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Abstract—Identifying and breaking the symmetries of conjunctive normal form (CNF) formulae has been shown to lead to significant

reductions in search times. Symmetries in the search space are broken by adding appropriate symmetry-breaking predicates (SBPs)

to an SAT instance in CNF. The SBPs prune the search space by acting as a filter that confines the search to nonsymmetric regions of

the space without affecting the satisfiability of the CNF formula. For symmetry breaking to be effective in practice, the computational

overhead of generating and manipulating SBPs must be significantly less than the runtime savings they yield due to search space

pruning. In this paper, we describe a more systematic and efficient construction of SBPs. In particular, we use the cycle structure of

symmetry generators, which typically involve very few variables, to drastically reduce the size of SBPs. Furthermore, our new SBP

construction grows linearly with the number of relevant variables as opposed to the previous quadratic constructions. Our empirical

data suggest that these improvements reduce search runtimes by one to two orders of magnitude on a wide variety of benchmarks with

symmetries.

Index Terms—Backtrack Search, clause learning, conjunctive normal form (CNF), graph automorphism, satisfiability (SAT),

symmetries.
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1 INTRODUCTION

MODERN Boolean satisfiability (SAT) solvers, based on
backtrack search, are now capable of attacking

instances with thousands of variables and millions of
clauses [22] and are being routinely deployed in a wide
range of industrial applications [2], [4], [11], [14], [20]. Their
success can be credited to a combination of recent
algorithmic advances and carefully tuned implementations
[3], [8], [10], [13], [18], [23]. Still, there are problem instances
that remain beyond the reach of most SAT solvers.

One aspect of intractability is the presence of symmetry

in the conjunctive normal form (CNF) of an SAT instance.

Intuitively, the symmetry of a discrete object is a transfor-

mation, e.g., a permutation, of its components that leaves

the object intact. The symmetries of a CNF formula are

permutations of its literals (variables and their negations)

that result in a reordering of its clauses (and the literals

within clauses) without changing the formula itself. Such

symmetries induce an equivalence relation on the set of

variable assignments such that two assignments are

equivalent if and only if the formula assumes the same

truth value (either 0 or 1) at each of these assignments. A

search algorithm that is oblivious to the existence of these

symmetries may end up, wastefully, exploring a set of

equivalent unsatisfying assignments before moving on to a

more promising region of the search space. On the other

hand, knowledge of the symmetries can be used to

significantly prune the search space. Symmetries are

studied in abstract algebra in terms of groups. We assume

the reader to be familiar with the basics of group theory; in

particular, we assume familiarity with permutation groups

and their representation in terms of irredundant sets of

generators. A good reference on the subject is [9].
The rest of the paper is organized into five sections.

Section 2 provides a brief review of permutations and

permutation groups. Section 3 describes pervious work on

symmetry breaking for SAT. Our main contribution on

efficient constructions of symmetry-breaking predicates is

detailed in Section 4. These constructions are evaluated

empirically in Section 5 and we end with conclusions in

Section 6.

2 NOTATION AND PRELIMINARIES

We will be concerned with permutations on the literals of a

set of n Boolean variables, fx1; . . . ; xng, which we assume to

be totally ordered according to x1 < x2 < . . . < xn. We use

In to denote the set of integers between 1 and n inclusive

and denote nonempty subsets of In by uppercase “index

variables” I and J as appropriate. Given an index set I and

an index i 2 I, we define the “index selector” functions:

predði; IÞ ¼ fj 2 Ijj < ig; ð1Þ

prevði; IÞ ¼ maxðpredði; IÞÞ; ð2Þ

succði; IÞ ¼ fj 2 Ijj > ig; ð3Þ
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nextði; IÞ ¼ minðsuccði; IÞÞ; ð4Þ

where min and max return, respectively, the least and
greatest element in the given index set. For completeness,
we also let minð;Þ ¼ nþ 1 and maxð;Þ ¼ 0.

