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Abstract. Unmanned aerial vehicles (UAVs) represent an important class of 
networked robotic applications that must be both highly dependable and 
autonomous. This paper addresses sensor deployment problems for distributed 
failure diagnosis in such networks where multiple vehicles must agree on the 
fault status of another UAV. Sensor placement is formulated using an integer 
linear programming (ILP) approach and solved using Boolean satisfiability 
(SAT)-based ILP solvers as well as generic ILP solvers. Our results indicate 
that the proposed models are tractable for medium-sized UAV networks. 
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1   Introduction 

Unmanned aerial vehicles (UAVs) represent an important class of robotic applications 
for distributed sensing and control. A collection of vehicles must perform a shared 
task while coordinating the required inter-vehicle actions using wireless communica-
tion. Examples include remote sensing, surveillance and patrol, and data collection 
over areas dangerous to human intervention. Such UAV networks have significant 
cost constraints. However, they must be both highly dependable and largely autono-
mous, requiring only high-level guidance from ground controllers. 

Sensing and surveillance applications require that UAV node maintain a tight spa-
tial formation or physical topology, including specified inter-node distances. In a 
typical decentralized formation-control scheme, each node receives information from 
neighboring nodes such as their position and velocity, and uses this data for local con-
trol aimed at maintaining its position within the topology [6]. Therefore, correct and 
timely information flow between nodes is critical to maintaining a stable topology. 

To maintain the specified topology of a UAV network comprising nodes 

qNN ,...,1 , each jN  must communicate some critical information such as its position 

and velocity to neighboring nodes. Hardware (software) failures may, however, cause 
the node to transmit erroneous values. Though physical redundancy in the form of 
replicated sensors and processors can mask such node failures, it also adds to jN ’s 
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cost, weight, and power consumption. A low-cost alternative is failure diagnosis using 
analytical redundancy [8] where other nodes in the topology use their local sensors 
and an appropriate mathematical model to estimate the values sent by jN , and  

compare discrepancies between the actual and estimated values. 
This paper addresses sensor deployment problems for distributed failure diagnosis 

in wireless UAV networks where multiple nodes must agree on the fault status of  
another node. We assume that a node iN  in this topology requires a testing configura-

tion-a set of sensors-to monitor jN for example, if iN  has a GPS sensor, and addi-

tionally, a 3D laser range finder, it can, using these sensors and an appropriate 
mathematical model, independently estimate jN ’s position. Several choices of testing 

configurations are typically available for iN , differing from each other in their moni-

toring range, detection capabilities, and cost. (Another possible testing configuration 
on iN  may comprise a 2D laser range finder and an omni-directional camera.) Also, 

the sensors themselves may have varying operating distances. Clearly, long-range 
sensors can monitor multiple nodes, and at greater distances. However, the use of 
such expensive sensors may substantially increase the overall system cost. On the 
other hand, if only short-range sensors are used, effective diagnosis may only be 
achieved with a large number of such sensors. Therefore, efficient sensor selection 
and placement strategies are needed to minimize system cost while achieving the  
desired level of diagnosability. 

Previous research has addressed distributed system diagnosis under the assump-
tion that processing units test each other and exchange the test results to identify fail-
ures [2]. Failed units are then removed from future computations. Several variants of 
this problem have been studied in the literature, including diagnosing transient and 
intermittent faults [10], probabilistic diagnosis [4], and failure diagnosis in random, 
sparse, and highly regular topologies [7]. Since explicit tests are typically difficult to 
obtain in practice, various comparison-based approaches have also been proposed, 
where tasks are duplicated on multiple units and their results compared to identify 
faulty ones [3]. A good survey of prior diagnosis-related research is presented in [2]. 
The above papers, however, don't address the sensor selection and placement prob-
lems for failure diagnosis in wireless networks. 

The authors of [5] present a method to identify faulty processors in ad hoc wire-
less networks via a comparison-based diagnosis model. They present algorithms for 
both fixed and time-varying network topologies, and show that diagnosis efficiency is 
significantly reduced when the topology changes with time. As before, sensor  
selection and placement problems are not addressed.  

