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Abstract
Symmetry breaking can greatly speed up the search
for solutions and proofs of unsatisfiability, but has
been shown to have a bad effect on local search
for solutions. Recently a new form of local search
has been used to prove unsatisfiability of SAT prob-
lems, based on randomised resolution with greedy
heuristics. An interesting question is: does symme-
try breaking speed up this form of local search? We
present experimental evidence that it does, making
randomised refutation a promising new application
of symmetry breaking.

1 Introduction
Complete SAT algorithms may be based on resolution or
backtracking. Resolution provides a complete proof system
by refutation [Robinson, 1965]. The first resolution algo-
rithm was the Davis-Putnam (DP) procedure [Davis and Put-
nam, 1960] which was then modified to the Davis-Putnam-
Logemann-Loveland (DPLL) backtracking algorithm [Davis
et al., 1962]. Because of its high space complexity, res-
olution is often seen as impractical for real-world prob-
lems, but there are problems on which general resolution
proofs are exponentially smaller than DPLL proofs [Ben-
Sasson et al., 2004]. Incomplete SAT algorithms are usually
based on local search following early work by [Gu, 1992;
Selman et al., 1992]. On some large satisfiable problems, lo-
cal search finds a solution much more quickly than complete
algorithms. Genetic and other evolutionary algorithms have
also been applied to SAT but do not yet rival local search.
A new form of local search was recently described that is
able to prove unsatisfiability: the RANGER [Prestwich and
Lynce, 2006] and GUNSAT [Audemard and Simon, 2007]
algorithms apply resolution to SAT instances in a randomised
way, using greedy heuristics and other techniques to speed up
the search, in the hope of deriving the empty clause.

Symmetry-breaking has proved to be very effective when
combined with complete solvers, by reducing the size of
the search space. Probably the simplest and most popu-
lar approach is to add constraints to the problem formula-
tion, so that each equivalence class of solutions to the orig-
inal problem corresponds to a single solution in the new
problem. A formal framework for this approach is given

in [Puget, 1993]. In constraint programming, symmetry
breaking is usually applied manually by the modeller in an
instance-independent way, whereas in SAT it is usually ap-
plied in an automated, instance-dependent way via generic
tools that detect graph automorphisms [Aloul et al., 2003;
Crawford et al., 1996]. On some problems the instance-
dependent approach is best [Ramani et al., 2006] while on
others the opposite holds [Lynce and Marques-Silva, 2007].
Symmetry breaking can also be used to reduce the size of
a resolution proof, for example short inductionless proofs of
the pigeon-hole principle can be constructed using symmetry
[Krishnamurthy, 1985].

Symmetry breaking has also been used in genetic algo-
rithms (though not for SAT to the best of our knowledge).
A symmetric optimisation problem has multiple optimum so-
lutions that are symmetrically equivalent, and applying re-
combination to them may yield offspring with very poor
fitness. Symmetry breaking in this context involves de-
signing more complex genetic operators and problem mod-
els [Galinier and Hao, 1999], or using clustering tech-
niques [Pelikan and Goldberg, 2000]. However, the use of
symmetry-breaking constraints seems to have a bad effect on
local search (randomised, non-population-based) algorithms
[Prestwich, 2003]. This is true even if we ignore any run-
time overheads due to symmetry breaking constraints, and
measure only search steps. The reasons for this phenomenon
are not completely understood, but detailed experiments show
that symmetry breaking constraints transform symmetric so-
lutions into deep local minima, thus decreasing the solution
density and increasing the number of local minima, and also
reduce the relative sizes of basins of attraction of global min-
ima [Prestwich and Roli, 2005].

Given the above background, what effect should we ex-
pect symmetry breaking clauses to have on local search for
unsatisfiability as in RANGER and GUNSAT? On one hand,
symmetry breaking clauses usually have a bad effect on local
search; on the other hand, we might expect them to speed up
proof of unsatisfiability even if that proof is generated non-
systematically. This paper investigates this question: Section
2 provides background on this new class of local search algo-
rithms, Section 3 reports the results of our experiments, and
Section 4 concludes the paper.



