 8.41e77 all 72 0.08 188.39; 3103.14
fpga12.09 SAT 162;684 885.00 80% 1.7 2.25e77 all 79 0.05 504.56; 16388.8
fpga13.09 SAT 176;759 550.00 85% 2.57 2.56e77 all 84 0.06 208.81; 8593.75
fpga13.10 SAT 195;905 >1000 100% 4.04 5.76e77 all 93 0.08 — ; —
fpga13.12 SAT 234;1242 >1000 100% 6.9 8.85e77 all 110 0.08 — ; —
fpga13.13 SAT 254;1433 531.00 80% 9.8 6.16e77 all 118 0.08 53.75; 6721.52

2dlx ca mc* UNS 3250;24640 6.54 0% 38.36 9.36e77 10 66 6.30 0.15; 1.04
2pipe.cnf UNS 892; 6695 2.08 0% 10.74 2.26e45 10 38 1.56 0.17; 1.33

2pipe 1 ooo UNS 834; 7026 2.55 0% 9.37 8 10 3 1.80 0.23; 1.41
2pipe 2 ooo UNS 925; 8213 3.43 0% 11.14 32 10 5 2.82 0.25; 1.22

3pipe UNS 2468;27533 36.44 0% 463.57 7.29e77 10 85 19.65 0.08; 1.85
4pipe UNS 5237;80213 337.61 0% >1000 — — — — —; —
5pipe UNS 9471;195K 325.92 0% >1000 — — — — —; —

WINDOW-BASED SYMMETRY FINDING (1000 variables per window)
2dlx ca mc* UNS 3250;24640 6.54 0% 3.17 2.34e77 10 64 5.42 0.76; 1.21

2pipe UNS 892; 6695 2.08 0% 10.47 2.26e45 10 38 1.30 0.18; 1.63
2pipe 1 ooo UNS 834; 7026 2.55 0% 9.02 8 10 3 1.80 0.24; 1.41
2pipe 2 ooo UNS 925; 8213 3.43 0% 11.09 32 10 5 2.80 0.25; 1.23

3pipe UNS 2468;27533 36.44 0% 3.63 1.42e77 10 78 36.20 0.91; 1.01
4pipe UNS 5237;80213 337.61 0% 9.32 1.03e78 10 142 334.00 0.98 ; 1.01
5pipe UNS 9471;195K 325.92 0% 29.42 3.64e78 10 227 290.50 1.02; 1.12



vary significantly. All runs that did not complete in 1000 seconds
were aborted and considered failures. The percent of time-outs is
shown for each instance. Failed runs are not reflected in the aver-
ages when at least one run was successful.

In order to detect symmetries in CNF formulae, we converted
them into colored graphs as described in Section 3. We then used
the NAUTY program [20, 21] which is integrated with GAP [25]
— a system for computational group theory, — by means of the
GRAPE package [23]. At each run, the result was a list of permu-
tation generators of the group of symmetries. Permutation gener-
ators are specified by cycles. For each SAT instance, Table 1 lists
NAUTY/GRAPE/GAP runtime in seconds excluding I/O. the total
number of symmetries and the number of permutation generators.
Those symmetry detection implementations are entirely determin-
istic and, moreover, are not affected by re-ordering of vertices in the
input graph. For some benchmark families we used a limit of ten
cycles when constructing symmetry-breaking clauses. In general,
the first ten cycles typically capture most of the speed-up provided
by “breaking” a given symmetry. After symmetry-breaking clauses
were added to the original CNF instance, the resulting preprocessed
instance was solved with CHAFF. Table 1 lists average runtimes of
20 independent runs of CHAFF for each instance. There were no
time-outs for any of pre-processed CNFs.