A permutation � of the set of 2n literals L ¼
fx1; x

0
1; . . . ; xn; x

0
ng (where x0i denotes the logical negation of

xi) is a function � : L! L that is both one-to-one and onto.
We will denote that xj is the image of xi under � by writing
xj ¼ x�i . To preserve Boolean consistency, whenever � maps
xi to xj, it must simultaneously map x0i to x0j. Such implied
mappings will be assumed whenever not explicitly speci-
fied. A permutation � is a phase-shift permutation if x�i ¼ x0i
for some i 2 In, i.e., � maps some literal to its complement.

Permutations will be expressed either in tabular form or
in cyclic notation. For example,

� ¼ x1x2 . . .xn
x�1x

�
2 . . .x�n

� �
ð5Þ

denotes a permutation that maps x1 to x�1 , etc. The same
permutation can be expressed as a set of disjoint cycles,
such as,

� ¼ ðxi; x�i ; ðx�i Þ
�; . . .Þðxj; x�j ; ðx�j Þ

�; . . .Þ . . . : ð6Þ

Here, a cycle ða; b; . . . ; zÞ is a shortcut for “a maps to b, b
maps to c, . . ., and z maps to a.” The length of a cycle is
equal to the number of literals in it; we will refer to a cycle
whose length is k as a k-cycle. We define the support of a
permutation �, suppð�Þ, to be the set of indices appearing in
its cyclic representation, i.e.,

suppð�Þ ¼ fi 2 Injx�i 6¼ xig: ð7Þ

The number of cycles in a permutation � will be denoted by
cyclesð�Þ. We also define phase-shiftð�Þ to be the index of
the smallest variable (according to the assumed total
ordering) that is mapped to its complement by �:

phase-shiftð�Þ ¼ minfi 2 Injx�i ¼ x0ig: ð8Þ

We should note that a phase-shift permutation must have
one or more phase-shift cycles, i.e., length-2 cycles that have
the form ðxi; x0iÞ. Finally, we define endsð�Þ as follows:

endsð�Þ ¼ i 2 Inji
is the largest index of a variable
in a non-phase-shift cycle of �

� �
: ð9Þ

A permutation group G is a group whose elements are
permutations of some finite set and whose binary operation
is function composition, also referred to as permutation
multiplication. The order of a group is the number of its
elements. A subgroup H of a group G, denoted H � G, is a
subset of G that is closed under the group’s binary
operation. The cyclic subgroup of � 2 G, denoted by <�>,
is the subgroup consisting of � and its integer powers:

<�>¼ f�ijði 2 ZÞg ð10Þ

and � is said to generate <�>. A set of permutations �1 2
G; . . . ; �k 2 G generates G if the subgroup resulting from
taking all possible products of the integer powers of these
permutations is equal to G. The permutations fx1; . . . ; xkg
are called generators of G. A set of generators is irredundant if

it is not possible to express any of its permutations as a

product of powers of its other permutations. A set of

irredundant generators serves as an implicit representation

of the group it generates and, in general, guarantees

exponential compression in the size of the representation.

Note that a set of irredundant generators is not a group

since it is not closed under multiplication and taking

inverse. In the sequel, a set of permutations G that is not

necessarily closed will be indicated by placing a “hat” on

the variable denoting the set, i.e., ĜG. Additionally, and with

a slight abuse of notation, we will indicate that G is the

group generated by ĜG by writing G ¼< ĜG > .

3 PREVIOUS WORK

The basic framework for utilizing the symmetries in a CNF

instance to prune the search space explored by an SAT

solver was laid out in [5]. This framework was extended

later, in [1], to account for phase-shift symmetries, take

advantage of the cycle structure of permutations, and

consider only generators of the group of symmetries. In

outline, the procedure consists of the following steps:

1. Convert a CNF formula ’ to a colored graph whose
symmetries are isomorphic to the symmetries of the
formula. A simple construction represents every
nonbinary clause by a vertex of color 2 and every
variable by two vertices of color 1 (one for the
positive and one for the negative literal) connected
by Boolean consistency edges. Every literal in the
CNF formula is then represented by a bipartite edge.
Binary clauses are represented by connecting their
literal vertices directly [1], [5]. An example is shown
in Fig. 1.

2. Find the symmetries of the graph in terms of a set of

irredundant generators ĜG ¼ f�1; . . . ; �kg using a

suitable graph automorphism program [6], [12], [19].
3. Map the graph symmetries back to symmetries of

the CNF formula.
4. Construct an appropriate symmetry-breaking predicate

(SBP) � and conjoin it to the formula.
5. Solve ’ ^ � using a suitable SAT solver [13].