The sensor placement problem is related to both the alarm and guard placement 
problems [12, 13]. In [12], alarms are placed on the nodes of a failure propagation 
graph such that one failed node is uniquely and efficiently identified. A fault propa-
gates along this graph activating one or more alarms and the diagnosis algorithm finds 
the node responsible for causing them. The guard placement problem can be infor-
mally stated as that of determining the minimum number of guards, each having a 
certain monitoring range, to cover the interior of an art gallery, represented as a  
polygon [13]. 
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This paper uses an integer linear programming (ILP) approach to solve sensor  
deployment problems for distributed failure diagnosis in UAV networks. We specifi-
cally target popular UAV formations such as mesh, diamond, and circular topologies 
[15, 16] , and provide exact solutions for topologies up to 40 nodes, representative of 
topology sizes assumed by researchers while developing formation control algorithms 
[15, 17]. 

The proposed method aims to minimize both the testing and communication costs 
associated with identifying a bounded number of faulty UAV nodes. (In a typical 
wireless network, it is desirable to minimize the transmitting range of individual 
nodes to reduce power consumption and network interference.) Assuming an upper 
bound f on the number of node failures, we formulate and solve ILP models for the 
following optimization problem: Given a topology comprising q empty slots and an 
equal number of UAV nodes, each having a specific testing and communication con-
figuration, allocate nodes to slots such that system diagnosability, in terms of the 
number of diagnosed nodes, is maximized. The above is termed the MaxD problem. 

The model are solved using two different 0-1 ILP (SAT-based and generic-based) 
solvers [1, 9] and their performance is compared. Our experiments indicate that these 
models are tractable for topologies up to forty nodes. 

The rest of this paper is organized as follows. Section 2 discusses some modeling 
assumptions and the distributed diagnosis approach. We develop ILP models for the 
MaxD problem in Section 3 and solve them in Section 4. We conclude this paper in 
Section 5. 

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

(a) (b) (c)

 

Fig. 1. (a) A grid topology of UAVs. The testing edges induced on the other nodes when 

1N chooses (b) a testing configuration 1T and (b) a shorter-range testing configuration 2T . 

2   Preliminaries 

This section describes the assumed system model and discusses the distributed diag-
nosis approach. The combinatorial nature of the sensor selection and placement prob-
lems of interest is briefly outlined. 

2.1   System Model 

We assume a distributed system where UAV nodes communicate with each other 
over a wireless network having limited bandwidth and must maintain the specified 
physical topology. Fig. 1(a) shows a grid topology for UAVs. High-level controllers 
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coordinate with other nodes of interest to maintain the topology while feedback-
control loops regulate local dynamics on each node. 

A node iN ’s position within a topology is given in the ),,( iii zyx  dimensions and 

the distance between nodes iN  and jN  is 

222 )()()( jijijiij zzyyxxD −+−+−=  (1) 

When iN  has a choice of testing configurations, we let ikT  denote the thk  such 

configuration with testing range range( ikT ) and cost ika ; if ijik DTrange ≥)( , then iN  

can test (or monitor) jN  using configuration ikT . Similarly, if ilC  denotes the thl  

communication configuration on iN  having cost ilb , then node iN  can transmit mes-

sages to jN  if ijil DCrange ≥)( . (Also, whenever the context is clear, we will refer to 

the thk  testing and thl  communication configuration on a node simply as kT  and lC , 

respectively.) 
As noted in Section 1, controllers on each jN  must communicate some critical in-

formation such as its position and velocity to neighboring nodes to maintain the  
desired topology. We assume that jN  may suffer operational failures including per-

manent and transient ones, thereby transmitting erroneous (sensor) information to its 
neighbors. Therefore, jN  must be diagnosed and removed from participating in  

future formation-control computations. 

2.2   Distributed Diagnosis 

Distributed diagnosis in a topology such as Fig. 1(a) requires that multiple testing 
nodes agree on the fault status of a testee node jN . This is achieved using a 2-phase 

approach as follows. During phase 1, each testing node independently evaluates the 
information transmitted by jN . These local decisions are then consolidated via a suit-

able agreement algorithm during phase 2 to obtain a global view of jN ’s status. Simi-

lar 2-phase diagnosis schemes have been previously proposed to identify faulty proc-
essors [14].  