The last column in Table 1 shows relative speed-up ratios due to
the use of symmetry-breaking clauses. For a given CNF instance,
the first number in that column is the ratio of (i) CHAFF runtime on
original instance, and (ii) the total runtime of symmetry detection
and CHAFF on preprocessed instances. The second number is pro-
duced similarly with the only difference that symmetry detection
runtime is ignored. This represents the maximal possible speed-up
if symmetry detection is performed instantaneously (e.g., provided
as domain-specific knowledge). Several observations are in order
� the SAT instances proposed in this paper are only a fraction

of the size of recent micro-processor verification benchmarks
[28], yet tend to be more difficult to solve;

� in some cases difficult SAT instances have astronomical num-
bers of symmetries; especially remarkable is the abundance
of symmetries in randomizedUrq andgrout benchmarks;

� in many cases symmetry-breaking clauses enormously speed
up the best available SAT solver CHAFF [8];

� symmetry-breaking clauses do not slow down CHAFF and
often speed it up, even when few symmetries are present;

� CHAFF runtime and symmetry detection runtime are not cor-
related, Either step may be a bottleneck.

� among thechnl instances, the hardest to solve was routing
of 20 connections through 11 tracks. In general, adding extra
unrouted connections tochnl instances made them consis-
tently more difficult. That is counter-intuitive.

Given that symmetry-breaking clauses clearly speed-up SAT search,
we seek to further speed up the detection of symmetries.

6. OPPORTUNISTIC SYMMETRY FINDING
Since the use of symmetry-breaking clauses does not necessi-

tate findingall symmetries (even in terms of generators), symmetry
detection can be performedopportunistically. A symmetry detec-
tion algorithm that provides no guarantee that all symmetries were
found may need to perform less work and would finish sooner. An-
other direction for speed-up is to detect at least some symmetries in
domain-specific terms and add relevant symmetry-breaking clauses
during the creation of SAT instance. This way, fewer symmetries
will need to be detected by generic means (graph automorphism
algorithms tend to finish sooner if fewer symmetries are present).

5   -5   6  -6    7   -7
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B  (-5 + 8 + -10)
C  (-5 + 6 + 7)

C   D

(a) (c)

D (5 + -6 + -7)
1    3 8    10

(b)

A  B

5   -5   7  -7    6   -6

  C  D

1    3 8    10

  A  B

Figure 4: A window-based algorithm for opportunistic symme-
try detection is illustrated on a CNF instance with ten variables
and four clauses A, B, C and D (a). A colored graph for de-
tecting only symmetries local to a window is shown in (b). The
symmetry (6 7) (-6 -7) local to the window is shown in (c).

6.1 Window-based Symmetry Finding
When analyzing symmetries detected in many CNF instances,

we observed that a variable would in many cases be mapped onto
another variable connected by a clause (one hop) or through a chain
of two clauses (two hops). When this is not the case for all symme-
tries of a CNF formula, many symmetries may be composable from
permutation generators of that kind. We therefore focus on “lo-
calized” symmetries that are allowed to permute a small subset of
variables and must fix all other variables. We determine such small
subsets by sliding a window of fixed size along a given linear order-
ing of variables — either the original variable ordering of the CNF
formula or the randomized connectivity-sensitive MINCE ordering
[1]. For every window, we consider the left and the right cuts, as in
Figure 4 (b). To find symmetries local to a given window, we apply
our standard construction of a colored graph to clauses and literals
that are entirely inside the window. Each cut clause is represented
by a vertex of a unique color that is connected to those of its literals
that are inside the window. Since the size of this graph increases as
the cuts increase, a min-cut ordering would improve runtime. We
concatenate lists of permutation generators produced for different
windows, consider the group generated by all those and use GAP
[25] to efficiently produce an irredundant list of generators for this
“global” group. Symmetry-breaking clauses are constructed from
those generators. We observe that producing symmetry-breaking
clauses independently from each window and concatenating them
could be a bad idea because of potentially considerable redundancy.
The trade-off between runtime, coverage and the amount of redun-
dancy between windows depends on the overlap between windows.
Similarly, the window size affects the trade-off between runtime
and coverage. We observe good empirical performance with win-
dows of size of 1000. Results in Table 1 show that, when applied to
micro-processor verification benchmarks [28], our window-based
opportunistic symmetry finding method found all or a significant
portion of all symmetries in a fraction of runtime spent by com-
plete symmetry finding. If a randomized variable ordering is used,
one could combine local permutation generators found for different
orderings. While most of the generators are likely to be redundant,
this may improve coverage.

