
J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 369 – 376, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Sensor Deployment for Failure Diagnosis in
Networked Aerial Robots: A Satisfiability-Based Approach

Fadi A. Aloul1 and Nagaragan Kandasamy2

1 Department of Computer Engineering, American University of Sharjah, UAE
faloul@aus.edu

2 Department of Electrical and Computer Engineering, Drexel University, USA
kandasamy@ece.drexel.edu

Abstract. Unmanned aerial vehicles (UAVs) represent an important class of
networked robotic applications that must be both highly dependable and
autonomous. This paper addresses sensor deployment problems for distributed
failure diagnosis in such networks where multiple vehicles must agree on the
fault status of another UAV. Sensor placement is formulated using an integer
linear programming (ILP) approach and solved using Boolean satisfiability
(SAT)-based ILP solvers as well as generic ILP solvers. Our results indicate
that the proposed models are tractable for medium-sized UAV networks.

Keywords: 0-1 ILP, SAT, UAV networks, fault diagnosis, distributed systems.

1 Introduction

Unmanned aerial vehicles (UAVs) represent an important class of robotic applications
for distributed sensing and control. A collection of vehicles must perform a shared
task while coordinating the required inter-vehicle actions using wireless communica-
tion. Examples include remote sensing, surveillance and patrol, and data collection
over areas dangerous to human intervention. Such UAV networks have significant
cost constraints. However, they must be both highly dependable and largely autono-
mous, requiring only high-level guidance from ground controllers.

Sensing and surveillance applications require that UAV node maintain a tight spa-
tial formation or physical topology, including specified inter-node distances. In a
typical decentralized formation-control scheme, each node receives information from
neighboring nodes such as their position and velocity, and uses this data for local con-
trol aimed at maintaining its position within the topology [6]. Therefore, correct and
timely information flow between nodes is critical to maintaining a stable topology.

To maintain the specified topology of a UAV network comprising nodes

qNN ,...,1 , each jN must communicate some critical information such as its position

and velocity to neighboring nodes. Hardware (software) failures may, however, cause
the node to transmit erroneous values. Though physical redundancy in the form of
replicated sensors and processors can mask such node failures, it also adds to jN ’s

370 F.A. Aloul and N. Kandasamy

cost, weight, and power consumption. A low-cost alternative is failure diagnosis using
analytical redundancy [8] where other nodes in the topology use their local sensors
and an appropriate mathematical model to estimate the values sent by jN , and

compare discrepancies between the actual and estimated values.
This paper addresses sensor deployment problems for distributed failure diagnosis

in wireless UAV networks where multiple nodes must agree on the fault status of
another node. We assume that a node iN in this topology requires a testing configura-

tion-a set of sensors-to monitor jN for example, if iN has a GPS sensor, and addi-

tionally, a 3D laser range finder, it can, using these sensors and an appropriate
mathematical model, independently estimate jN ’s position. Several choices of testing

configurations are typically available for iN , differing from each other in their moni-

toring range, detection capabilities, and cost. (Another possible testing configuration
on iN may comprise a 2D laser range finder and an omni-directional camera.) Also,

the sensors themselves may have varying operating distances. Clearly, long-range
sensors can monitor multiple nodes, and at greater distances. However, the use of
such expensive sensors may substantially increase the overall system cost. On the
other hand, if only short-range sensors are used, effective diagnosis may only be
achieved with a large number of such sensors. Therefore, efficient sensor selection
and placement strategies are needed to minimize system cost while achieving the
desired level of diagnosability.

Previous research has addressed distributed system diagnosis under the assump-
tion that processing units test each other and exchange the test results to identify fail-
ures [2]. Failed units are then removed from future computations. Several variants of
this problem have been studied in the literature, including diagnosing transient and
intermittent faults [10], probabilistic diagnosis [4], and failure diagnosis in random,
sparse, and highly regular topologies [7]. Since explicit tests are typically difficult to
obtain in practice, various comparison-based approaches have also been proposed,
where tasks are duplicated on multiple units and their results compared to identify
faulty ones [3]. A good survey of prior diagnosis-related research is presented in [2].
The above papers, however, don't address the sensor selection and placement prob-
lems for failure diagnosis in wireless networks.