We assume an analytical redundancy-based checking scheme that is executed lo-
cally on node iN  to evaluate the information sent by jN . Node iN  uses its onboard 

testing configuration and an appropriate mathematical model to independently esti-
mate jN ’s sensor values. These estimates are compared to the actual values sent by 

jN  to generate a residue or error. During phase 2, iN  exchanges the locally gener-

ated residue with other testing nodes within communication range. Since multiple 
testers may employ both design and data diversity, i.e., use various testing configura-
tions and/or models to estimate the same values, these residues may differ slightly 
from each other, and yet be correct. Therefore, each tester obtains a voted residue 
value using an approximate agreement algorithm, and evaluates it against an a priori 
defined threshold to diagnose jN . If all testers perceive jN ’s failure uniformly, then 
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a suitable agreement algorithm is the median voter which selects the middle value 
from an odd number of residues by eliminating those residue pairs differing by the 
greatest amount [11]. At the end of phase 2, all fault-free nodes correctly identify 

jN ’s status. 

Assuming an upper bound f on the number of node failures in the topology, we 
need at least 2f+1 tester nodes to diagnose another node. The distributed approach 
described above also tolerates failures during the diagnosis process itself and  
increases confidence in the corresponding decisions. Finally, to reduce the cost of 
diagnosis, not all sensors on jN  are diagnosed. A few critical sensors are typically 

selected and checkers implemented to diagnose them. 
Returning to Fig. 1, a testing configuration selected for iN  induces corresponding 

testing edges on neighboring nodes where ji NN →  indicates that iN  can monitor 

jN . Fig. 1(b) shows the edges generated when 1N  chooses a testing configuration 1T . 

Fig. 1(c), on the other hand, shows the case where a testing configuration 2T  with a 

shorter range is used. We also assume “line-of-sight” testing, i.e., there must be an 
uninterrupted path between the testee and tester nodes. Therefore, in Fig. 1, node N1 
cannot test N3, N7, and N9, since they are not in the line-of-sight. 

3   Problem Formulation 

Given a topology with q empty slots and an equal number of nodes, each with a spe-
cific testing and communication configuration, allocate nodes to slots such that sys-
tem diagnosability, in terms of the number of diagnosed nodes, is maximized. We 
assume an upper bound f on the number of node failures. We define the following 
decision variables. 

1=ijx  if iN occupies slot j; 0 otherwise 

1=ijm  if node placed in slot i can moniter the node in j; 0 otherwise 

1=id  if the node placed in slot i is diagnosable; 0 otherwise 

1=ijp  if a node iN can communicate with jN ; 0 otherwise 

We maximize the cost function 

∑
=

q

i
id

1

 (2) 

subject to the following constraints. A node iN  must be allocated to exactly one 

slot. 

∑
=

=
q

ji
ijx 1  i∀  (3) 

Conversely, each slot j must have exactly one node allocated to it. 
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∑
=

=
q

j
ijx

1

1  j∀  (4) 

Let ijs  denote the set of nodes, when placed in slot i, can monitor slot j; node 

ijk sN ∈  if it has a testing configuration lkT  such that ijlk DTrange ≥)( . Constraint (5) 

sets the decision variable ijm  to indicate if a chosen node-to-slot allocation enables 

slot i to test slot j, and constraint (6) ensures that a node allocated to slot j is moni-
tored by at least 2f + 1 other nodes. 

∑
∈

≥−
ijk sN

ijki mx 0   jiji ≠∀∀ ,,  
(5) 

∑
=

+≥
q

i
ij fm

1

12   jij ≠∀ ,  (6) 

Constraint (7) sets the decision variable ijp  indicating if a chosen node-to-slot al-

location enables slot i to transmit to slot j. Let ijs  now denote the set of nodes, when 

placed in slot i, have the transmission range to reach slot j; node ijk sN ∈  if its com-

munication configuration lkC  is such that ijlk DCrange ≥)( . 