6.2 Improving SAT formulations
One way to reduce the runtime of symmetry detection (possi-

bly to zero) is to analyze symmetries discovered for several sim-
ilar benchmarks and learn how to detect (or predict) symmetries
in domain-specific terms. Given the well-understood structure and
symmetries of thehole , chnl and fpga benchmarks, we eval-
uated this approach on the randomizedgrout benchmarks. Our
analysis has shown that permuted variables in many cases corre-
spond to neighboring tracks. For example, if two connections are
routed in parallel through several grid cells, there is considerable
freedom (symmetry) in track assignment. To break this symmetry,



we added domain-specific clauses that preserve the relative order of
tracks taken by every pair of connections routed through the same
two edges of a grid cell. In other words, if one connection is routed
through track 2 when entering the cell, and another connection is
routed through track 3 when entering the cell, then the connections
are allowed to leave the cell through tracks 2 and 3 resp., 1 and 2
resp. or 1 and 3 resp. As evidenced by further symmetry detec-
tion experiments, these constraints breakall symmetries and con-
siderably speed-up CHAFF: eachgrout instance is now solved
by CHAFF in0.50-0.80 seconds versus 19-45 seconds originally.
Even more dramatic speed-ups are achieved forgrout instances
built using larger routing grids. Additionally, it often takes little
time to establish the absence of non-trivial symmetries.

While we have not studied source files for SAT instances from
[28], we hypothesize that it may be possible to add domain-specific
symmetry-breaking clauses to them and somewhat speed-up CHAFF.

7. CONCLUSIONS
In this work we proposed, for the first time, a completely auto-

mated flow that is able to find symmetries in CNF instances and
use them to speed up SAT search. This flow dramatically im-
proves overall CPU time required to solve two well-known prov-
ably difficult SAT benchmark families — pigeon-hole problems
and Urquhart benchmarks. Additionally, we propose constructions
of realistic satisfiable and unsatisfiable SAT instances derived from
applications in detailed routing of FPGAs [22] as well as satisfiable
randomized instances derived from global routing. Those instances
are unusually difficult for their size, e.g., when compared to recent
microprocessor verification benchmarks [28]. Unlike the majority
of existing SAT benchmarks, our benchmark families enable stud-
ies of the asymptotic performance (scalability) of SAT solvers. All
of benchmarks used in this work will be posted on the Web.

Since symmetry finding is often a bottleneck in our flow, we pro-
pose two opportunistic approaches that speed up symmetry finding.
In one, we only look for symmetries that permute small groups of
variables. Those groups are determined by sliding a fixed-sized
window along a given variable ordering. The second approach
attempts to improve the domain-specific construction of SAT in-
stances by detecting symmetries in domain-specific terms so that
symmetry-breaking clauses can be added during the SAT instance
construction. Improved SAT encodings lead to reduced solver times.
We also point out that design symmetries may be available in the
process of IP reuse, if the reused IP was adequately characterized.

Our empirical results dispel the common belief that even a slight-
est randomization destroys symmetries. Astronomical numbers of
symmetries were found in Urquhart benchmarks that are gener-
ated by a fundamentally randomized procedure, and similarly in
thegrout benchmarks. In the latter case, we were able to explain
the symmetries and break them in domain-specific terms.

Our proposed flow can be expected to work at least as well with
other complete SAT solvers and does not require source code mod-
ifications. For any solver slower than CHAFF, one can expect our
flow to providemore significant speed-ups. For example, when we
performed experiments described in Table 1 with GRASP [26] in-
stead of CHAFF [8], our flow demonstrated speed-up forall micro-
processor verification benchmarks we considered. The speed-up
ranged from 1.5 times to 5 times and higher.

One should not expect the proposed flow to give improvement on
arbitrary SAT benchmarks. Many DIMACS benchmarks [12] have
large numbers of symmetries, but can be solved so quickly that the
symmetry detection overhead is not justified. On the other hand,
many difficult SAT instances do not have symmetries [10].
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