2 Local search for unsatisfiability
Local and backtrack search have complementary strengths
and weaknesses. Local search has superior scalability on
many large problems, but it cannot (in its usual form) prove
unsatisfiability. Backtrack search and resolution-based algo-
rithms are (usually) complete, and backtrack search’s use of
unit propagation, clause learning, dedicated data structures
and other methods enables it to outperform local search on
some highly-structured problems. This complementarity has
inspired research on hybrid approaches such as the use of unit
propagation in local search, and more flexible backtracking
strategies.

An interesting question is: can local search be applied
to unsatisfiable problems? Such a method might be able
to refute (prove unsatisfiable) SAT problems that defy com-
plete algorithms. The first such algorithm that we know of
is RANGER [Prestwich and Lynce, 2006], which explores
a space of multisets of resolvents using general resolution,
and aims to derive the empty clause non-systematically but
greedily. It will eventually refute any unsatisfiable instance
while using only bounded memory (by exploiting a recent
theoretical result of [Esteban and Torán, 2001]). It can refute
some problems more quickly than current DPLL and system-
atic resolution algorithms, though on most benchmarks it is
currently uncompetitive.

The RANGER architecture is shown in Figure 1. It has six
parameters: the formula φ, three probabilities pi, pt, pg, the
width w and the size k of the formula φi. RANGER begins
with any sub-multiset φ1 ⊆ φ (we interpret φ, φi as multisets
of clauses). It then performs iterations i, each either replac-
ing a φi clause by a φ clause (with probability pi) or resolving
two φi clauses and placing the result r into φi. In the latter
case, if r is tautologous or contains more than w literals then
it is discarded and φi+1 = φi. Otherwise a φi clause must be
removed to make room for r: either (with probability pg) the
removed clause is the longer of the two parents of r (breaking
ties randomly), or it is randomly chosen. In the former case, if
r is longer than the parent then r is discarded and φi+1 = φi.
At the end of the iteration, any satisfiability-preserving trans-
formation may (with probability pt) be applied to φ, φi+1

or both. If the empty clause has been derived then the algo-
rithm terminates with the message “unsatisfiable”. Otherwise
the algorithm might not terminate, but a time-out condition
(omitted here for brevity) may be added.

Local search algorithms usually use greedy local moves
that reduce the value of an objective function, and plateau
traversal moves that leave it unchanged. However, they must
also allow non-greedy moves in order to escape from local
minima. This is often controlled by a parameter known as
noise (or temperature in simulated annealing). RANGER’s
goal is to derive the empty clause, and a necessary condi-
tion for this to occur is that φi contains at least some small
clauses. We call a local move greedy if it does not increase
the number of literals in φi. This is guaranteed on line 10, so
increasing pg increases the greediness of the search, reducing
the proliferation of large resolvents.

RANGER has a useful convergence property: for any
unsatisfiable SAT problem with n variables and m clauses,

1 RANGER(φ, pi, pt, pg, w, k):
2 i← 1 and φ1 ← {any k clauses from φ}
3 while φi does not contain the empty clause
4 with probability pi

5 replace a random φi clause by a
random φ clause

6 otherwise
7 resolve random φi clauses c, c′ giving r
8 if r is non-tautologous and |r| ≤ w
9 with probability pg

10 if |r| ≤ max(|c|, |c′|) replace the
longer of c, c′ by r

11 otherwise
12 replace a random φi clause by r
13 with probability pt

14 apply any satisfiability-preserving
transformation to φ, φi

15 i← i + 1 and φi+1 ← {the new formula}
16 return UNSATISFIABLE

Figure 1: The RANGER architecture

RANGER finds a refutation if pi > 0, pi, pt, pg < 1, w = n
and k ≥ n + 1 (for a proof see [Prestwich and Lynce, 2006]).
The space complexity of RANGER is O(n + m + kw). To
guarantee convergence we require w = n and k ≥ n + 1 so
the complexity becomes at least O(m + n2). In practice we
may require k to be several times larger, but a smaller value
of w is often sufficient.