The authors of [5] present a method to identify faulty processors in ad hoc wire-
less networks via a comparison-based diagnosis model. They present algorithms for
both fixed and time-varying network topologies, and show that diagnosis efficiency is
significantly reduced when the topology changes with time. As before, sensor
selection and placement problems are not addressed.

The sensor placement problem is related to both the alarm and guard placement
problems [12, 13]. In [12], alarms are placed on the nodes of a failure propagation
graph such that one failed node is uniquely and efficiently identified. A fault propa-
gates along this graph activating one or more alarms and the diagnosis algorithm finds
the node responsible for causing them. The guard placement problem can be infor-
mally stated as that of determining the minimum number of guards, each having a
certain monitoring range, to cover the interior of an art gallery, represented as a
polygon [13].

 Sensor Deployment for Failure Diagnosis in Networked Aerial Robots 371

This paper uses an integer linear programming (ILP) approach to solve sensor
deployment problems for distributed failure diagnosis in UAV networks. We specifi-
cally target popular UAV formations such as mesh, diamond, and circular topologies
[15, 16] , and provide exact solutions for topologies up to 40 nodes, representative of
topology sizes assumed by researchers while developing formation control algorithms
[15, 17].

The proposed method aims to minimize both the testing and communication costs
associated with identifying a bounded number of faulty UAV nodes. (In a typical
wireless network, it is desirable to minimize the transmitting range of individual
nodes to reduce power consumption and network interference.) Assuming an upper
bound f on the number of node failures, we formulate and solve ILP models for the
following optimization problem: Given a topology comprising q empty slots and an
equal number of UAV nodes, each having a specific testing and communication con-
figuration, allocate nodes to slots such that system diagnosability, in terms of the
number of diagnosed nodes, is maximized. The above is termed the MaxD problem.

The model are solved using two different 0-1 ILP (SAT-based and generic-based)
solvers [1, 9] and their performance is compared. Our experiments indicate that these
models are tractable for topologies up to forty nodes.

The rest of this paper is organized as follows. Section 2 discusses some modeling
assumptions and the distributed diagnosis approach. We develop ILP models for the
MaxD problem in Section 3 and solve them in Section 4. We conclude this paper in
Section 5.

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

(a) (b) (c)

Fig. 1. (a) A grid topology of UAVs. The testing edges induced on the other nodes when

1N chooses (b) a testing configuration 1T and (b) a shorter-range testing configuration 2T .

2 Preliminaries

This section describes the assumed system model and discusses the distributed diag-
nosis approach. The combinatorial nature of the sensor selection and placement prob-
lems of interest is briefly outlined.

2.1 System Model

We assume a distributed system where UAV nodes communicate with each other
over a wireless network having limited bandwidth and must maintain the specified
physical topology. Fig. 1(a) shows a grid topology for UAVs. High-level controllers

372 F.A. Aloul and N. Kandasamy

coordinate with other nodes of interest to maintain the topology while feedback-
control loops regulate local dynamics on each node.

A node iN ’s position within a topology is given in the),,(iii zyx dimensions and

the distance between nodes iN and jN is

222)()()(jijijiij zzyyxxD −+−+−= (1)

When iN has a choice of testing configurations, we let ikT denote the thk such

configuration with testing range range(ikT) and cost ika ; if ijik DTrange ≥)(, then iN

can test (or monitor) jN using configuration ikT . Similarly, if ilC denotes the thl

communication configuration on iN having cost ilb , then node iN can transmit mes-

sages to jN if ijil DCrange ≥)(. (Also, whenever the context is clear, we will refer to

the thk testing and thl communication configuration on a node simply as kT and lC ,

respectively.)
As noted in Section 1, controllers on each jN must communicate some critical in-

formation such as its position and velocity to neighboring nodes to maintain the
desired topology. We assume that jN may suffer operational failures including per-

manent and transient ones, thereby transmitting erroneous (sensor) information to its
neighbors. Therefore, jN must be diagnosed and removed from participating in

future formation-control computations.