Our concern in this paper is Step 4. Noting that the group

of symmetries induces an equivalence relation on the set of

assignments in the n-dimensional Boolean space, the basic

idea is to construct a “filter” that picks out a single

representative from each equivalence class. In particular,

choosing the lexicographically smallest representative—accord-

ing to the assumed total ordering on the variables—leads to

the following Lex-Leader SBP [5]:
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Fig. 1. Conversion of the CNF formula ðx01 þ x2 þ x3Þðx1 þ x02 þ x03Þðx02 þ
x3Þ to a graph for symmetry extraction. Different shapes correspond to

different vertex colors.



�LLð< ĜG >Þ ¼
\

�2<ĜG>

PP ð�Þ; ð11Þ

PP ð�Þ ¼
\
i2I
BP ð�; iÞ; ð12Þ

BP ð�; iÞ ¼
\

j2predði;IÞ
ðxj ¼ x�j Þ

2
4

3
5! ðxi � x�i Þ; ð13Þ

where the index set I in (12) and (13) is equal to In. In these
equations, the Lex-Leader SBP is expressed as a conjunction
of permutation predicates (PPs), each of which is a conjunc-
tion of bit predicates (BPs).1 Introducing n auxiliary “equal-
ity” variables, ei � ðxi ¼ x�i Þ, makes it possible to express
the ith BP as an ðiþ 1Þ-literal CNF clause. This leads to a

CNF representation of the PP in (12) that has n clauses with

a total literal count of 0:5ðn2 þ 3nÞ. Additionally, each of the

introduced equality constraints yields four 3-literal clauses

bringing the total CNF size of (12) to:

clausesðPP ð�ÞÞ ¼ 5n

literalsðPP ð�ÞÞ ¼ 0:5ðn2 þ 27nÞ:
ð14Þ

In its present form, the lex-leader SBP in (11)-(13) can

lead to an exponentially large CNF formula because the

order of the symmetry group can be exponential in the

number of variables. Thus, its value in pruning the search

space is negated by the need of the SAT solver to process a

much larger CNF formula. To remedy this problem, the

authors of [5] suggested the construction of a symmetry tree

to eliminate some redundant permutations. However, in the

worst case, the number of symmetries in the tree remains
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Fig. 2. Illustration of different formulations of the permutation predicate. (a) Permutation in tabular and cyclic notation. (b) Various index sets
associated with permuation. (c) Bit predicates according to (10). BPs enclosed in boxes with square corners are tautologous because � maps the
corresponding bits to themselves. BPs enclosed in boxes with rounded corners are tautologous because they correspond to cycle “ends.” The BPs
for bits 6 to 10 are tautologous because � maps bit 5 to its complement. (d) Linear formulation of the permutation predicate according to (18), based
only on irredundant bits.

1. Note that x � y in the bit predicate mean “x implies y.”



exponential. Empirical evidence in [1] showed that full
symmetry breaking, i.e., insuring that the SBP selects only

the lex-leader from each equivalence class, is not necessary to
obtain significant pruning of the search space. An SBP that

breaks some, but not necessarily all, of the symmetries of the
formula can, in fact, provide a much better space/time trade-

off during the search. This is accomplished by replacing the
group of symmetries in (11) by a suitable, and much smaller,
set of permutations ĤH �< ĜG > :

�LLðĤHÞ ¼
\
�2ĤH

PP ð�Þ: ð15Þ

In particular, the approach in [1] advocated the use of the

set of generators ĜG returned by the graph automorphism
program in Step 2.

4 EFFICIENT FORMULATION OF PERMUTATION

PREDICATE

Even when only a small number of permutations is used in

constructing an SBP, as in (15), the corresponding CNF

formula may still be too large because each PP requires a

CNF formula whose size is quadratic in the number of

variables n. In this section, we introduce two refinements

that lead to much smaller PPs. The first refinement utilizes

the cycle structure of a permutation to eliminate redundant

bit predicates and can be viewed as replacing n in (14) by a

much smaller number m and represents a more compre-

hensive and systematic treatment of cycles than that in [1].