∑
∈

≥−
ijk sN

ijki px 0    jiji ≠∀∀ ,,  
(7) 

Constraints (8), (9), and (10) select exactly 2f + 1 slots to diagnose the node placed in 
slot j. Note that the node placed in slot j must transmit its sensor values to every member 
of the selected subset; otherwise it is not diagnosable. For example, if under some node-
to-slot allocation, slot j cannot transmit its sensor values to a slot i chosen to monitor it, 
i.e., 1=ijz  and 0=ijp , then clearly jd  must be 0 to satisfy constraint (10). 

0≥− ijij zm   jiij ≠∀∀ ,,  (8) 

∑
=

+=
q

i
ij fz

1

12   jij ≠∀ ,  (9) 

1≤−+ ijiji pzd  (10) 

Finally, for each slot j, the 2f + 1 slots chosen to diagnose it must be able to exchange 
the test results amongst themselves and reach an agreement during phase 2 of the diag-
nosis process. These slots must be fully connected or else the node in slot j cannot be 
diagnosed. For example, consider a pair of slots i and k chosen to diagnose slot j, i.e., 

1== kjij zz . However, if slots i and k cannot exchange their test results, i.e., if 0=ikp  

or 0=kip , then clearly jd  must be zero to satisfy both constraints (11) and (12). 
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2≤−++ ikkjijj pzzd  (11) 

2≤−++ kikjijj pzzd  )(,,, jikjiji ∨≠≠∀  (12) 

4   Performance Evaluation 

We solve the ILP model developed in Section  using the generic-based ILP solver 
CPLEX [9] and the SAT-based 0-1 ILP solver PBS ver. 4 [1]. The CPLEX and PBS 
solvers were executed on an Intel Xeon 3 GHz machine with 4 GB RAM. The results 
presented in this section assume grid topologies, though the models are directly appli-
cable to other important formations such as circles and diamonds. 

Both CPLEX and PBS were used to solve the MaxD model for different topology 
sizes. For each experiment, we generated a grid topology comprising q empty slots. 
Assuming an equal number of nodes, a specific testing and communication configura-
tion was pre-selected for each node such that the distribution of configurations to 
nodes was uniform. The time-out periods for the CPLEX and PBS solvers were set to 
10,000 seconds. 

Table 1 summarizes the results obtained by CPLEX and PBS, in terms of the number 
of diagnosable nodes, for f = 1, 2. Optimal results are shown in boldface in the figures. 
We assume five testing (communication) configurations corresponding to α values of 0, 
0.25, 0.5, 0.75, and 1. The results show that PBS outperforms CPLEX in the f = 1 case. 
Both solvers time-out trying to prove the solution optimality in the f = 2 case. To sum-
marize, the MaxD model appears tractable for medium-size topologies up to 40  
nodes. 

Table 1. Number of nodes diagnosed under the difference fault models; five testing (communi-
cation) configurations corresponding to α = 0, 0.25, 0.5, 0.75, 1 are assumed 

f = 1 f = 2 
PBS CPLEX PBS CPLEX Nodes(q) 

Cost Time Cost Time Cost Time Cost Time 
4x5 20 0.26 20 164 16 t/o 15 t/o 
5x5 25 1.7 25 237 20 t/o 19 t/o 
5x6 30 1.59 30 2163 24 t/o 24 t/o 
6x6 36 10.44 33 t/o 28 t/o 0 t/o 

5   Conclusions 

This paper has addressed the problem of sensor deployment for distributed failure 
diagnosis in UAV networks. The MaxD model allows designers to specify the place-
ment of nodes within a given topology to maximize system diagnosability while in-
curring no additional testing costs. The ILP model was solved using the generic-based 
ILP solver CPLEX and SAT-based 0-1 ILP solver PBS, and experimental results in-
dicate that they are tractable for medium-size topologies. For larger topologies, a 
straightforward (and sub-optimal) solution is to partition the given topology into  
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portions tractable for the ILP models, and solve the resulting sub-problems in parallel. 
We will investigate this and other approximation methods in future work. 
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