2.2 Distributed Diagnosis

Distributed diagnosis in a topology such as Fig. 1(a) requires that multiple testing
nodes agree on the fault status of a testee node jN . This is achieved using a 2-phase

approach as follows. During phase 1, each testing node independently evaluates the
information transmitted by jN . These local decisions are then consolidated via a suit-

able agreement algorithm during phase 2 to obtain a global view of jN ’s status. Simi-

lar 2-phase diagnosis schemes have been previously proposed to identify faulty proc-
essors [14].

We assume an analytical redundancy-based checking scheme that is executed lo-
cally on node iN to evaluate the information sent by jN . Node iN uses its onboard

testing configuration and an appropriate mathematical model to independently esti-
mate jN ’s sensor values. These estimates are compared to the actual values sent by

jN to generate a residue or error. During phase 2, iN exchanges the locally gener-

ated residue with other testing nodes within communication range. Since multiple
testers may employ both design and data diversity, i.e., use various testing configura-
tions and/or models to estimate the same values, these residues may differ slightly
from each other, and yet be correct. Therefore, each tester obtains a voted residue
value using an approximate agreement algorithm, and evaluates it against an a priori
defined threshold to diagnose jN . If all testers perceive jN ’s failure uniformly, then

 Sensor Deployment for Failure Diagnosis in Networked Aerial Robots 373

a suitable agreement algorithm is the median voter which selects the middle value
from an odd number of residues by eliminating those residue pairs differing by the
greatest amount [11]. At the end of phase 2, all fault-free nodes correctly identify

jN ’s status.

Assuming an upper bound f on the number of node failures in the topology, we
need at least 2f+1 tester nodes to diagnose another node. The distributed approach
described above also tolerates failures during the diagnosis process itself and
increases confidence in the corresponding decisions. Finally, to reduce the cost of
diagnosis, not all sensors on jN are diagnosed. A few critical sensors are typically

selected and checkers implemented to diagnose them.
Returning to Fig. 1, a testing configuration selected for iN induces corresponding

testing edges on neighboring nodes where ji NN → indicates that iN can monitor

jN . Fig. 1(b) shows the edges generated when 1N chooses a testing configuration 1T .

Fig. 1(c), on the other hand, shows the case where a testing configuration 2T with a

shorter range is used. We also assume “line-of-sight” testing, i.e., there must be an
uninterrupted path between the testee and tester nodes. Therefore, in Fig. 1, node N1
cannot test N3, N7, and N9, since they are not in the line-of-sight.

3 Problem Formulation

Given a topology with q empty slots and an equal number of nodes, each with a spe-
cific testing and communication configuration, allocate nodes to slots such that sys-
tem diagnosability, in terms of the number of diagnosed nodes, is maximized. We
assume an upper bound f on the number of node failures. We define the following
decision variables.

1=ijx if iN occupies slot j; 0 otherwise

1=ijm if node placed in slot i can moniter the node in j; 0 otherwise

1=id if the node placed in slot i is diagnosable; 0 otherwise

1=ijp if a node iN can communicate with jN ; 0 otherwise

We maximize the cost function

∑
=

q

i
id

1

 (2)

subject to the following constraints. A node iN must be allocated to exactly one

slot.

∑
=

=
q

ji
ijx 1 i∀ (3)

Conversely, each slot j must have exactly one node allocated to it.

374 F.A. Aloul and N. Kandasamy

∑
=

=
q

j
ijx

1

1 j∀ (4)

Let ijs denote the set of nodes, when placed in slot i, can monitor slot j; node

ijk sN ∈ if it has a testing configuration lkT such that ijlk DTrange ≥)(. Constraint (5)

sets the decision variable ijm to indicate if a chosen node-to-slot allocation enables

slot i to test slot j, and constraint (6) ensures that a node allocated to slot j is moni-
tored by at least 2f + 1 other nodes.