Lines 13–14 provide an opportunity to apply helpful
satisfiability-preserving transformations to φ or φi or both (if
we do not aim for a pure resolution refutation). We apply the
subsumption and pure literal rules in several ways. Using φi

clauses to transform φ, a feature we shall call feedback, pre-
serves useful improvements for the rest of the search. (We
believe that for these particular transformations we can set
pt = 1 without losing completeness, but we defer the proof
until a later paper.) Note that if φ is reduced then this will
soon be reflected in the φi via line 5 of the algorithm.

A related algorithm is GUNSAT [Audemard and Simon,
2007] which has a similar architecture but interesting differ-
ences. For example, whereas RANGER aims for a high rate
of rather unintelligent local moves, GUNSAT takes longer to
make more intelligent moves based on a more complex objec-
tive function. GUNSAT also uses extended resolution while
RANGER uses general resolution. The two algorithms have
not yet been compared empirically.

3 Experiments
We now evaluate the effects of symmetry breaking on
RANGER. The results are shown in Figure 2. All results
are medians over 10 runs with a cutoff time of 1000 sec-
onds. #Steps denotes the number of RANGER iterations,
#Time the CPU time taken, #V and #C the number of vari-
ables and clauses (respectively) in the SAT instances. Exper-
iments were performed on an Intel Xeon 3 GHz with 4GB
RAM running Linux. The RANGER implementation is as
described in [Prestwich and Lynce, 2006] with parameter set-
tings k=10V , w=V , pi=0.1, pt=0.9 and pg=0.95. The prob-



lem sets are as follows:
• Chnl problems represent large unsatisfiable instances

that model the routing of X wires in the N channels of
field-programmable integrated circuits. Assuming that
each channel accepts up to one wire, since X > N the
instances are unsatisfiable [Aloul et al., 2003].

• Hole represent the famous pigeon hole instances, where
the goal is to place X pigeons in N holes.1 Again each
hole can hold up to one pigeon, and since X > N the
instances are unsatisfiable.

• Pipe represent difficult unsatisfiable instances that
model the functional correctness requirements of mod-
ern out-of-order microprocessor CPUs. The instances
were generated by Miroslav Velev [Velev and Bryant,
2001].

• X encodes verification problems of two exclusive-or
chains. The instances were generated by Lintao Zhang
and Sharad Malik.2

• Urq are unsatisfiable randomized instances based on ex-
pander graphs [Urquhart, 1987].

• The biological instances b2ar, ace, non-uniform
and hapmap come from the haplotype inference prob-
lem. Given a set of genotypes, described using a string
alphabet {0, 1, 2} the main goal is to identify the min-
imum number of haplotypes, which are described over
with a string over the alphabet {0, 1} such that each
genotype is explained by a pair of haplotypes. The CNF
encoding for this problem is described in [Lynce and
Marques-Silva, 2006] as well as the problem instances
we have used.

Symmetry was broken by the Shatter system [Aloul et al.,
2006; 2003]. Symmetry breaking took only a small fraction
of a second, which is not included in our results.

The FPGA and hole instances clearly show a huge im-
provement due to symmetry breaking. The others (of which
five are denoted (1). . . (5) for space reasons) were unrefuted
within the time limit, with or without symmetry breaking.
Thus we have no evidence that symmetry breaking harms
RANGER performance, but some evidence that it improves
performance. A possible explanation is that the symmetry
breaking clauses allow smaller refutations, which are easier
to discover than large refutations.

However, it is interesting to note that the instances that
RANGER could not refute contain few new variables when
adding symmetry breaking (they are not required to model
the phase shift symmetries of most of these instances), while
those it did refute contain many new variables. This might in-
dicate that the improvement was not completely due to sym-
metry breaking, but also to the use of additional variables,
which might have a similar effect to the auxiliary variables in-
troduced in extended resolution. (Extended resolution allows
the definition of new SAT variables via the extension rule

1DIMACS Challenge benchmarks, 1996
ftp://Dimacs.rutgers.EDU/pub/challenge/sat/benchmarks/cnf