The second refinement takes advantage of the recursive bit-

by-bit structure in (13) to yield a CNF formula whose size is
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TABLE 1
Symmetry Statistics for Various Benchmark Families

PS: # phase-shift generators; |supp| Sum: sum of support of generators; S: sparsity of generators (1 - |supp|/(Vars*Gen)).



linear, rather than quadratic, in m. Fig. 2 provides an

example illustrating these refinements.

4.1 Elimination of Redundant BPs

Careful analysis of (13) reveals three cases in which a BP

is tautologous and, hence, redundant. The first corre-

sponds to bits that are mapped to themselves by the

permutation, i.e., x�i ¼ xi. This makes the consequent of

the implication in (13), and, hence, the whole bit

predicate, unconditionally true. Removal of such BPs is

easily accomplished by setting the index set I in (12) and

(13) to suppð�Þ rather than In. For sparse permutations,

i.e., permutations for which jsuppð�Þj << n, this change

alone can account for most of the reduction in the CNF size
of the PP.

The second case corresponds to the BP of the last bit in
each cycle of �. “Last” here refers to the assumed total
ordering on the variables. Assume a cycle involving the
variables xjjj 2 J

� �
for some index set J and let

i ¼ maxðJÞ. Then,

\
j2Jnfig

ðxj ¼ x�j Þ

2
4

3
5! ðxi � x�i Þ ¼ 1; ð16Þ

causing the corresponding bit predicate BP ð�; iÞ to be
tautologous. Elimination of these BPs is accomplished by
restricting the index set I in (12) and (13) further to just
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TABLE 2
Size Comparisons of Three SBP Constructions Based on Group Generators

Extra Vars: # of additional variables used in SBPs.



suppð�Þnendsð�Þ and corresponds to a reduction in the

number of BPs from n to m � jsuppð�Þj � cyclesð�Þ.
The third and last case corresponds to the BPs of those

bits that occur after the first “phase-shifted variable.” Let i

be the index of the first variable for which x�i ¼ x0i. Thus,

ei ¼ 0 and all BPs for j > i have the form 0! ðxj � x�j Þ,
making them unconditionally true.

Taken together, the redundant BPs corresponding to

these three cases can be easily eliminated by setting the

index set in (12) and (13) to:

I ¼ ðsuppð�Þnendsð�ÞÞnsuccðphase� shiftð�Þ; InÞ: ð17Þ

In the sequel, we will refer to the bits in the above index set

as “irredundant bits.” Note that the presence of a phase-

shifted variable early in the total order can lead to a drastic

reduction in the number of irredundant bits. For example, if

� ¼ ðx1; x
0
1Þ . . . , then PP ð�Þ is simply ðx01Þ, regardless of

how many other variables are moved by �.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

TABLE 3
Comparison of Search Runtimes for Various Choices of SBP Constructions and Symmetries to Break

Search runtimes are significantly smaller after augmenting the instances with symmetry-breaking predicates.



4.2 Linear Construction of PPs through Chaining

The PP in (12) and (13) has a recursive structure that can be

utilized to produce a CNF formula whose size is linear,

rather than quadratic, in the cardinality of the index set I.

Specifically, we introduce the “ordering” predicates li ¼
ðxi � x�i Þ and gi ¼ ðxi � x�i Þ and, after algebraic manipula-

tion, write the following equivalent expressions for the

permutation predicate:

PP ð�Þ ¼ g0 !
\
i2I

\
j2predði;IÞ

gj

0
@

1
A! li

8<
:

9=
;

¼ g0 ! lk ^ gk !
\
i2K

\
j2predði;KÞ

gi

0
@

1
A! li

8<
:

9=
;

2
4

3
5;
ð18Þ

where g0 ¼ 1, k ¼ nextð0; IÞ, and K ¼ succðk; IÞ. Noting

that, except for the index set used, the parenthesized

expression on the second line of the above equation is

identical to the expression on the first line, we introduce a

sequence of chaining predicates fpiji 2 Ig defined according

to:

pi ¼ gprevði;IÞ !
\
k2K

\
j2predðk;KÞ

gj

2
4

3
5! lk; ð19Þ

where K ¼ fig [ succði; IÞ ¼ fk 2 Ijk � ig. The recursive

structure of (18) now makes it possible to express each

chaining predicate in terms of the one that follows it:

pi ¼ gprevði;IÞ ! lipnextði;IÞ i 2 I; pnþ1 � 1 ð20Þ

and yields the following alternative representation of the

permutation predicate:

PP ð�Þ ¼ pminðIÞ ^
\
i2I

pi ¼ gprevði;IÞ ! lipnextði;IÞ
� 	

; ð21Þ

which can be simplified further by replacing the equalities

by one-way implications leading, finally, to:

PP ð�Þ ¼ pminðIÞ ^
\
i2I

pi ! gprevði;IÞ ! lipnextði;IÞ
� 	

: ð22Þ

The CNF representation of each conjunct in (22) is obtained

by substituting the definitions of the l and g variables and

using the distributive law. Thus, using this construction, the
permutation predicate requires jIj additional variables (the
chaining predicates) and consists of 2jIj 3-literal and 2jIj
4-literal clauses for a total of 14jIj literals.

5 EXPERIMENTAL RESULTS

We conducted a number of experiments to evaluate the
effectiveness of the symmetry breaking constructions
described above in reducing search times. We ran the
experiments on representative CNF instances from the
following six benchmark families:

1. Hole-n: Unsatisfiable pigeon-hole instances [7].
2. Urq: Unsatisfiable randomized instances based on

expander graphs [21].
3. GRoute: Difficult satisfiable instances that model

global wire routing in integrated circuits [2].
4. FPGARoute and ChnlRoute: Large satisfiable and

unsatisfiable instances that model the routing of
wires in the channels of field-programmable inte-
grated circuits [14].

5. XOR: Various exclusive-or chains [16].
6. 2pipe: Difficult unsatisfiable instances that model

the functional correctness requirements of modern
out-of-order microprocessor CPUs [22].

Each of the benchmarks was converted to a colored graph,
as described in Section 3, and processed by the graph
automorphism program Saucy [6]. The symmetries re-
turned by Saucy were then mapped back to symmetries of
the benchmark and appropriate SBPs constructed and
added. The zChaff SAT solver [13] was then run on the
original and SBP-augmented versions of each benchmark.
All experiments were run on a Linux workstation with a
2Ghz Pentium 4 processor and 1GB of RAM. A time-out
limit of 1,000 seconds was set for all runs.

Table 1 lists, for each benchmark family, the name of the
tested instance (column 2), its total CNF size (columns 3, 4,
and 5), the order of its symmetry group (column 6), the total
number of generators returned by Saucy (column 7), and
the number of those that include phase shifts (column 8).
Columns 9 and 10 list the cardinality of the generators’
support and the degree of sparsity present in these
generators. Table 2 lists the CNF sizes of three SBP
constructions based on generators:
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TABLE 4
zChaff Search Runtimes of “Randomized” Hole-n Instances Augmented with Linear SBPs Based on Different Sets of Permutations

Total denotes the total number of permutations used in constructing each SBP.



. The quadratic construction (using extra equality
variables) based on all bits; this represents the
previous state-of-the-art.

. The quadratic construction based only on irredun-
dant bits.

. The linear construction (using extra chaining vari-
ables) based only on irredundant bits.

Several observations can be made about the data in

Tables 1 and 2. The number of symmetries in these

benchmarks is large, but all symmetries, including phase

shifts in benchmark families Urq, XOR, and 2pipe, can be

represented by fairly small sets of generators. The gen-

erators returned by Saucy appear very sparse on average,

i.e., a typical generator affects only a small number of

variables. This explains the reduction, by 1-2 orders-of-

magnitude, in the size of symmetry-breaking predicates in

column 18 (our first construction) versus column 15 ([5]):

The number of variables, clauses, and literals is reduced.

While our construction in column 18 only slightly extends

the quadratic-size construction in [1], our more advanced

linear-size construction (column 21) offers an additional

reduction by up to an order of magnitude. Note, however,
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TABLE 5
Comparison of Search Runtimes for Various SAT Solvers with and without SBPs

Search runtimes are significantly smaller after augmenting the instances with symmetry-breaking predicates.



that the number of variables is unchanged—the extra
variables added by the two constructions have different
function, but can be mapped to each other one-to-one.