∑
∈

≥−
ijk sN

ijki mx 0 jiji ≠∀∀ ,,
(5)

∑
=

+≥
q

i
ij fm

1

12 jij ≠∀ , (6)

Constraint (7) sets the decision variable ijp indicating if a chosen node-to-slot al-

location enables slot i to transmit to slot j. Let ijs now denote the set of nodes, when

placed in slot i, have the transmission range to reach slot j; node ijk sN ∈ if its com-

munication configuration lkC is such that ijlk DCrange ≥)(.

∑
∈

≥−
ijk sN

ijki px 0 jiji ≠∀∀ ,,
(7)

Constraints (8), (9), and (10) select exactly 2f + 1 slots to diagnose the node placed in
slot j. Note that the node placed in slot j must transmit its sensor values to every member
of the selected subset; otherwise it is not diagnosable. For example, if under some node-
to-slot allocation, slot j cannot transmit its sensor values to a slot i chosen to monitor it,
i.e., 1=ijz and 0=ijp , then clearly jd must be 0 to satisfy constraint (10).

0≥− ijij zm jiij ≠∀∀ ,, (8)

∑
=

+=
q

i
ij fz

1

12 jij ≠∀ , (9)

1≤−+ ijiji pzd (10)

Finally, for each slot j, the 2f + 1 slots chosen to diagnose it must be able to exchange
the test results amongst themselves and reach an agreement during phase 2 of the diag-
nosis process. These slots must be fully connected or else the node in slot j cannot be
diagnosed. For example, consider a pair of slots i and k chosen to diagnose slot j, i.e.,

1== kjij zz . However, if slots i and k cannot exchange their test results, i.e., if 0=ikp

or 0=kip , then clearly jd must be zero to satisfy both constraints (11) and (12).

 Sensor Deployment for Failure Diagnosis in Networked Aerial Robots 375

2≤−++ ikkjijj pzzd (11)

2≤−++ kikjijj pzzd)(,,, jikjiji ∨≠≠∀ (12)

4 Performance Evaluation

We solve the ILP model developed in Section using the generic-based ILP solver
CPLEX [9] and the SAT-based 0-1 ILP solver PBS ver. 4 [1]. The CPLEX and PBS
solvers were executed on an Intel Xeon 3 GHz machine with 4 GB RAM. The results
presented in this section assume grid topologies, though the models are directly appli-
cable to other important formations such as circles and diamonds.

Both CPLEX and PBS were used to solve the MaxD model for different topology
sizes. For each experiment, we generated a grid topology comprising q empty slots.
Assuming an equal number of nodes, a specific testing and communication configura-
tion was pre-selected for each node such that the distribution of configurations to
nodes was uniform. The time-out periods for the CPLEX and PBS solvers were set to
10,000 seconds.

Table 1 summarizes the results obtained by CPLEX and PBS, in terms of the number
of diagnosable nodes, for f = 1, 2. Optimal results are shown in boldface in the figures.
We assume five testing (communication) configurations corresponding to α values of 0,
0.25, 0.5, 0.75, and 1. The results show that PBS outperforms CPLEX in the f = 1 case.
Both solvers time-out trying to prove the solution optimality in the f = 2 case. To sum-
marize, the MaxD model appears tractable for medium-size topologies up to 40
nodes.