2SAT 2002 Competition
http://www.satlive.org/SATCompetition/submittedbenchs.html

without symmetry breaking
instance #V #C #Lit #Steps #Time

chnl10 11 220 1122 2420 n/a >1000
chnl10 12 240 1344 2880 n/a >1000
chnl10 13 260 1586 3380 n/a >1000
chnl11 12 264 1476 3168 n/a >1000
chnl11 13 286 1742 3718 n/a >1000
chnl11 20 440 4220 8800 n/a >1000

hole7 56 204 448 n/a >1000
hole8 72 297 648 n/a >1000
hole9 90 415 900 n/a >1000

hole10 110 561 1210 n/a >1000
hole11 132 738 1584 n/a >1000
hole12 156 949 2028 n/a >1000
Urq3 5 46 470 2912 n/a >1000
x1.1 16 46 122 364 n/a >1000

2pipe 892 6695 18637 n/a >1000
(1) 776 3725 10045 n/a >1000
(2) 110 428 992 n/a >1000
(3) 187 643 1584 n/a >1000
(4) 156 522 1141 n/a >1000
(5) 223 880 2363 n/a >1000

with symmetry breaking
instance #V #C #Lit #Steps #Time

chnl10 11 728 3077 9103 2700218 11.605
chnl10 12 796 3487 10213 2999725 18.605
chnl10 13 864 3917 11363 3326896 27.67
chnl11 12 878 3847 11291 4417899 33.85
chnl11 13 953 4321 12561 5155214 50.905
chnl11 20 1478 8255 22683 948902 1.55

hole7 153 567 1663 241347 0.35
hole8 199 776 2261 352256 0.535
hole9 251 1026 2967 626528 1.015

hole10 309 1320 3787 948902 1.55
hole11 373 1661 4727 1153560 2.1
hole12 443 2052 5793 1784522 3.825
Urq3 5 46 500 2941 n/a >1000
x1.1 16 48 142 385 n/a >1000

2pipe 1246 8137 23571 n/a >1000
(1) 780 3746 10073 n/a >1000
(2) 120 449 1022 n/a >1000
(3) 205 694 1670 n/a >1000
(4) 160 531 1153 n/a >1000
(5) 223 913 2395 n/a >1000

Key:
(1) 1dlx c mc ex bp f
(2) bio-b2ar-simp-b2ar 5.01
(3) bio-ace-simp-ace 5.07
(4) non-uniform-simp-nonunif-10 50.06
(5) hapmap-simp-test chr21 HCB 30

Figure 2: Experiments on RANGER with and without sym-
metry breaking



[Tseitin, 1983]. It can lead to exponentially smaller proofs,
but is used even less than general resolution because there are
no known heuristics for generating the new variables.)

We hope to resolve this issue by further experimentation
in future work, either by finding instances without auxil-
iary variables for which symmetry breaking helps randomised
refutation, or by testing the effects of new auxiliary variables
on the unrefuted instances. If the explanation turns out to be a
form of extended resolution then we may enhance RANGER
from general resolution to extended resolution, along the lines
of GUNSAT.

4 Conclusion
This work is only at a preliminary stage, but already shows
the promise of symmetry breaking in randomised refutation.
Local search for unsatisfiability appears to be an exception to
the rule that “symmetry breaking is bad for local search”.

In retrospect this is perhaps unsurprising: if symmetry
breaking allows smaller refutations then these may be eas-
ier to find by any resolution algorithm, whether systematic or
randomised. Moreover, we have not actually applied symme-
try breaking to the space explored by the local search algo-
rithm: to do this we would have to restrict the search so that
it excludes refutations that are symmetric in some sense to
other refutations. This might indeed harm local search per-
formance.

In fact the usual arguments based on solution density and
global basins of attraction do not hold when refuting an UN-
SAT problem. Adding symmetry breaking clauses to a SAT
problem increases the number of possible resolution refuta-
tions, so there are more search states from which greedily ap-
plying resolution leads directly to the empty clause. In other
words, in this context symmetry breaking increases the size
of the basin of attraction of each solution (defined here as a
search state containing the empty clause).
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