Table 3 empirically compares the effectiveness of the
symmetry-breaking predicates described in Table 1. First, in
most cases, it takes much less time to find symmetries of a
CNF instance than to solve it. The 2pipe instances are an
exception, but we believe that further advances in symme-
try-finding can rectify this exception. Second, the all-bits
quadratic-sized construction due to [5] is dramatically
slower than our variants, based on the cycle structure.
Our linear-sized construction provides a further speed-up.
The only exception is the 2pipe_1_ooo instance, where the
difference between the irredundant-bits linear and quad-
ratic-sized constructions is small.

Table 3 offers additional data to evaluate symmetry-
breaking by generators, which may not be complete. We
added symmetry-breaking predicates built for pairwise
products of generators, but the overall runtimes increased
in most cases. While additional SBPs may break more
symmetries, their overhead does not justify their use.

Table 4 describes experiments with generators that have
long cycles in which we evaluated extensions to symmetry-
breaking by generators. Namely, we tried adding powers of
all generators and, alternatively, adding pairwise products
of generators. Neither extension proved useful, which
supports our main symmetry-breaking approach.

In order to study the effect of symmetry breaking when
using other state-of-the-art SAT solvers, we solved the
instances using two of the best known SAT solvers:
BerkMin562 [10] and miniSAT v1.14 [8]. The default settings
were used with both solvers. We used the advanced linear-
size construction for generating the SBPs. Table 5 shows
BerkMin’s and miniSAT’s runtimes when solving the
instances with and without symmetry-breaking predicates.
For both solvers, the addition of SBPs leads to significant
runtime savings (8,243 versus 1.37 seconds for BerkMin and
5,367 versus 2.09 for miniSAT).

We noticed that running local search solvers, e.g.,
WalkSAT [17], with symmetry-breaking clauses does not
improve runtimes. In some cases, it makes runtimes worse,
which was also observed by Prestwich in [15].

In terms of complexity, the processing of CNF-SAT
instances which results in the addition of SBPs includes
symmetry-finding, for which no polynomial-time algo-
rithms are currently known in the general case (but the
graph automorphism problem solved as a step is not
believed to be NP-complete unless P = NP). However,
symmetry-finding is often performed very quickly in
practice. Given symmetry-generators, we build one SBP
per symmetry-generator. One can show that, for a graph
with N vertices, the maximal number of symmetry-
generators returned is N2ðlog2 NÞ2, therefore, for a CNF
instance with V variables and C clauses, the number of
irredundant generators is OððV þ CÞ2ðlog2ðV þ CÞÞ2Þ. In
practice, symmetries are often represented more compactly
and the number of generators is much smaller than V . For
example, all permutational symmetries of k variables can be
captured by just two generators.

To estimate the size of an SBP, we build for a given

symmetry generator, we only use its action on vertices and

ignore the permutation of clauses that it performs. Since

vertices that are mapped onto themselves do not affect the

size of an SBP, the size is a function of the vertex-based

support of the symmetry-generator. While this support may

include all vertices, in practice, it is typically much smaller,

e.g., many generators are transpositions (jsuppj ¼ 2) or

small sets of transpositions. When we build a new SBP, the

number of literals in added clauses grows linearly with the

size of the vertex-based support of the symmetry generator

—this is in contrast to quadratically-growing SBPs in the

previous literature. Our algorithm to produce SBPs also has

linear asymptotics.

6 CONCLUSIONS

The main contribution of our work is a better construction

of symmetry-breaking predicates for Boolean satisfiability.

We empirically demonstrate improvements both in the size

of predicates and the runtime of SAT solvers after these

predicates are added to the original CNF instances. We also

show that 1) symmetry-breaking by generators is difficult to

improve upon and that 2) the efficiency of symmetry-

breaking does not improve when larger cycles are found in

generators.
Our work articulates that better symmetry finding

algorithms would be useful, especially if tailored to CNF

formulas and, perhaps, the kinds of symmetry groups

commonly found in structured CNF instances.
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