Table 1. Number of nodes diagnosed under the difference fault models; five testing (communi-
cation) configurations corresponding to α = 0, 0.25, 0.5, 0.75, 1 are assumed

f = 1 f = 2
PBS CPLEX PBS CPLEX Nodes(q)

Cost Time Cost Time Cost Time Cost Time
4x5 20 0.26 20 164 16 t/o 15 t/o
5x5 25 1.7 25 237 20 t/o 19 t/o
5x6 30 1.59 30 2163 24 t/o 24 t/o
6x6 36 10.44 33 t/o 28 t/o 0 t/o

5 Conclusions

This paper has addressed the problem of sensor deployment for distributed failure
diagnosis in UAV networks. The MaxD model allows designers to specify the place-
ment of nodes within a given topology to maximize system diagnosability while in-
curring no additional testing costs. The ILP model was solved using the generic-based
ILP solver CPLEX and SAT-based 0-1 ILP solver PBS, and experimental results in-
dicate that they are tractable for medium-size topologies. For larger topologies, a
straightforward (and sub-optimal) solution is to partition the given topology into

376 F.A. Aloul and N. Kandasamy

portions tractable for the ILP models, and solve the resulting sub-problems in parallel.
We will investigate this and other approximation methods in future work.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Generic ILP Versus Specialized 0-1
ILP: An Update,” Proc. IEEE/ACM Conf. Computer Aided Design (ICCAD), 450-457,
November 2002.

[2] M. Barborak, M. Malek, and A. Dahbura, “The Consensus Problem in Fault-Tolerant
Computing,” ACM Computing Surveys, 25(2), 171-219, June 1993.

[3] D. Blough and H. Brown, “The Broadcast Comparison Model for On-line Fault Diagno-
sis in Multicomputer Systems: Theory and Implementation,” IEEE Trans. Comp., 48(5),
470-493, May 1999.

[4] D. Blough, G. Sullivan, and G. Masson, “Efficient Diagnosis of Multiprocessor Systems
under Probabilistic Models,” IEEE Trans. Computers, 41(9), 1126-1136, September
1992.

[5] S. Chessa and P. Santi, “Comparison-Based System-Level Fault Diagnosis in Ad-hoc
Networks,” Proc. IEEE Symposium Reliable Distributed Systems, 257-266, 2001.

[6] J. Fax and R. Murray, “Information Flow and Cooperative Control of Vehicle Forma-
tions,” IEEE Transactions on Automatic Control, 49(9), 1465-1476, September 2004.

[7] D. Fussel and S. Rangarajan, “Probabilistic Diagnosis of Multiprocessor Systems with
Arbitrary Connectivity,” Proc. IEEE Symposium on Fault-Tolerant Computing, 560-565,
1989.

[8] J. Gertler, “Fault Detection and Diagnosis in Engineering Systems,” Marcel Dekker,
NewYork, 1998.

[9] ILOG CPLEX, http://www.ilog.com/products/cplex
[10] W. Kozlowski and H. Krawczyk, “A Comparison-Based Approach to Multi-Computer

System Diagnosis in Hybrid Fault Situations,” IEEE Trans. Computers, 40(11),
1283-1287, November 1991.

[11] P. Lorczak, A. Caglayan, and D. Eckhardt, “A Theoretical Investigation of Generalized
Voters for Redundant Systems,” Proc. IEEE Symposium on Fault-Tolerant Computing,
444-451, 1989.

[12] N. Rao, “Computational Complexity Issues in Operative Diagnosis of Graph-Based Sys-
tems,” IEEE Trans. Computers, 42(4), 447-457, April 1993.

[13] J. O’Rourke, “Art Gallery Theorems and Algorithms,” Oxford University Press, Oxford,
1987.

[14] C. J. Walter, P. Lincoln, and N. Suri, “Formally Verified On-Line Diagnosis,” IEEE
Trans. Software Engineering, 23(11), 684-721, November 1997.

[15] J. Fax and R. Murray. “Information Flow and Cooperative Control of Vehicle Forma-
tions,” Proc. IFAC World Congress, July 2002.

[16] A. Pant et al., “Mesh Stability of Unmanned Aerial Vehicle Clusters,” Proc. American
Control Conf., 2001.

[17] J. Desai, J. Ostrowski, V. Kumar. “Control of Changes in Formation for a Team of Mo-
bile Robots,” Proc. IEEE Conf. Robotics & Automation, 1556-1561, May 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

